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Water and soil contain amultiplicity of particulate material coated with bacterial populations
and communities. Microbiotic particles are any type of small particle (measuring less than
2mm) to which bacteria and other microbes attach, resulting in medium to long-term
colonization. This study reviews the interactions of ecologically distant bacterial organisms
on microbiotic particles in soil and water as a method for explaining the evolution and
spread of antibiotic resistance traits. These particles include bacteria-bacteria aggregates,
which can merge with particles from fungi, protozoa, phytoplankton, zooplankton, and
biodetritus resulting from animal and vegetal decomposition, humus, mineral particles
(clay, carbonates, silicates), and anthropogenic particles (including wastewater particles
and microplastics). In turn, these complex particles can interact and coalesce. Natural
phenomena (waterflow, tides, tsunamis, currents, and strong winds) and anthropogenic
activity (agriculture, waste-water management, mining, excavation/construction) favor the
interaction and merging of microbiotic particles in soil and water, resulting in enhanced
recombinant communities capable of exchanging genetic material, including antimicrobial
resistance genes, particularly in antimicrobial-polluted environments. In this review, we
propose that the worldwide spread of antimicrobial resistance might be related to the
environmental dynamics of microbiotic particles, and we discuss possible methods for
reducing this problem that threatens One Health and Planetary Health.

Keywords: microbiotic particles, antimicrobial resistance, soil particles, particles coalescence, water-bodies
particles

INTRODUCTION

Bacteria are attracted to surfaces (Ardré et al., 2019) whose presence entails a reduction or loss in
environment homogeneity, giving rise to differentiated patches and spatially structured
compartments. Surfaces provide spatial compartments in which organic molecules,
microorganisms, and pollutants can concentrate, fragmenting the apparent homogeneity of
water bodies. Biotic and abiotic particulate matter are a major source of surfaces, providing cell
surfaces and surfaces created by exopolymerization processes (Ardré et al., 2019). Such
compartmentalization of particulate matter contributes to the subdivision of bacterial
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populations colonizing the various patches (metapopulations),
giving rise to phenotypic and genotypic differentiation (Rainey
and Travisano 1998). The tendency of bacterial clones and
populations to differentiate and increase in diversity and
complexity might be the result of random events (McShea and
Brandon 2010; Wang et al., 2016); however, compartmentalized,
heterogeneous environments are likely essential for selecting
bacterial variants adapted to the local conditions. The random
bacterial occupation of microcompartments might also favor drift
evolution, providing opportunities for minority populations with
low fixation possibilities in fully homogeneous environments.
Consequently, the framework for evolution consists not only of
time but of space. In fact, time is required to gain space, which in
turn is needed to gain time. This biological “hunger for time”
(reproduction, survival) is a relevant philosophical issue (Baquero
2005; Arenhart 2019). In evolutionary dynamics, differentiated
spaces/compartments are as critical as time. Organisms that
expand into these spaces improve their evolutionary capabilities.

This review proposes that the global spread of antimicrobial
resistance is related to the environmental dynamics of
microbiotic particles, forming compartmentalized spaces where
bacterial cells of differing origin (and frequently of different
species) coaggregate and can genetically and phenotypically
interact. Such coalescent spaces constitute a wealth of
“evolutionary reactors” for the evolution of antimicrobial
resistance (Baquero et al., 2008). In more practical terms, the
spatial heterogeneity created by microbiotic particles influences
sampling, making it difficult or impossible to accurately predict
local the microbial densities of dangerous microorganisms and,
consequently, the assessment of environmental health risks
(Burkart 2000).

Surfaces, Particles, and
Compartmentalized Biospaces
In addition to their attraction towards surfaces, living organisms
provide surfaces. The external surface of the average bacterial cell
extends approximately 5–10 times the size of the surface where
the cell was deposited.Water systems provide a wealth of particles
with attachment surfaces for microorganisms, surfaces that serve
as “condenser nodes” (aggregation nodes) for numerous bacterial
species, thereby creating biospaces, which are essentially a type of
nest with an interwoven scaffolding structure determined by
physical-chemical attractants that promote bacterial adhesion
to surfaces. These attachment surfaces are biotic and abiotic in
nature and result in the formation of biotic particles. Adhesion
surfaces for microorganisms in water and soil environments
include the surfaces of prokaryotic and eukaryotic organisms
(Simon et al., 2002). Bacterial attachment to surfaces is frequently
followed by the construction of biofilms, which result from the
release of extracellular polymers, such as polysaccharides. In this
review, we will focus on microbiotic particles ranging in mean
size from 5 μm to 5 mm in diameter and composed of or carrying
bacterial organisms. Emphasis will be placed on proteobacteria
(given that gammaproteobacteria [γ-proteobacteria] includes
most human pathogens) and the organisms in which antibiotic
resistance genes of clinical significance are more frequently

found. However, genes from γ-proteobacteria might have their
origin or can spread to other branches of the phylum (Kloesges
et al., 2011).

Bacteria-Bacteria Microbiotic Particles
Bacterial surfaces promote interbacterial homogenic and
heterogenic adhesion, which involve the same or different
species. Autoaggregation occurs within the same clonal
population, forming spontaneous aggregates in the growing
process. In Gram-positive organisms, numerous genera form
spontaneous aggregates in liquid media (classical examples
include Staphylococcus, Streptococcus, Micrococcus,
Enterococcus, Sarcina, Bacillus, Listeria, Corynebacterium,
Mycobacterium, and Streptomyces). Aggregates are also
produced in Gram-negative bacteria, typically mediated by
trimeric autotransporter adhesins in the outer membrane
(Bassler et al., 2015; Adlakha et al., 2019). Autoaggregation
(same species) mechanisms have recently been reviewed
(Nwoko and Okeke 2021). In water environments, bacterial
flocs (a type of microbiotic aggregate) can be integrated by one
or more species, have being designed “suspended bacterial
aggregates” (Cai 2020), and constitute an intermediary step
in the adhesion to other biotic and abiotic surfaces, forming
colonies and biofilms (Vlamakis et al., 2013). Homogeneous
biofilms also provide “surfaces” that can adhere to bacterial cells.
Coexistence facilitates interspecific biofilm formation in
complex microbial communities, giving rise to multimicrobial
compartmentalized consortia, complex biofilms (Katharios-
Lanwermeyer et al., 2014; Madsen et al., 2016). Complex
biofilms have an internal 3-D compartmentalized structure
derived from the combination of microcolonies, extracellular
polymeric substances, and channels (Wimpenny et al., 2000).
This three-dimensional structure favors the detachment of
biofilm particles, particularly due to the internal structural
stress from liquid flow (Picioreanu et al., 2004). The result of
this process is a type of complex biofilm reproduction, and
bacterial complex coaggregates could evolve to become an
biological “unit of selection”, i.e., an evolutionary individual
(Okasha 2006; Baquero et al., 2021). This unit is tightened by a
permanent assembly of organisms linked by cooperative or
mutualistic interactions (Røder et al., 2020), leading to
synergistic integrated functions in the ecosystems.

Microalgae-Bacteria Microbiotic Particles
Eukaryotic microalgae cells, a main constituent of
phytoplankton, are surrounded by a chemical phycosphere (a
microscale mucus region rich in organic matter) (Bell and
Mitchell 1972), which can be colonized by microorganisms,
ensuring long-term spatial coexistence with bacterial groups,
based on a complex interactive network of metabolites and
signaling molecules (Seymour et al., 2017; Cirri and Pohnert
2019), which includes bacterial quorum sensing signals (such as
N-acyl-homoserine lactones) promoting microalgae-bacteria
aggregation (Zhou et al., 2017). Most bacteria associated with
microalgae (typically diatoms) are Proteobacteria and
Bacteroidetes, which are also frequently linked to green algae
(Amin et al., 2012; Ramanan et al., 2016). During cyanobacterial
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blooms, Firmicutes and Proteobacteria increase in frequency
(Zhang et al., 2019). Anthropogenic interventions might affect
these interactions; for instance, technologies based on
microalgae-bacteria aggregates are increasingly considered an
alternative to activated sludge treatments of wastewater
(Quijano et al., 2017; Lee and Lei 2019).

Microfungi-Bacteria Microbiotic Particles
Fungi have classically been considered infrequent in water,
although they have been detected in deep sea sediments
(Damare and Raghukumar 2008). In most cases, these
fungal species also occur in soil and freshwater
environments, suggesting a terrestrial origin (Rédou et al.,
2015). However, more recent studies have indicated a high
fungal biomass in the oceans and the Arctic sea, approaching
the bacterial biomass (Hassett et al., 2019). Many of these
microfungi (such as Chytridiomycota) are also found in soil
and freshwater. In fact, microscopic fungi are frequently
present in soil and are particularly associated with the plant
rhizosphere, where they closely and permanently interact with
specific bacterial communities. Incidentally, these
communities might play a role in triggering the germination
of fungal spores (Scherlach et al., 2013). Such aggregates
modulate mycorrhizal symbiosis, a type of positive
interaction reflected in the concept of mycorrhiza helper
bacteria (Frey-Klett et al., 2007). Kin recognition and
cooperation among bacteria occurs in spatially structured
Rhizobium populations (Zee and Bever 2014). During
periodic or accidental merging of soil and water bodies,
these functional fungal-bacterial particles can enter the
water environment. When outside the mycorrhizal space,
fungal-bacterial interactions in the soil are frequently
antagonistic (Bahram et al., 2018), probably preventing
permanent particulate coaggregates. Macrofungi such as
Ascomycota and Basidiomycota, which appear to be
important ecological players in all aquatic ecosystems
(Grossart et al., 2019), contribute to the formation of
bacterial-colonizable particles such as those resulting from
leaf litter decomposition (Zhao et al., 2021). In short, the
importance of the rhizosphere in the development of
microbiotic particles is derived from the massive extent of
this ecological compartment, considered the most important
microbial site in the soil and in terrestrial ecosystems
(Kuzyakov and Razavi 2019).

Protozoa-Bacterial Microbiotic Particles
Amoeba are frequent protists in soil and water, usually grazing
bacteria but ultimately preserving them, using a kind of
“primitive farming” behavior (Brock et al., 2011). Social
amoeba, such as Dictyostelium discoideum, can form
multicellular aggregates, and these particles incorporate living
bacteria. In fact, bacterial organisms can also kill and grow at the
expense of dead amoebas (Pukatzki et al., 2002; Bahram et al.,
2018; Nguyen et al., 2020). Slime molds (myxomycetes) are
composed of aggregates of amoebal organisms fused in a large
cell (plasmodia) by the centripetal attraction of a signaling agent,
acrasin. Many types of bacteria, mostly belonging to

Proteobacteria, have been found to be associated with these
plasmodia (Li et al., 2018).

Zooplankton-Bacterial Microbiotic
Particles
Similarly, zooplankton constitute a large compartmentalized
biospace harboring permanent bacterial communities; for
example, colonizing the exoskeleton and gut of crustacean
plankton (de Corte et al., 2018). The microbiota associated
with Daphnia consists of ß-proteobacteria, γ-proteobacteria,
and Flavobacteria (Cooper and Cressler 2020). However,
individual zooplankton species can vary in their ability to host
bacterial communities (Wang et al., 2021).

Biodetritus-Bacterial Microbiotic Particles
In soil, bacterial aggregates can be established on biodetritus,
which is physically unbound (not bound to soil mineral particles),
dead particulate organic matter, including partially decomposed
vegetables and animals (such as nematodes, tracheids, and pot
worms) (Carter and Gregorich 2007). Biodetritus, which forms a
“detritusphere”, frequently overlaps the rhizosphere. The
abundant nutrients released by litter decomposition create a
dynamic structure somewhat analogous to the trophic-
dynamic aspect of biota, thereby affecting biodetritus-attached
bacteria (Rich and Wetzel 1978; Kuzyakov and Razavi 2019). In
seawater, diatom detritus is heavily colonized by γ-
proteobacteria, α-proteobacteria and Flavobacteria (Abell and
Bowman 2005). Phytoplankton biodetritus creates a dynamic
detritusphere, with microbial processes of aggregation and
degradation involving bacterial and protozoan succession
(Biddanda and Pomeroy, 1988). Detritus originating from
seaweed and carrying bacteria such as Proteobacteria,
Bacteroidetes, Firmicutes, Cyanobacteria, Planctomycetes,
Actinobacteria and Verrucomicrobia might also play a role in
the spread of microbiotic particles (Selvarajan et al., 2019). Water
farming (e.g., for raising salmon) creates conditions favoring the
production of microbiotic particles near the farming facilities
(Poirier et al., 2020).

Humus-Bacterial Microbiotic Particles
Humus is the organic dark material in soil resulting from the
decomposition of plant and animal matter. The humic material
can be of colloidal size (humic and fulvic acids) or larger and
insoluble (humins) and can degrade, eventually resulting in
soluble compounds. Studies with atomic force microscopy
have characterized the interactions between natural organic
material and bacteria, showing that adhesion was proportional
to the material’s molecular weight, particle size, and charge
density. The charge of the bacterial surface also affects
adhesion (Abu-Lail et al., 2007). Humus forms flocculated
complexes with clay particles (see below).

Mineral-Bacterial Microbiotic Particles
Organo-mineral assemblages are microaggregates involving
bacteria, which are facilitated by bacterial extracellular
polymeric substances. Pre-existing soil aggregate bacterial
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communities are incorporated into water environments under
soil-water merging circumstances. However, most aggregate
bacterial communities and therefore most microbiome
interactions are established in small (less than 2 mm) soil
mineral aggregates of heterogeneous origins (such as clay
minerals, i.e., layered aluminum silicates, and carbonates),
which are extremely resilient to physical-mechanical
disruptions and water effects and can form “microbial
villages” (Wilpiszeski et al., 2019). Most importantly,
microbes contribute to mineral (such as clay and carbonates)
authigenesis, which is the process of in situ formation of mineral
particles in sediments. The microbial exploitation of suspended
clay particles in liquid environments promotes their
microaggregation (Watts et al., 2005). Microbial biofilms
constitute a reactive exopolysaccharide matrix that binds
soluble chemical components and forms solid inorganic
particles (Konhauser and Urrutia 1999; Wei et al., 2021).
Structurally, the clay leaflets can be arranged in the form of a
“house of cards”. In fact, aggregates resemble hutches housing
bacterial cells (Lünsdorf et al., 2000). Electrochemically-active
microbial populations and communities surrounded by
exopolymer substances (frequently involving Geobacter and
Methanosaeta species) are capable of extracellular electron
transfer. These communities tend to aggregate on minerals
such as manganese dioxide and iron oxide (Virdis et al.,

2012; Kiran and Patil 2019; Xie et al., 2021). These
organisms therefore breathe the mineral they grow on as part
of their regular cellular metabolism. The mineral-attached
biofilm and the increased electrostatic interactions between
clay particles are critical for the flocculation process, which
forms bridges between clay particles and leading to floc
formation (Mueller 2015).

Anthropogenic Litter and Bacterial
Microbiotic Particles
A characteristic example of anthropogenic litter is microplastic
particles, which are millimeter-sized plastics that have been
detected in aquatic ecosystems worldwide. Numerous
microbial organisms adhere to microplastics, forming biofilms
(the microbial plastisphere) (Reisser et al., 2014; Galafassi et al.,
2021). In Chinese rivers, bacteria such as Flavobacterium,
Pseudomonas (γ-proteobacteria), Rhodoferax (β-proteobacteria)
Janthinobacterium (β-proteobacteria) are enriched on
microplastics when compared with water and sediment
without microplastics (Hu et al., 2021). The growing ensemble
of microplastics in water likely constitutes a novel ecological
niche, which is exploited by bacterial biofilms hosting specific
communities that differ from the surrounding planktonic ones
(Sathicq et al., 2021).

FIGURE 1 | Formation of microbiotic particles. Interbacterial clumps are formed by the aggregation of cells of the same population (homogeneous clumps) or
coaggregation of cells from different species (heterogeneous clumps). Particles can be formed from the bacteria’s (or bacterial clumps) interaction in water and soil with
microalgae, microfungi, protozoa, zooplankton, biodetritus, humus andmineral particles. Complex coaggregates result from themerging of these particles. The circles in
the figure represent various bacterial species and populations. The black circles represent antibiotic-resistant bacterial populations that canmake other populations
antibiotic-resistant by genetic transfer, which in turn can make their neighbors resistant, eventually including pathogenic microorganisms. The image on the right side of
the figure shows alginate-chitosan beads microencapsulating natural clumps of microorganisms measuring less than 100 nm in width, which are present in diluted
human intestinal microbiota. Alginate bead technology might be useful for trapping, isolating, and studying microbiotic particles of particular sizes.
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Interactions Among Microbiotic Particles in
Soil-Water Environments: Bacterial
Coalescence and Dispersal
All of the previously mentioned microbiotic particles of varying
origins can interact, aggregate, and eventually exchange microbial
populations (Figure 1). The frequency of interparticle
interactions depends both on the particle’s local density and
the dynamics of the local environment (Rahlff et al., 2021). The
natural and anthropogenic areas where soil and water coalesce
(such as coastal waters, particularly those with significant tides,
rivers and estuaries, the sea bottom, lakes and river beds,
agricultural irrigation channels, mining and tunnelling water
and mud flows, snow break streams, and waterfalls) constitute
the main source of soil particles where bacteria find opportunities
to establish compartmentalized biospaces (Figure 2). This soil-
water coalescence can be stimulated by occasional events, such as
flooding, tsunamis, mud-tsunamis, accelerated deep sea currents,
and heavy winds of terrestrial origin, including dust storms that
seed soil particles onto bodies of water (Behzad et al., 2018;
Choufany et al., 2021; Pérez-Valdespino et al., 2021; Suhadolnik
et al., 2021).

Landslides are a significant source of particles and include
mobile intrusions produced by rapid snowmelt, intense rainfall,
earthquakes, volcanic eruption, storm waves, rapid erosion, and
submarine landslides (Walker and Shiels 2012). Microbial
biodiversity in water is clearly increased by the insertion of
microbes from soil (Crump et al., 2012). Soil particles can mix
with water during extended periods (mud formation), leading to

increased microbial activity, reproduction, and community
mixing (Parvathi et al., 2019). Eruptions of mud and slurry
(mud volcanoes) drastically affect bacterial and
microeukaryotic communities (Coelho et al., 2016), while
volcanic ash falling into the sea supports a diverse bacterial
community (Witt et al., 2017). The role of anthropogenic soil-
mass movements (including agricultural and mining activities,
urbanization, and road and park construction) in dispersing
bacterial-colonizable particles should not be underestimated,
(Jaboyedoff et al., 2016).

The effect of climate change on these water-soil-air exchange
processes is an important issue. Warmer and drier periods cause
the retention of soil microbioparticles that can then be dispersed
by more frequent air and water-runoff events (Fröhlich-
Nowoisky et al., 2016). Airborne particles originate mostly
from soil, and many of them contain microorganisms, which
form the so-called “aerobiome” (de Groot et al., 2021). Microbes
in these particles have a strong interaction with those of water
bacterioneuston, the community of bacteria located in the thin
layer between water and air (Cunliffe et al., 2009; Hervas and
Casamayor 2009), particularly in foam interphases, favored by
surface-active substances. Marine foam can contain a high
abundance of Proteobacteria including bacterioneuston
organisms such as the γ-proteobacteria Pseudoalteromonas and
Vibrio (Rahlff et al., 2021).

Most particles of sufficient size (“large villages”) have a
stratified bacterial community structure, with deep, highly
stable residents and more mobile (exchangeable) populations

FIGURE 2 | The origin and flow of microbiotic particles. Particles composed of or aggregating bacterial populations are generated in biological microparticles in
water and soil (including phytoplankton, zooplankton, soil particles and biodetritus), which coalesce in soil-water interfaces. Soil-water interactions among particles are
favored by natural events (such as floods, tsunamis, volcanic activity, rain, melting snow, heavy winds and material transport by seas, rivers, and groundwater) and
anthropogenic activities (human wastewater, agriculture, farming, mining, tunnelling, mass transportation by roads and urbanization activities). The coalescence of
microbiotic particles from different origins favors heterogeneous bacterial coaggregation, resulting in the potential genetic transfer of antibiotic resistance genes.
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on the surface (Bailey et al., 2013). Such mobility is certainly
reduced under dry conditions, and significant variations in
moisture can occur periodically or intermittently. Not much
is known about the consequences of the drying process; in
principle, however, Gram-positive bacteria should retain
viability, whereas Gram-negative bacteria, such as
Enterobacterales, which have a lower salt tolerance (Brown
1976), will be subjected to water stress and can decline in
number. However, certain Gram-negative bacteria have
adapted to periodic water stress by excreting glycoproteins
and polysaccharides. The exopolysaccharide matrix surrounds
numerous cells in a biofilm, which can buffer cells against either
desiccation or rapid changes in water potential (Decho and
Gutierrez 2017) This adaptation is probably one of the main
functions of alginate, which can retain moisture and ensure
viability in dry conditions (Gacesa 1998; Marshall et al., 2019),
resulting in the formation of a biofilm under which coexisting
bacteria might be spared from extinction. Alginate also provides
osmotolerance, probably by intracellular accumulation (Sá et al.,
2019).

Most importantly, synthase-dependent exopolysaccharides
such as cellulose, acetylated cellulose, poly-β-1,6-N-acetyl-D-
glucosamine, and Pel contribute to the coating of colonized
soil particles, facilitating the formation of interparticle
aggregates where subsequent incoming bacterial populations
and communities can attach (Kindler et al., 2006; Vu et al.,
2009; Colica et al., 2014; Limoli et al., 2015; Decho and Gutierrez
2017; Costa et al., 2018). Biofilm formation on particles facilitates
genetic exchange between organisms originating from different
environments. Genes encoding exopolymer substances such as
alginate (also Pel) can be shared by phylogenetically (and
ecologically) different Proteobacteria organisms, probably
resulting from horizontal gene transfer in a shared biofilm
(Bundalovic-Torma et al., 2020).

Particular attention should be paid to predicting “microbial
hotspots” in soil, where plant-associated microbiotic particles can
bloom within short periods (Kuzyakov and Blagodatskaya 2015).
These ephemeral hotspots also occur in foam particles (consisting
of foam beads) on the sea surface (Rahlff et al., 2021). It would be
useful to construct a “grammar of interactions” among
microbiotic particles, which should consider not only the
study of classic species prototype strains, but the local
ecotypes or functionally equivalent organisms that help
stabilize the populational structure of the microbial
community to preserve the same role despite environmental
changes (García-García et al., 2019).

Microbiotic Particles Dispersal by Marine
Snow
In water systems, the cumulative process of microbiotic particle
aggregation is depicted by macroscopic aggregates (from 0.5 mm
to a few centimeters in diameter), also known as marine snow (or
lake snow), which sink in water at variable speeds (Alldredge and
Silver 1988). Microbiotic particles in marine snow frequently
include fungi (Bochdansky et al., 2017). In fact, marine snow is a
complex microhabitat containing a diversity of bacterial lineages

such Planctomycetes, Firmicutes, Bacteroides, and the α, γ δ, and ε
classes of Proteobacteria (Rath et al., 1998). This biological
richness influences the processes of microbial photosynthesis,
decomposition, and nutrient regeneration, constituting an actual
snow microcosm (Azam and Long 2001). Typically, the
microorganisms contained in marine snow are subjected to
successional changes derived from earlier processes, eventually
leading to disaggregation and sinking kinetics (Alldredge et al.,
1990). Bacterial succession can also result from the specific
amensalism mediated by antimicrobial substances (Grossart
et al., 2003), as occurs in other natural microbiota (Baquero
et al., 2019). In addition to the vertical migration of marine snow
(Mestre et al., 2018; Sanz-Sáez et al., 2020) and suspended
sediment aggregates, horizontal migration associated with
currents and water flow (Simon et al., 2002) also occurs,
contributing to the dispersal of the constituent microbiotic
particles and to the new potential associations with other
microbial communities (Droppo 2001). The end result is the
dissemination of microorganisms to distant environments
(Hooper et al., 2008) (Figures 1, 2).

Micro and macroaggregation processes determine the
bacterial content of sediment in water, particularly of the
benthic zone, where soil and water coalesce (Simon et al.,
2002; Wotton 2007). In fact, particle-attached bacterial
communities in the deep ocean have a particular lifestyle as
compared with free-living organisms (Acinas et al., 2021).

Evolution in Compartmentalized Water
Biospaces
Several models have been established to study evolution in
compartmentalized biospaces. A number of particulate biotic
interactions tend to be fixed by evolution, such as algae-
bacteria interactions (Ramanan et al., 2016). Experiments
with artificial microcapsules, made with an alginate-chitosan
“membrane” (Figure 1) have shown that
compartmentalization in particles can contribute to the
preservation of diversity (Zadorin et al., 2019), evading the
dominance of a single organism or genotype resulting from
periodic selection that occurs in homogeneous environments
(Atwood et al., 1951). The preservation of diversity in particles
promotes genetic drift and therefore maintains potentially
adaptive changes that are lost in mixed planktonic
environments (Baquero et al., 2021). In addition,
particulation of communities ensures that various genotypes
can be subjected to environmental stress, contributing to the
overall evolvability of natural populations (Baquero 2009;
Rocca et al., 2019). Cells of the same species can have
different adaptive needs in different ecological
subcompartments. Connectivity with particles coated with
communities of local organisms facilitates adaptive
evolution; as an example, the evolution (diversification) of
Shewanella differs between the upper ocean and the abyssal
zones (Tang et al., 2021).

Bacterial populations tend to form closed compartments, such
as colonies and biofilms attached to biotic and abiotic surfaces.
There are likely surface recognition signals leading to these
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multicellular structures (Troselj et al., 2018; Kimkes and
Heinemann 2020). Such dense population organizations have
an internal structure with layers of cells in various physiological
stages, “compartments within compartments” (You et al., 2019),
which can release organisms outside the compartment, as occurs
when planktonic cells are released from sessile populations in
biofilms (Bester et al., 2009). It has been proposed that evolution
in biofilms generates greater genetic diversity than mixed
planktonic environments, and this enhanced diversity leads to
differing pathways of antibiotic resistance (Santos-Lopez et al.,
2019). In fact, the biology of surface microbes frequently favors
local differentiation, including the emergence of antibiotic-
resistant mutations (Rainey and Travisano 1998; Oliver et al.,
2000).

Compartments can be occupied by multiple species, and
there are multispecies biofilms in natural environments (Yang
et al., 2011), frequently resulting from spontaneous
coaggregation (Rickard et al., 2003). The mechanisms by
which densely populated compartments, such as biofilms,
are invaded by external microorganisms (which can become
part of the consortium) is an interesting topic that has recently
been modeled, showing the importance of species
concentrations on the biofilm’s free boundary (D’Acunto
et al., 2014). In any case, such dense aggregation of diverse
populations facilitates horizontal gene transfer (including the
transfer of antibiotic resistance genes), and it has been
proposed that biofilm communities in water environments
are hot spots for gaining adaptive traits (Zadorin et al.,
2019; Abe et al., 2020).

Particulation by Microbial Coaggregation:
Functional Ensembles?
Coaggregation refers to a process by which individual microbial
cells, either from a single clonal lineage or species or from
different species, recognize and attach to one another (London
and Kolenbrander 1996; Rickard et al., 2003). The clues for
recognition are not yet fully understood but most probably are
the result of natural selection and should involve a type of surface
recognition code, probably involving lectins and polysaccharide
interactions, resembling the DNA codes used in protein synthesis
(Baquero 2014). Clumps or coaggregates involving two types of
cells are formed immediately upon mixing the partner
populations, a phenomenon particularly studied in oral plaque
microbial consortia (Kolenbrander et al., 1993). Various methods
have been evaluated to measure coaggregation (Kinder and Holt
1994). Quantitative spectrophotometry (based on flocculation)
has shown that coaggregation occurs weakly among bacteria from
different sites, such as oral and intestinal species (Ledder et al.,
2008). A complete “grammar of interactions” is not yet available
but will be critical for understanding the niche’s coalescence and
the resulting merging of the microbiome, which could be
described as a multidimensional network (Baquero et al., 2019,
Baquero et al., 2021). Certain species serve as bridging “nodes” to
which other species attach, as has been shown with Acinetobacter
species in water bodies, from activated sludge (Malik et al., 2003)
to drinking water (Simões et al., 2008), and with Blastomonas in

fresh water (Rickard et al., 2002; Afonso et al., 2021). Extracellular
polymers play an important role in the coaggregation of aquatic
biofilms (Hede and Khandeparker 2020). There is an “ecology of
coaggregation”, such that the process can be modified by
variations in external physical and chemical factors (Oki et al.,
2018). In general, however, coaggregation ensures the
permanence (resilience) of species-species interactions in
fluctuating environments.

Does a reproducible coaggregate act as a single individual
biological unit? Are stable coaggregates endowed with
particular organism-like traits? There are certainly chemical
interactions among members of multispecies biofilms (Yang
et al., 2011; Burmølle et al., 2014; Liu et al., 2016). It has been
shown that gene expression in the partner species can be
modified by coaggregation (Jakubovics et al., 2008), and the
coaggregate can therefore be a source of emerging properties
from a social individuality (Sadiq et al., 2021). The main
difficulty in predicting the composition of microbiotic
particles is due to the multistability in multispecies
communities, combined with ecological noise (Wright et al.,
2021).

Microbiotic Aggregates and Antimicrobial
Resistance
Antibiotics and antibiotic resistance genes originate and are
present in water and soil environments (Martínez 2008;
Cabello and Godfrey 2018). In recent decades (1970’s–2000’s)
the abundance of antibiotic resistance genes in European
archived soils have increased 10-fold (Knapp et al., 2010).
Microbiotic aggregates in soil and water environments have a
considerable influence on the emergence and evolution of
antimicrobial resistance (Baquero et al., 2021) for several reasons:

(1) Efficient antibiotic interactions require close cell-cell physical
neighborhoods (Burmølle et al., 2014), even cell-to-cell
contact (Lemonnier et al., 2008).

(2) Non-aggregated antibiotic producers do not reach the critical
density to ensure antibiosis, and non-aggregated susceptible
organisms do not reach a number that ensures the acquisition
of mutations or the acquisition of foreign resistance genes,
which in some cases respond to quorum sensing.

(3) Cell-to-cell contact facilitates the interbacterial horizontal
gene transfer of antibiotic resistance genes, including
transformation, conjugation (plasmids, integrative-
conjugative elements) and, particularly in soils and marine
habitats, DNA-packing extracellular vesicles and DNA
transfer through intercellular nanotubes (Woegerbauer
et al., 2020).

(4) “Functionally equivalent” bacterial species tend to cluster in
the same type of aggregates. Moreover, kin recognition favors
the horizontal transfer of antibiotic resistance genes (Baquero
et al., 2019). Most microbial organisms present in water and
soil aggregates and, significantly, species from all branches of
the Proteobacteria phylum (most antibiotic-resistant Gram-
negative pathogens belong to γ-proteobacteria) can exchange
genes, including antibiotic resistance and metal resistance
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genes (Kloesges et al., 2011; Pohl et al., 2014). Horizontal
gene transfer is frequent in the ocean (McDaniel et al., 2010;
Hemme et al., 2016).

(5) Most organisms producing antibiotics have a soil or water
origin. The genus Streptomyces (Actinobacteria in general) is
one of the self-aggregated bacterial organisms most
frequently found in soil and water. Interestingly, this class
of organisms is the main source (at least two-thirds) of the
antibiotic groups used for treating infections, including
aminoglycosides, beta-lactams and beta-lactamase
inhibitors, tetracyclines, macrolides, lincosamides,
streptogramins, phenicols, rifamycins, fosfomycins,
glycopeptides, novobiocin, daptomycin, and platensimycin.
These antibiotics are only the tip of the iceberg when it comes
to detected antimicrobial compounds (Mast and Stegmann
2019). Auto-aggregation of dividing cells is probably an
evolutionary strategy to produce locally sufficient
concentrations of bioactive compounds as antibiotics,
either acting as antimicrobials or as intermicrobial
signaling agents (Linares et al., 2006). In addition, there is
always the possibility of transferring antibiotic resistance
genes from antibiotic producers to pathogens (Jiang et al.,
2017). In water, organisms such as Shewanella are frequently
part of coaggregates and might be involved in the spread of
antibiotic resistance (Rickard et al., 2003; Cabello and
Godfrey 2018).

(6) Antimicrobials of anthropogenic origin extensively pollute
soil and water environments. They tend to accumulate in
particulate material (Baquero et al., 2008; Rodriguez-Mozaz
et al., 2020; Huang et al., 2021), retaining their antibacterial
activities and consequently selecting, even at very low
concentrations, for antibiotic resistant bacteria (Chander
et al., 2005).

(7) The most dangerous type of microbiotic particles involved in
antibiotic resistance are those resulting from human and
animal fecal pollution of water and soil, including those
originating in waste water treatment plants (Karkman
et al., 2018; Pärnänen et al., 2019). Large-scale wastewater
treatment plants discharge hundreds of tons of total
suspended particles into bodies of water every year, and
antibiotic resistance genes are perpetuated in the
sediments (Brown et al., 2018). However, a significant
decay of resistance genes can occur over time in some
environments (Brown et al., 2020). Microbiotic particles
based on microplastics contribute to the emergence and
spread of antibiotic resistance (Wang et al., 2020; Hu
et al., 2021). However, the relative importance of
microplastic biotic particles is dependent on the
inoculation environment and the weight of their
contributions can vary by location (Galafassi et al., 2021).

The effect of antibiotic anthropogenic pollution has
penetrated into the deepest region of the oceans, such as the
Mariana Trench, where antibiotic resistance genes of possible
human or animal origin have been detected (Yang et al., 2021). In
fact, an ocean resistome, with an ensemble of antibiotic resistance
genes, is now available, which includes genes conferring

resistance to some of the most relevant clinical antibiotics,
some of which are particularly abundant in specific geographic
locations (Cuadrat et al., 2020). Further research is needed to
correlate these findings with the density of the various
microbiotic particles.

Counteracting Antibiotic Resistance by
Controlling Microbiotic Particles
How can we counteract the dangerous spread of antibiotic
resistance mediated by water-soil particles? It appears to be an
almost impossible task at the global scale, but some local
interventions can be effective. The density and distribution of
the particles might bias surveillance results focusing on bacterial
fecal pollution. The density of suspended particulate matter
influences the recovery of fecal indicator bacteria, and this
“local factor” should be taken into account (Perkins et al.,
2016). Contamination of water bodies with human and animal
microbiotic particles containing antibiotic resistance is highly
dependent on the socioeconomic status of the country. This
access to particles, based on a lack of proper sanitation
procedures, is probably more important than antibiotic
consumption in shaping the local rate of resistance in human
and animal pathogens (Collignon et al., 2018).

Removal of water microbiotic particles is an essential step to
decontaminating the environment from antibiotic resistance
(Kumar and Pal 2018; Liang et al., 2021). Various procedures
have been proposed (Lawler 1986) or are under investigation for
removal or deactivation of particles in water. In addition to the
classic sedimentation, flocculation, coagulation, or disinfection
process, filtration and ultrafiltration, as well as cold atmospheric
plasma technology (Kim and Dempsey 2008), hydrodynamic
vortex separators (Gronowska-Szneler and Sawicki 2014);
dissolved air flotation (Han et al., 2007; El-Kalliny et al., 2021)
and other procedures will be necessary. Nanoparticle-based
biotechnology is a promising field. It includes “insertion” in the
natural process of aggregation of nanoparticles that recognize
particular microorganisms (even in biofilms) and kill them,
such as those synthesized from natural organic matter (mostly
composed of humic and fulvic acids) and silver or gold particles,
which are then released into the environment. The use of
nanoparticles with zinc oxide and titanium dioxide in
combination with halophilic bacteria (which reduce nutrients)
has been proposed to reduce the biological part of microbiotic
particles (Weber et al., 2021). However, the environmental safety of
nanoparticles remains under discussion (Hajipour et al., 2021).
Other suggested approaches include the use of “environmental
probiotics” such as Pseudoalteromonas, with antibiofilm activity
(Dheilly et al., 2010) or particular types of natural clay minerals
with antimicrobial and antibiofilm effects (Behroozian et al., 2020).

Final Remarks on Microbiotic Particles in
Planetary Health
The preservation of a healthy equilibrium among biological
and chemical constituents of Earth and human populations is a
main proposition of the One Health and Global Health
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approaches; and in fact, of Planetary Health (Myers 2017;
Hernando-Amado et al., 2019). Such equilibrium can be
altered by human interventions, as can be observed by the
deleterious changes in the chemical and biological composition
of the oceans (Pedrós-Alió et al., 2021). Therefore, robust
counter-interventions are required to ensure that Earth’s
organisms are maintained in a homeostatic, constant
internal state despite perturbations from their surroundings
(Tang and Mcmillen 2016). From a Planetary Health
perspective, we can propose that the dynamic network of
interactions among microbiotic particles in the soil and
water constitute a linking material, a kind of cement for a
unified life-holobiont, where everything depends on
everything else (Davies 2009). The analysis and
characterization of such a system requires further research,
which should lead to suitable corrective interventions to ensure
the future of our common well-being.
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