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Long-term near-surface soil moisture (SM) data can be obtained on a regional scale
through microwave remote sensing. Therefore, to quantitatively analyze the accuracy of
multisource remote sensing–based observation products, improve the retrieval algorithm,
and effectively use in terminal environments, a standardized comprehensive evaluation is
imperative. The SM data obtained by the China Meteorological Administration and Ministry
of Water Resources were used as reference data to verify the performance of six passive
microwave remote sensing–based SM products from the SMOS, SMAP, GCOM-W, FY-
3B, and FY-3C satellites in Hunan province, China. These data were also used to analyze
the effects of topographical, land cover, and meteorological factors on SM retrieval
accuracy. Results show that SMAP shows the best overall performance in Hunan
province; furthermore, it exhibits stable accuracy and is not easily affected by
environmental factors. The FY series of satellite products shows the worst
performance, and some grid remote sensing data are negatively correlated with the
ground measurement data. AMSR2 possesses the largest amount of data and the largest
deviation, and only this product exhibits significant differences with the fluctuation trend of
themeasured SM and precipitation. Passive microwave detection technology presents the
best performance in the central part of Hunan province and the largest bias in the Dongting
Lake area. SMOS-L3 and SMOS-IC, two products of the same satellite, show the lowest
bias but present differences in the SM fluctuation range, orbital accuracy, as well as dry or
wet bias. Furthermore, FY-3B and FY-3C, two satellites belonging to the same series,
exhibit excellent consistency in performance. The evaluation results and accuracy variation
between products as well as other factors identified in the study provide a baseline
reference for improving the retrieval algorithm. This study provides a quantitative basis for
developing improved applications of passive microwave SM products.
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1 INTRODUCTION

Soil moisture (SM) is a critical variable that links the atmospheric
system and terrestrial ecosystem and is an important parameter
of climate change. Therefore, the accurate observation of SM is
crucial for drought and flood monitoring, climate model
forecasting, and agricultural production (Chawla et al., 2020;
Karthikeyan et al., 2020; Wu et al., 2021).

SM parameters are mainly obtained through automated
ground observations and remote sensing. The ground
observation data are authentic and accurate but limited owing
to the number of stations and the representativeness of single-
point observations. Therefore, they cannot meet the demand of
SM data acquisition in a wide spatial range. Alternatively, satellite
data in the microwave wavelength region show excellent potential
for SM estimation because of their penetration capability (Koley
and Jeganathan, 2020). Therefore, they are conventionally used in
SM detection because their detection capability is unaffected by
weather conditions and they can provide all-weather global
observation data with long time series.

The remote sensing–based SM detection technology has been
developed for many years. Since 1978, when the Scanning
Multichannel Microwave Radiometer, carried by Nimbus-8,
began providing SM products, sensors and retrieval methods
have been constantly updated. The spatiotemporal resolution and
accuracy of the products have been continuously improved (Qin
et al., 2021). The current mainstream microwave remote
sensing–based SM products are obtained from multiple
satellites with different retrieval algorithms, and their quality
and continuity vary spatiotemporally (Dorigo et al., 2010). Thus,
for satellite-based SM products, authenticity verification is an
important task.

The authenticity test of remote sensing–based products is
essential for their effective use in data modeling, data
assimilation, and terminal environments. To test and evaluate
remote sensing–based SM products, studies have employed in
situ SM measurements (Bindlish et al., 2017; Zhu et al., 2019;
Beck et al., 2021), assimilation data (Gruber et al., 2017), remote
sensing indices (Tian et al., 2019), and precipitation data
(Karthikeyan and Kumar, 2016) as well as performed
comparisons between satellite missions (Chen et al., 2018). The
performance of different SM products varied significantly, and
different validation data and researchmethods would induce errors
in evaluation results (Gruber et al., 2020). Measurement data are
the most fundamental and accurate reflection parameters of the
surface SM. Therefore, validation research based on measurement
data can provide the most reliable results for satellite product
evaluations. However, owing to the high cost associated with
ground observations, obtaining high-quality, high-density, long-
term SM measurement data at regional-scale stations is difficult,
which also limits the development of related research.

Verification studies, application of new theories, and
improved parameterization methods have enhanced remote
sensing–based retrieval algorithms for SM quantification
(Wigneron et al., 2017). Together with the constant updating
of remote sensing–based SM products, these advances necessitate
the revalidation of the products. For example, the SM products

obtained from the SMAP satellite, updated in mid-October 2021,
have not been comprehensively evaluated at the regional scale.
The present study is based on the in situ surface SMmeasurement
data obtained by the China Meteorological Administration
(CMA) and Ministry of Water Resources (MWR). The quality
and consistency of the time-series data were analyzed to verify the
reliability of the measured SM products, and an authenticity test
was conducted on products SMOS-L3, SMOS-IC, SMAP,
AMSR2, FY-3B, and FY-3C in Hunan province, Central
China. Combined with environmental factors, the effects of
topographical, land cover, and meteorological factors on the
performance of microwave remote sensing–based SM products
were comprehensively evaluated. The findings of this study can
provide support for improving the retrieval algorithm of each
product, technical support for the application of remote
sensing–based SM products in Hunan province, and a
decision-making basis for governmental departments for
disaster prevention and mitigation.

2 MATERIALS AND METHODS

2.1 Study Area
Hunan province is located in south–central China between
24°38′–30°08′N and 108°47′–114°15′E, covering an area of
211,800 km2 Figure 1. This province is located in the transition
zone from the Yunnan–Guizhou Plateau to Jiangnan Hills and
Nanling Mountains to the Jianghan Plain. The highest and lowest
elevations of the province are observed in the south and north
regions, respectively, and the province is surrounded by
mountains on three sides. The geographical position of this
province is unique (Liao et al., 2014). The province has a humid
continental subtropical monsoon climate and is favored with light,
heat, and water resources; however, the annual variation of these
natural resources is significant and the vertical variation is evident.

2.2 Data
2.2.1 Microwave Remote Sensing–Based Products
The six remote sensing–based daily-data products used herein
cover all the recent mainstream passive microwave remote
sensing–based SM products from the SMOS, SMAP, GCOM-
W, FY-3B, and FY-3C satellites, as detailed below (Table 1).

1. SMOS is the world’s first satellite mission to measure the SM
content on land surface, and its SM products are widely used
(Xiang et al., 2017). The satellite performs observations using
an L-band (1.4 GHz) microwave imaging radiometer
(MIRAS). The spatial resolution and induction depth of the
SMOS products are 27–55 km and 3–5 cm, respectively. The
SMOS-L3-SM product comprises gridded SM data obtained
after the spatiotemporal recombination of L2 SM data,
provided by Barcelona Expert Center (version 3.0) and
downloaded from http://bec.icm.csic.es. The data include
daily data from January 2015 to May 2021. The SMOS-IC
product is based on the two-parameter inversion of the L-MEB
model (Wigneron et al., 2007), where pixels are considered
homogeneous. This product is provided by the Centre Aval de
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Traitement des Données SMOS (version 2.0) and downloaded
from www.catds.fr/. It comprises daily data from January 2015
to February 2021. Both the SMOS-based SM products show a
spatial resolution of 25 km and are projected using the Equal-
Area Scalable Earth Grids 2.0 (EASE-Grid 2.0), with data
stored in the netCDF format.

2. SMAP is the latest satellite dedicated to SMdetection. Its L-band
SM products are widely used in climatic and environmental
monitoring. The passive remote sensing–based L3 product has a
spatial resolution of 36 km, and the product is projected using
EASE-Grid 2.0. The data version is 7.0, and the source is https://
nsidc.org/. The daily data are obtained for the period January
2015–September 2021, with data in the HDF format.

3. AMSR-E/2 SM retrieval products are widely used in various
fields. The AMSR-2 L3 X-band (10.7 GHz) SMproduct obtained
from the land parameter retrieval model (LPRM) can avoid
radio-frequency interference (RFI). The product has a spatial
resolution of 25 km, the data version is 001, and the source is
https://disc.gsfc.nasa.gov. The data are obtained from August
2015 to September 2021, with data in the netCDF format.

4. FY-3B and FY-3C are the second-generation polar-orbiting
meteorological satellites independently developed by China.
The observation products are widely used in weather
forecasting, climate change monitoring, and applications that
support agriculture, transportation, shipping, and other fields.
SM data are observed using dual-polarized X-band (10.7 GHz)
detectors. The National Satellite Meteorological Center of China
provides the MWRI daily SM products of FY-3B and FY-3C. The
spatial resolution of the products is 25 km, and the products are
projected using EASE-Grid. The data version is 1.0.0, and the
source is http://satellite.nsmc.org.cn/. The FY-3B and FY-3C data
periods areAugust 2015–August 2019 andAugust 2015–February
2020, respectively. The data are in the HDF format.

2.2.2 In situ Measurement Products
2.2.2.1 Automated SM Observation Data Obtained
From CMA
The automated SM observation instrument DZN3 produced by
China Huayun Group is used in the automated SM observation
station of CMA in Hunan province. The instrument uses the
frequency-domain reflectance measurement technique for
determining the volumetric water content of the SM in the
soil depth range of 10–100 cm. The resolution and accuracy of
the instrument are 0.1% and ±2.5%, respectively. There are 60
operational observation stations in Hunan province that provide
hourly SM observation data of multiple soil layers from
September 2015 to the present. The time parameter of the
original data is universal time. The product is released on the
China Integrated Meteorological Information Sharing System
after data quality control by the meteorological department.
Consequently, the data quality is high, the missing data
measurement rate is ~3%, and the overall outlier ratio is <1%.

2.2.2.2 Automated SM Observation Data Obtained
From MWR
The automated SM observation instrument HT-SMAA-V
produced by Beijing Huitu Technology is used in the

automated SM observation station of MWR in Hunan
province. The instrument uses the frequency-domain
reflectance measurement technique for determining the
volumetric water content of SM in soil layers of 10, 20, and
40 cm with an accuracy of up to ± 2%. Because of the difference in
the construction time of each observation site, the observation
period of each site is different, and this dataset are obtained every
8 h since August 2017 when the first site was established. The time
parameter of the original data is Beijing time, the overall missing
data measurement rate is ~17%, and the overall outlier ratio
is <1%.

2.2.3 Auxiliary Data
The topographic factors used in this study are the mean and range
of elevations within the grids for each product, calculated using a
30Automated SM observationm resolution elevation dataset from
NASA’s Advanced Spaceborne Thermal Emission and Reflection
Radiometer Global Digital Elevation Model Version 3 (https://
doi.org/10.5067/ASTER/AST14DEM.003). The land cover
factors are the modal numbers and information entropy
within the grids for each product, calculated using the Multi-
Period Land Use Land Cover Remote Sensing Monitoring
Dataset (CNLUCC) for 2018 with a spatial resolution of 1 km,
downloaded from the Institute of Geographic Sciences and
Natural Resources Research, Chinese Academy of Sciences
(https://www.resdc.cn/data.aspx?DATAID = 264). The
information entropy can reflect surface heterogeneity as a
measure of the system uncertainty (Song et al., 2019; Russo
et al., 2021). The probability distribution of a random variable
X with n possible outcomes is P (X = 11) = pi for i = 1, 2, . . . , n.
The information entropy H(X) is calculated as

H(X) � −∑n
i�1
pilogpi. (1)

The meteorological factors are the mean daily temperature
and precipitation observed by the national observation stations of
CMA for September 2017–September 2021 within the
observation grid for all remote sensing–based products.

2.3 Data Preprocessing
2.3.1 In situ Measurement Product Processing
The SM data ofMWR and CMA are collected and sorted from the
date of establishment of the station to September 2021. The CMA
data comprise hourly experimental parameters, and the MWR
data comprise data observed every 8 h. The penetration depth of
the microwave L-band products (SMOS-L3, SMOS-IC, and
SMAP) is ~5 cm, while that of the X-band products (AMSR2,
FY-3B, and FY-3C) is < 5 cm (Nolan and Fatland, 2003).
Therefore, the SM measurement data obtained at the
shallowest depth of 10 cm are used as the in situ data for data
matching and analysis. Outliers are parameters exceeding the
range of [0, 1] cm3/cm3 or values surpassing the average value
plus or minus three standard deviations for the site. The CMA
missing data measurement rate is small, and predictive mean
matching (PMM) is used to interpolate the missing values. PMM
is a variant of linear regression (Little, 1988) and is used to
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estimate the missing values by extracting samples (usually
multiple candidate samples) from the observed values, which
are close to the missing data. As a method widely used for
interpolating the missing values, PMM is easy to use and
robust (Allison, 2015).

2.3.2 Remote Sensing Data Preprocessing and
Matching
Hunan province is located in the subtropical climate zone, and
the soil typically does not freeze in winter. Hence, there is not
necessary to remove the data for frozen soil. Among them, some
SM parameters in the SMOS-IC data products with outliers
exceeding the range of [0, 1] cm3/cm3 are excluded. The unit
of data of each product is converted to the volumetric water
content (cm3/cm3), and the time parameters of the remote
sensing–based products are universal time. The daily
observations of the remote sensing–based products are single
ascending and descending orbit observations, and different
instantaneous observation times exist for each observation
grid. To improve the research stringency, each remote
sensing–based product is matched with the in situ hourly
CMA data and 8 h MWR data using the temporal nearest
neighbor matching, and forming two matched datasets for
CMA data and MWR data, respectively.

To decrease the representativeness problem caused by the
difference in the observation scale, the matching of ground and
remote sensing–based SM data was based on the observation grid
of each remote sensing–based product for multisite matching.
Assume that there are two or more ground observation stations in
the remote sensing grid and the data obtained from the daily in
situ observations are abundant. In this case, the average value
from multiple stations in the matching dataset is used as the in
situmeasurement value of the grid. Furthermore, the mean value
of the ascending and descending orbits of remote sensing–based
products (missing measurement value is ignored) is used as the
remote sensing detection value, forming the comparison dataset
for each product. Based on this, the authenticity of remote
sensing–based SM products in Hunan province was verified
and a comprehensive evaluation was performed using
environmental factors.

2.4 Performance Index
The performance of different remote sensing–based SM products
in Hunan province was evaluated using error parameters. Five
statistical measures widely used for SM products were used to
assess the performance of each product. 1) The Pearson
correlation coefficient (r in Eq. 1) and 2) coefficient of
determination (R2 in Eq. 2) were used to assess the ability of
remote sensing inversion methods to capture changes in the
surface SM. 3) The bias (Eq. 3) was used to measure the degree of
SM, which is dry or wet compared with the in situmeasurement.
4) The root mean square error (RMSE; Eq. 4) was used to
measure the deviation between remote sensing and
measurement data. 5) The unbiased RMSE (ubRMSE; Eq. 5)
removes the effect of random errors on the RMSE for improved
measurements of the absolute deviation. The five indicators are
calculated using the following equations:

r � cov(RSSM,OBSM)
σRSSMσOBSM

(2)
R2 � r p r (3)

Bias � 1
m
∑m
i�1
(RSSMi − OBSMi) (4)

RMSE �
��������������������
1
m
∑m
i�1
(RSSMi − OBSMi)2

√
(5)

ubRMSE � �������������
RMSE2 − Bias2

√
, (6)

where RSSM is the SM of each remote sensing–based product,
OBSM is the SM measured by CMA and MWR, cov () is the
covariance, and σ is the standard deviation.

In the aforementioned error coefficients, when the r and R2 are
large and the bias, RMSE, and ubRMSE are small, the
performance of the product is enhanced.

3 RESULTS AND DISCUSSION

3.1 Time-Series Analysis of Multisource SM
Data
The multisource SM detection data in this study are obtained via
satellite remote sensing and in situ measurements. Among them,
remote sensing measurements are obtained using various
microwave sensors (Table 1) and the in situ measurement
data are obtained from the ground observation stations by
CMA and MWR. The CMA SM data are mainly used for
agrometeorological operations, while the MWR observation
data are mainly used for hydrological monitoring. Therefore,
the location of observation stations, performance of sensors,
instrument verification method, frequency, and data quality
control process are different from each other. Moreover, no
study has conducted a comparative test on the data of CMA
and MWR. Therefore, the following measures must be taken: 1)
time-series-based comparative analysis of multisource SM
observation data must be performed to verify data quality and
consistency; 2) the stringency of combining the measurement
data obtained from CMA and MWR as standard data must be
determined; and 3) the accuracy of microwave remote sensing
technology in capturing changes in the surface SM must be
analyzed.

The nearest CMA and MWR stations (~1.3 km away from
each other) in Hunan province are located in Yizhang County,
Chenzhou city, southern Hunan province. The SM time-series
data of SMOS-L3, SMOS-IC, SMAP, AMSR2, FY-3B, FY-3C, and
in situmeasurements and daily precipitation at the grid of the two
in situ stations are shown as time-series data diagram in Figure 2,
the SM parameters of remote sensing and measurement data are
averaged in daily data.

The results show that the SM measurement data of CMA and
MWR are consistent in the long time series, and both can respond
to the trend of precipitation fluctuation. In most cases, the MWR
parameter values are higher than the CMA parameter values,
which may be related to the proximity of the site to the water
system. However, the variation trend of the two datasets is

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8290464

Fan et al. Evaluate SM Products in Hunan

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


consistent and the peak and valley fluctuations overlap.
Precipitation is the most critical factor affecting the SM, and
its peak and valley variations are highly compatible with the
fluctuation trends of the SM at the CMA and MWR stations.
Therefore, although the sources of the two sets of measurement
data are different, both show high quality and can be used as
benchmarks for the effective assessment of remote sensing–based
products.

The lower part of Figure 2 present the time-series data
diagram of the six remote sensing–based SM products in the
grid where the ground site is located, in which the data of SMOS-
L3, SMAP, FY-3B, and FY-3C fluctuate within the range of [0,
0.5] cm3/cm3, consistent with the measurement data.

Alternatively, the data of AMSR2 and SMOS-IC fluctuate
widely. Except for AMSR2, the data of the other remote
sensing products can fluctuate with the peak precipitation
value, consistent with the SM fluctuation data. Because the
data of AMSR2 fluctuate randomly, although the time
resolution is high, the data consistency is poor and the
parameter values are very unstable. The SMAP product
exhibits the smallest SM fluctuation range; however, it can still
respond to the peak and valley fluctuations of precipitation.
Therefore, the consistency of FY-3B and FY-3C product data
is excellent and the changing trend of the two datasets can match
that of the measurement SM and precipitation data. However,
there is an inevitable delay in time.

3.2 Authenticity Assessment of Multisource
Remote Sensing–Based Products
Table 2 shows the overall error coefficients between satellite
products and in situ measurement SM data in Hunan province.
As stated previously, the error coefficient was calculated based on
the comparison dataset of each product from August 2017 to
September 2021 (the comparison period of FY-3B and FY-3C is
short).

The overall comparison analysis shows that the observation
accuracy of the SMAP products in Hunan province is
significantly higher than that of the other five products,
consistent with relevant studies (Kumar et al., 2018; Al-Yaari
et al., 2019; Wu et al., 2020). Among all products, the SMAP
products achieve the highest r, R2, RMSE, and ubRMSE
parameters for “all” and “DES” orbits (Table 2). The AMSR2
product achieves high observation accuracy with the largest
deviation and many outliers. The AMSR2 product achieves the
second-best r and R2 values but the worst bias, RMSE, and
ubRMSE values. The optimum bias values are achieved by
SMOS-L3 and SMOS-IC for “all” and “ASC” orbits,
respectively, reflecting the high performance of the SMOS
sensor. Note that the FY-series products show the worst r and
R2 values. FY-3B and FY-3C achieve negative r values for each
orbit and lower R2 values compared with the other remote

TABLE 1 | Overview of remote sensing–based soil moisture products.

SMOS-L3 and
SMOS-IC

SMAP AMSR2 FY-3B FY-3C

Satellite SMOS SMAP GCOM-W FY-3B FY-3C
Sensor MIRAS radiometer AMSR2 MWRI MWRI
Time period Nov 2009–June 2021 (SMOS-L3)

Jan 2010–February 2021 (SMOS-IC)
Jan 2015–present May 2012–present Jul 2011–August 2019 May 2014–February 2020

Band frequency 1.4 GHz 1.4 GHz 10.7 GHz 10.7 GHz 10.7 GHz
Spatial sampling 25 km EASE-2 36 km EASE-2 25 km 25 km EASE 25 km EASE
Sensor resolution 27–55 km 43 km 24–42 km 15–85 km 50–75 km
Spatial coverage Global Global Global Global Global
Acquisition time (local time) DES: 18:00 DES: 06:00 DES: 01:30 DES: 01:40 DES: 10:00

ASC: 06:00 ASC: 18:00 ASC: 13:30 ASC: 13:40 ASC: 22:00
Product version v3.0 for SMOS-L3 SMAP-L3 V7 LPRM AMSR-2 L3 V1 FY-3B/MWRI V1 FY-3C/MWRI V1

v2.0 for SMOS-IC
Unit m3/m3 m3/m3 % cm3/cm3 cm3/cm3

The “present” period comprises data as of September 2021. DES, and ASC, denote descending and ascending, respectively.

FIGURE 1 | Distribution map of topographical, drainage, and automated
soil moisture observation stations in Hunan province.
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sensing–based products. These findings are consistent with those
reported in the literature (Zhu et al., 2019) for Henan province,
Central China.

The biases of each remote sensing-based product with in situ
measurements are different. SMOS-L3, FY-3B, and FY-3C tend to
underestimate SM (satellite products are dry), while SMOS-IC,
SMAP, and AMSR2 tend to overestimate SM (observation
products are wet). The data quantity of each remote
sensing–based product in the matched dataset is presented in
the descending order: AMSR2, SMOS-IC, FY-3C, FY-3B, SMOS-
L3, and SMAP. Among them, the data quantity of AMSR2 is
considerable higher than those of the other products. All
matching data passed the t-test with a confidence interval of
95%, and all p values were <.01, indicating an extremely
significant correlation between each remote sensing-based
product with in situ measurements.

Based on the error coefficient distribution for each product in
Hunan province, the high-r-value area is mainly concentrated in
the central region, while the low–r-value area is primarily in the
west and south (Figure 3). These results show that microwave
remote sensing can capture changes in the surface SM in the
central part of Hunan province andmost of the evaluation indices
showed good performance and were comparable with relevant
studies (Mousa and Shu, 2020;Wang et al., 2021b). Therefore, the
observation products of microwave remote sensing show high

reliability. However, in the SM products of SMOS-L3, FY-3B, and
FY-3C, several grids showed negative correlation between remote
sensing and ground observation data; this phenomenon has also
been observed in a study (Wang et al., 2021a) on the SM of FY-3B
and FY-3C in Shandong province. This part of the grid
significantly affects the overall accuracy and even yields the
overall negative r performance of the two FY satellite products
(Table 2). However, grids with a negative correlation almost
appear in the western mountainous area of Hunan province,
which can be related to the fact that the remote sensing retrieval
algorithm cannot appropriately filter the interference of
topographic factors. Furthermore, the mountainous area of
western Hunan and additional water bodies in northern
Hunan are unfavorable for microwave SM detection; however,
these conditions deteriorate the performance of all products,
including SMAP, which shows good overall performance;
hence, the overall r value of all products is low (Table 2).

The maximum bias value between remote sensing–based
products and in situ measurement SM data was observed in
the Dongting Lake area in the northeast of Hunan province,
indicating that the microwave remote sensing-based SM was
extremely wetter with more water in the observation grid. The
grid point of the bias value of the SMOS-L3, FY-3B, and FY-
3C products at nearly 0 cm3/cm3 mostly appeared in the
central region, and a negative bias value (dry) was mostly

FIGURE 2 | Time-series data of soil moisture based on in situmeasurement data, remote sensing–based products, and daily precipitation at the Yizhang station. In
situ measurement, SMOS-L3, SMAP, FY-3B, and FY-3C data correspond to the main axis (left). Daily precipitation, AMSR2, and SMOS-IC data correspond to the
secondary axis (right).
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detected in the western region. The bias values of SMOS-IC
and SMAP showed no obvious distribution pattern in the area
except the Dongting Lake area. No negative bias grid point of

the AMSR2 products was observed in Hunan province, and
very few negative bias grid points of the SMAP products were
detected.

FIGURE 3 | Distribution map of error coefficients between remote sensing and in situ measurement data of soil moisture in Hunan province.
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The ubRMSE values differed between each remote
sensing–based product and in situ measurements. Generally,
the ubRMSE values were high and low in western and central
Hunan, respectively. The absolute deviation of SM detected using
microwave remote sensing is proven to increase because of the
topography of mountainous areas after removing the random
error effect. As the retrieval product of different algorithms of the
same satellite, the SMOS-L3 and SMOS-IC products show almost
opposite patterns in terms of the ubRMSE value. For SMOS-L3,
high ubRMSE values were mainly observed in the central region,
while the areas with low ubRMSE values were mainly in the
southeast and northwest. For SMOS-IC, the high ubRMSE values
were mostly observed in the west, east, and southeast, while the
low ubRMSE values were mainly observed in the central region.
The high-ubRMSE-value grid of SMAP mostly appeared in the
Dongting Lake area, while the high-ubRMSE-value grids of
AMSR2, FY-3B, and FY-3C mostly appeared in the west and
southeast.

The principle of microwave remote sensing in SM
detection is based on the relation between the soil
brightness temperature and SM. Moreover, the accuracy of
microwave remote sensing is closely related to the detection
frequency of sensors (Escorihuela et al., 2010). It is generally
accepted that the L band is the best band for SM detection
because it is more sensitive to the SM than other bands and
more easily penetrates vegetation than high-frequency C and
X bands (Jackson et al., 2010). Furthermore, the L band is less
susceptible to heavy precipitation, such as rainstorms. In this
study, the overall error coefficients of L-band products
(SMOS-L3, SMOS-IC, and SMAP) are higher than those of
X-band products (AMSR2, FY-3B, and FY-3C), confirming
the superiority of the L band in SM detection. The better
performance of SMAP than SMOS among the three L-band

products may be related to the fact that SMAP is equipped
with a real aperture radiometer, whereas SMOS uses a
synthetic aperture radiometer. Therefore, SMOS
observations will show higher internal noise (Oliva et al.,
2012) than SMAP observations. Moreover, SMOS products
are more susceptible to RFI, the extent of which is unknown
before launch. Alternatively, SMAP provides observation data
for a particular location at a fixed incidence angle, likely
contributing to the decreased noise in the retrieved data
and improving the observation performance, as confirmed
in our analysis.

3.3 Impact Assessment of Environmental
Factors
Environmental factors, including topographical, land cover, and
meteorological factors, afford different SM performances based
on microwave remote sensing (Al-Yaari et al., 2014; Wigneron
et al., 2017; Wang et al., 2019). Therefore, a comparative
evaluation was performed using the aforementioned factors;
the results are presented below.

The analysis of topographic factors is shown in Figure 4.
Except for the SM of SMAP, the r value of other remote
sensing–based products based on in situ measurements was
high when the mean DEM value was low; further, as the mean
DEM value increased, the r value tended to decrease. There was
no apparent change in the r value between SMAP product and
measured SM with the mean DEM value, and the significance test
also confirmed this result. The bias values of all remote
sensing–based products based on ground observations were
large when DEM was small. This indicates that the SM was
wetter than the ground observations and tended to be drier with
increasing DEM. This phenomenon was more evident in the

TABLE 2 | Overall parameters between remote sensing and in situ measurement soil moisture data in Hunan province.

Product Orbit Data quantity r R2 Bias (cm3/cm3) RMSE (cm3/cm3) ubRMSE (cm3/cm3)

SMOS-L3 all 61,083 0.208** 0.043 −0.041 0.145 0.139
ASC 30,052 0.185** 0.034 −0.048 0.150 0.142
DES 38,283 0.219** 0.048 −0.027 0.144 0.141

SMOS-IC all 79,354 0.218** 0.048 0.046 0.174 0.168
ASC 44,969 0.263** 0.069 0.018 0.156 0.154

DES 46,669 0.184** 0.034 0.064 0.181 0.169
SMAP all 43,075 0.334** 0.112 0.075 0.114 0.086

ASC 37,873 0.315** 0.099 0.078 0.117 0.088
DES 10,949 0.378** 0.143 0.071 0.109 0.083

AMSR2 all 203,927 0.253** 0.064 0.250 0.353 0.250

ASC 127,748 0.266** 0.071 0.203 0.330 0.259

DES 124,348 0.225** 0.051 0.290 0.378 0.243

FY-3B all 63,536 −0.151** 0.023 −0.065 0.138 0.122

ASC 48,103 −0.133** 0.018 −0.072 0.140 0.120
DES 46,133 −0.165** 0.027 −0.058 0.137 0.125

FY-3C all 72,349 −0.118** 0.014 −0.060 0.133 0.119

ASC 59,621 −0.139** 0.019 −0.050 0.134 0.124
DES 58,676 −0.117** 0.014 −0.064 0.135 0.119

Data in red are the optimal parameters of all and each orbit, and data in yellow are the worst parameters. ** indicates that the matching data show an extremely significant correlation in the
t-test with a confidence interval of 95%.
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analysis performed within the DEM range. The average
topography and terrain undulations affect the observation bias
of the microwave remote sensing–based SM.

Based on the modal number of types of land cover in each
remote sensing–based product grid, the land cover in the
comparison dataset can be divided into three types: paddy
field, dense forest, and sparse forest. Except for SMAP, the r
value between other remote sensing–based products and the
ground observation showed the same changing trend with the
types of land cover. The paddy field showed the highest r value,
followed by the dense forest and then the sparse forest. SMAP
achieved the highest and lowest r values in the dense and sparse
forests, respectively. The mean r value of the paddy field was
medium but fluctuated noticeably (Figure 5). The bias trend
between all products and in situ measurements was consistent
with the change in the typed of land cover from the paddy field to
the dense and sparse forests. The wet SM trend was strongest in
paddy fields, while the dense and sparse forests showed moderate
(AMSR2, SMAP, and SMOS-IC) and dry (FY-3B, FY-3C, and
SMOS-L3) SM trends. The bias values of FY-3B, FY-3C, and
SMOS-L3 varied significantly with different types of land cover.

The information entropy (H), a parameter representing the
surface heterogeneity of a grid, shows a certain response relation
with the SM observation accuracy based on remote sensing
(Figure 6). The r and bias values of the AMSR2 products did
not change with an increase in H. However, the ubRMSE value
increased with increasing H, indicating that when the surface
heterogeneity was high, the absolute deviation of the AMSR2
products was large. The r value of SMAP increased with
increasing H, while the bias and ubRMSE values decreased,
indicating that when the surface heterogeneity was high, the
performance of SM of the SMAP products improved. For FY-3B

FIGURE 4 | Box diagrams of topographic factors and error coefficients
of each product. * indicates the significance t-test’s p < .05 and
indicates p < .01.

FIGURE 5 | Box diagrams of types of land cover with error coefficients of
each product.

FIGURE 6 | Box diagram of land cover information entropy and error
coefficient of each product. H denotes the information entropy, * indicates the
significance t-test’s p < .05, and ** indicates p < .01.
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and FY-3C (same series of the satellite), the performance of SM
products was consistent with the H changing trend. The r value
increased and then decreased with increasing H, while the bias
value decreased with increasing H (from wetter to drier) and the
ubRMSE value remained unchanged. Generally, the SM products
of the FY series showed the best performance in the case of a
moderate surface heterogeneity. Regarding the retrieval products
of different algorithms of the same satellite, the SM performance
of SMOS-IC and SMOS-L3 showed differences with the H
changing trend. The r and bias values of both the SM
products decreased with increasing H, and the trend of
SMOS-L3 was more pronounced than that of SMOS-IC. The
ubRMSE value of SMOS-IC increased with increasingH, opposite
to the SMOS-L3 trend. Most of the land cover information
entropy and product error coefficients could pass the
significance t-test with a confidence interval of 95%.

Owing to the monsoon and complex topography, different
regions of Hunan province show significant differences in the
climatic conditions. Different meteorological conditions will also
affect the SM performance based on microwave remote sensing
(Wang et al., 2019). The r value between remote sensing and
ground observation data was the smallest in regions where the
3 year average temperatures were 14–17°C. Microwave remote
sensing showed the worst ability to capture dynamic changes in
the SM. Most of the negative correlation grids of the SM of FY-3B
and FY-3C with in situ measurements were observed in this
temperature range. With increasing daily precipitation, the
ubRMSE value of AMSR2 and SMOS-IC increased with a
gradient, that of FY-3B changed slightly, and those of the
other three products remained unchanged. This indicates that
although precipitation was the most significant cause of the
dynamic change in the SM, most satellite retrieval algorithms
can adequately handle this factor. No significant correlation was
observed between the error coefficients of r values from AMSR2,
SMAP, and SMOS-L3 with air temperature and ubRMSE from
FY-3C, SMAP, and SMOS-L3 with daily precipitation.

In the analysis of environmental factors, the overall accuracy
of SMAP was high and was not easily affected by topographic
factors and precipitation, consistent with relevant studies (Ma
et al., 2017). Alternatively, the accuracy of AMSR2 products was
easily affected by topographic factors, heterogeneity and types of
land cover, and precipitation changes. Similar phenomena have
also been reported in related studies (Liu et al., 2019; Liu et al.,
2021). The changing trend in the performance of FY-3B and FY-
3C with each environmental factor was consistent. Most negative
correlation grids were observed when the average elevation
ranged from 300 to 570 m, land cover was mainly a sparse
forest with high heterogeneity, and temperature ranged from
14 to 17°C.

One of the main objectives of the SMOS-IC product was to be
as independent as possible from auxiliary data and to be more
robust and less affected by potential uncertainties in the
aforementioned corrections. Different from SMOS-L3, SMOS-
IC did not exclude the strongly RFI-contaminated areas, which
can significantly increase the RMSE of the soil brightness
temperature, affecting the SM retrieval parameters (Wigneron
et al., 2021). The algorithmic differences between SMOS-L3 and

SMOS-IC are also evident in the performance of their data
products. The influence of topography and land cover factors
on performance is less in the case of SMOS-IC than in the case of
SMOS-L3 (Figures 4–6). However, in terms of the RMSE and
ubRMSE values that can reflect systematic errors, SMOS-L3
showed better performance than SMOS-IC (Table 2 and
Figures 5–7).

4 CONCLUSION

Soil surface moisture is one of the most challenging land surface
parameters to observe accurately in remote sensing quantitative
retrieval (Zhao et al., 2003). Therefore, accurate remote
sensing–based SM products depend on the ongoing validation,
evaluation, and improvement of the retrieval algorithms
(Wigneron et al., 2017; Gruber et al., 2020; Wang et al., 2020).
Based on the in situ measurement data of the surface SM in
Hunan province obtained from two government departments of
China, this study conducted a time-series analysis, an authenticity
test, and an assessment based on environmental factors on the six
mainstream passive microwave remote sensing–based SM
products. The conclusion are presented below.

1 SMAP showed the overall best SM accuracy in Hunan
province, achieving the optimal r, R2, RMSE, and ubRMSE
values, with the descending orbit (morning) parameters higher
than the ascending orbit (afternoon) parameters. The
performance of this remote sensing–based product fluctuated
slightly in different regions of Hunan province, and the accuracy
was slightly higher in the central region. The product can capture
the time-series dynamic changing trend of the SM on the ground.
The detection accuracy of this product was not easily affected by
topographic and meteorological factors. The product showed a
slightly worse performance when the surface was a paddy field;
however, the accuracy would increase with the increasing surface
heterogeneity.

FIGURE 7 | Box diagrams of meteorological factors and error
coefficients of each product. * indicates the significance t-test’s p < .05 and **

indicates p < .01.
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2 The ability of the AMSR2 product to capture dynamic changes
in the surface SM was second to SMAP in Hunan province, and
this product had the largest amount of observation data. However,
its deviation was the largest and there were many outliers. Only the
fluctuation trend of the AMSR2 product was significantly different
from those of the in situ measurements and precipitation in the
time-series analysis. The retrieval product was easily affected by
environmental factors, and the retrieval algorithm must be
improved by considering topographic, land cover, and
meteorological factors.

3 Regarding different algorithm products of the same satellite,
SMOS-L3 and SMOS-IC showed similar overall performance in
Hunan province and achieved the lowest bias values. However,
the fluctuation range of SMOS-L3 parameters was 0–0.5 cm3/
cm3, the descending orbit (afternoon) parameters were higher
than the ascending orbit (morning) parameters, and the overall
observation was in a dry bias. The fluctuation range of SMOS-IC
parameters was 0–1 cm3/cm3, the ascending orbit (morning)
parameters were higher than the descending orbit (afternoon)
and, and the overall observation was in a wet bias. For two satellite
products of the same series, FY-3B and FY-3C showed an overall
poor performance compared with the other products; however,
they exhibited excellent consistency. The specific manifestations
were time series, the variation trend of data was consistent, the
error coefficients and distribution were similar, and the product
performance was equally affected by environmental factors.
However, a negative correlation was observed between some
grid remote sensing and measurement SM data for both FY-
3B and FY-3C, yielding a negative correlation between the overall
correlation coefficient of the two products. The average elevation
of these grids was mainly 300–570 m, the average temperature
was predominantly 14–17°C, and the land cover was mainly a
sparse forest with high heterogeneity.

4 Environmental factors can affect microwave remote
sensing–based SM detection. Passive microwave technology
showed the best surface SM detection capability in the central

part of Hunan province, and the bias in the Dongting Lake area
was the largest. Among the six products, FY-3B, FY-3C, and
SMOS-L3 were influenced by topographic factors. Furthermore,
all products were affected by land cover factors, except SMOS-IC.
In addition, all six products were impacted by meteorological
factors, except SMOS-L3.
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