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This paper proposes a dynamic industrial transfer index for the first time to characterize the
spatial matchability of factor mobility and industrial transfer, and then explores the
correlation between factor mobility, industrial transfer and industrial carbon emission
intensity by using panel data from 30 provinces in China during 2004–2019. The
results show that China’s ability to reduce carbon emissions is improving, and the
intensity of industrial carbon emission has dropped by 44.84%. In addition, there is an
obvious spatial mismatch between factor mobility and industrial transfer. Specifically,
production factors generally flow from high-carbon emission intensity areas to low-carbon
emission intensity areas, while the direction of industrial transfer is generally opposite to
that of factor mobility. And the empirical analysis finds that the interaction between factor
mobility and industrial transfer will affect the carbon reduction. If the direction of capital
mobility is the same as that of capital-intensive industries, it is unfavorable to the carbon
emission reduction. While the carbon reduction effect will be enhanced if the directions of
labor and technology mobility are consistent with those of labor-intensive and technology-
intensive industrial transfer, respectively. Finally, based on the findings, some
recommendations are provided for governments to formulate policies.
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INTRODUCTION

The greenhouse effect is a common challenge for human society (Anwar et al., 2020), and CO2

accounts for the largest proportion among the six greenhouse gas (GHG) emissions. In 2010, global
CO2 emissions accounted for 76% of global GHG emissions (IPCC, 2014). Since then, global GHG
emissions have increased by an average of 1.4% per year, and the total GHG emissions (including
those from land-use activities) reached a record 59.1 billion tons of CO2 equivalent (GtCO2e) in 2019
(UNEP, 2020). Therefore, reducing CO2 emissions has become an important goal of global
environmental policy. As the second largest economy and the largest emitter of CO2 in the
world (Ma et al., 2019), China is taking active measures to reduce CO2 emissions by adjusting
its energy structure and upgrading its industrial structure, and proposing a series of carbon emission
reduction goals. In 2015, China put forward the “China’s 2030 Emission Reduction Plan to Address
Climate Change,” and planned to decrease CO2 emissions per unit of GDP by 60–65% compared to
2005. On 29 October 2020, the “Recommendations of the Central Committee of the Communist
Party of China on Formulating the 14th Five-Year Plan for National Economic and Social
Development and Long-term Goals for 2030” proposed that it is necessary to formulate an
action plan to reach the peak of carbon emissions by 2030 and become carbon neutral by 2060.
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Then on 12 December 2020, at the Climate Ambition Summit,
Chinese President Xi Jinping proposed a new goal of reducing
CO2 emissions per unit of GDP by more than 65% by 2030
compared to 2005, which will further increase the autonomous
contribution of China.

With the introduction of China’s carbon emission reduction
goal, carbon emission reduction has become one of the key issues
facing China’s economic and social development and industrial
restructuring in the future. As an important economic pillar,
rapid industrialization has led to an increase in energy
consumption and CO2 emissions in the industrial sector,
which contributes 85% of CO2 emissions in China (Li et al.,
2019). Therefore, reducing industrial carbon emissions has
become an important task for the sustainable development of
industrial economy. In addition, compared with the post-
industrialization of developed countries, China is still in the
stage of rapid industrialization (Jia et al., 2020). There are
obvious differences in industrial structures and development
stages between areas in China, which will lead to uneven
distribution of carbon emissions and carbon reduction
capabilities. Therefore, industrial transfer will inevitably cause
changes in the spatial structure of carbon emissions.

Besides, the spatial allocation of production factors is closely
related to the spatial layout of industrial structure. Production
factors are important basis for economic and social development,
and their utilization and distribution are crucial to the realization
of carbon emission reduction goals. Generally speaking, if
production factors flow freely, they will tend to flow to areas
with high returns under the guidance of regional resource
endowment differences and market laws (Chen et al., 2021),
which is also the basic feature of the factor mobility in China.
For a long time, the major production factors in China, such as
labor and capital, have been concentrated in the eastern coastal
areas, however, the manufacturing industry has shown a trend of
transferring from the southeastern coast areas to the inland areas
(Sun et al., 2018), which is contrary to the direction of the factor
mobility. Generally, industrial transfer may lead to changes in
regional industrial structure and factor demand structure, while
the changes in factor supply structure lag behind the changes in
the demand structure. Therefore, the mismatch between factor
mobility and industrial transfer will act on the spatial pattern of
carbon emissions. As China is simultaneously promoting factor
market allocation reform, industrial restructuring and carbon
emission reduction, the interaction between factor mobility,
industrial transfer and carbon emission reduction is related to
the realization of policy goals. Therefore, exploring the impact of
the interaction of factor mobility and industrial transfer on
carbon emission reduction from the perspective of spatial
matchability is crucial to the policy coordination of factor
allocation, industrial transformation and low-carbon
development. In addition, the case study of China can also
provide a reference for other developing countries to solve the
problem of reducing emissions from industrial restructuring.

The main contributions of this paper are as follows: First, we
improve the industrial transfer index (Sun et al., 2018) into a
dynamic industrial transfer index, and measures the dynamic
transfer trends of labor-intensive, capital-intensive, and

technology-intensive industries in China from 2004 to 2019 by
using sub-sectors data. Second, some articles point out that the
factor mobility does not match the industrial transfer in China
(Wang, 2021), on this basis, we further use regional data to carve
out and visualize the distribution characteristics of the spatial
mismatch. Third, we explore the heterogeneous impact of
different types of factor mobility and industrial transfer on
industrial carbon emission intensity from the spatial
matchability of factor mobility and industrial transfer, and
analyze the heterogeneous impact of spatial matchability on
carbon emissions under different carbon emission intensities.
Finally, we put forward some recommendations to promote
carbon emission reduction from the perspective of factor
mobility and industrial transfer.

This paper is organized as follows: Literature Review and
Research Hypothesis introduces the relevant literatures and
research hypotheses. Method and Data describes the data and
main methods. Description of Objective Facts describes the
characteristic facts of factor mobility, industrial transfer and
industrial carbon emissions. Results and Discussions is the
empirical results, and Conclusion and Policy Recommendations
is conclusions and policy recommendations.

LITERATURE REVIEW AND RESEARCH
HYPOTHESIS

Literature Review
Recent years, factor mobility, industrial transfer and carbon
emission intensity have been the research hotspots in
academia. The studies on the relationship between factor
mobility and economic activities can generally be divided into
two categories. On the one hand, some studies discuss the
relationship of factor mobility on economic activities from a
single factor, such as the impact of capital mobility on energy
consumption (Qamruzzaman and Wei, 2020), the impact of
technology mobility on innovation efficiency (Yu et al., 2019),
and the relationship between labor mobility and economic
growth (Alonso-Carrera and Raurich, 2018). On the other
hand, there are also some studies focusing on the effects of
factor mobility on the economic growth and regional
coordination. Zhang and Wu (2019) point out that factor
mobility not only promotes factor gains in inflowing areas, but
also increases factor gains in outflowing areas. However, Li et al.
(2020) take the opposite view and argue that there is
heterogeneity in the role of factor mobility on regional
equilibrium development, that is, capital and technology
mobility can promote regional equilibrium development while
labor mobility will lead to the expansion of the gap in regional
economic development.

Over the years, scholars have never stopped paying attention
to industrial transfer. The measurement of industrial transfer
(Wang et al., 2021), industrial transfer efficiency (Luo and Dai,
2019), economic effects and environmental effects of industrial
transfer (Liu et al., 2020) have received extensive attention. At the
same time, the relationship between factor mobility and industrial
transfer is also frequently discussed, which mainly includes the
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following views: First, the combined effect of mobile labor, capital
and technology is the main driving force to promote industrial
transfer (Zhai, 2016). Second, industrial transfer can play the
“reservoir effect” to promote factor mobility (Chen and Chen,
2007). In summary, the existing studies show that there is a close
connection between factor mobility and industrial transfer, so it is
necessary to discuss them within the same framework.

Under the goal of global carbon reduction, carbon emissions
have gradually become one of the focal topics in academia. The
accounting for carbon emissions (Kabir et al., 2021; Zhao et al.,
2021), spatial layout of carbon emissions (Chen et al., 2021),
carbon emission forecast (Gao et al., 2021), the carbon reduction
effect of carbon tax (Liu et al., 2021), economic impact (Peng
et al., 2021) and policy effects of carbon emissions (Xu, 2021;
Wakiyama and Zusman, 2021) have received extensive attention.
In addition, there are also some studies exploring the relationship
between industrial transfer and carbon emissions. Li et al. (2021)
analyze the relationship between industrial transfer and carbon
emissions from the perspective of industrial chains, and identify
the industrial paths that affects carbon emissions in China. Since
energy consumption is the main source of carbon emissions (Rauf
et al., 2020), and industrial transfer can change the spatial
distribution of energy intensity by influencing the regional
industrial structure (Zhao and Lu, 2019), industrial transfer
not only promotes economic development, but also has a
certain negative impact on the environment. In addition,
Chinese industries, especially industrial industries, are
gradually transferring from the coast to the mainland, which is
also accompanied by carbon transfer (Wang et al., 2021). Due to
industrial transfer or the movement of intermediate goods and
services between industries, carbon emissions in some areas will
be transferred to other areas, which will lead to hidden carbon
emissions (Zheng, 2021). From the above studies, we can see that
industrial transfer is closely related to carbon emissions.

In summary, scholars have conducted extensive research on the
impact of factor flow, industrial transfer and carbon emission
intensity on economic development. Although these studies
basically argue that carbon emission transfer will be accompanied
by industrial transfer, and the spatial matchability of factor mobility
and industrial transfer will hinder the process of industrial transfer,
but the relationship between factor mobility, industrial transfer and
carbon emission has not been fully explained. Therefore, we think
that there are still several aspects need to be made up, so we carried
out the following main works. First, we propose an improved
dynamic industrial transfer index and characterize the spatial
layouts and dynamic characteristics of interregional industrial
transfer in China from 2004 to 2019 by using industrial data.
Second, we compare the spatial matchability of factor mobility
and industrial transfer, discuss the impact of factor mobility and
industrial transfer on industrial carbon emission intensity from the
perspective of spatial matchability, and then analyze the
heterogeneity of this impact under different carbon emission
intensities using quantile regression. Third, some policy
recommendations are put forward to provide decision-making
reference for improving the carbon emission reduction effect of
industrial transfer and achieving the goal of “Carbon Peak and
Carbon Neutrality”.

Research Hypothesis
Industrial activities are one of the main sources of CO2

emissions (Li et al., 2019). There is significant heterogeneity
in the carbon emission intensity of different industrial sectors
due to differences in energy consumption structures. Among
them, the industrial sectors using fossil energy such as coal,
coke or oil and other energy-intensive sectors have higher
carbon emission intensity. In addition, due to regional
differences in technology endowment, scale effect, and
environmental regulation intensity, the emission reduction
capacity of different areas is not consistent, so the
adjustments of industrial layout and changes in industrial
structure may lead to adjustments and changes in carbon
emissions (Yan and Yang, 2010). In general, the transfer of
capital-intensive industries implies an increase in energy
consumption, and a corresponding potential increase in
carbon emission intensity (Zhao et al., 2020). While the
transfer of technology-intensive industries may lead to an
increase of regional technology level and a decrease of
carbon emission intensity (Chen et al., 2020). In addition,
technology-intensive and labor-intensive industries have
lower carbon emission intensity compared to capital-
intensive industries (Fu et al., 2021a). In other words, the
impacts of different types of industrial transfer on carbon
emissions may be heterogeneous. Accordingly, we propose the
first research hypothesis of this paper.

H1: There is heterogeneity in the impact of different types of
industrial transfers on industrial carbon emission intensity.

Production factors are the important basis of industrial
activities, so the mobility and allocation of factors play a
crucial role in industrial activities and will also have an impact
on industrial carbon emissions accordingly. With the
acceleration of economic system reform and marketization,
the administrative barriers to resource allocation have
gradually been broken. Based on the factor endowment
theory, the quantitative and qualitative differences in
production factors between different areas constitute an
objective basis for factor mobility (Zhang, 2016). Due to
the differences in economic development levels and
industrial returns, the profit-seeking nature of production
factors tends to make them cluster in areas or industries
with higher marginal rewards (Zhao and Xu, 2020).
However, the total amounts of production factors in
economic activities, such as labor and capital, are limited.
And factor mobility inevitably leads to the redistribution of
production factors among areas and industries, which
ultimately affects the layout and structure of industrial
production. In addition, China’s factor markets have
serious institutional barriers and low levels of factor
market allocation (Lu and Wang, 2021), and industrial
transfer is not always dominated by the market behavior of
spontaneous factor mobility, government regulation is also
one of the important factors leading to industrial transfer
(Zhang et al., 2019). Therefore, the dual role of government
and market may lead to serious misalignment problems
between factor mobility and industrial transfer, which in
turn will affect factor productivity and industrial carbon
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emissions. Besides, according to the theory of industrial
gradient transfer, developed areas with high factor
abundance have stronger incentives to transform and
upgrade their industries, thereby prompting industries that
have lost comparative advantages or with high energy
consumption and high pollution to transfer to developing
areas, where they may still have comparative advantages. So
industrial transfer can be used to achieve industrial progress
in developed areas and industrial upgrading in developing
areas (Sun and Hou, 2021). From this perspective, the process
of industrial transfer will be accompanied by the spatial
transfer of demand for production factors. Due to the
imperfect market mechanism or information asymmetry,
the flow direction of labor, capital and other production
factors often cannot change in time with the direction of
industrial transfer, which will lead to the problem of
mismatch between factor mobility and industrial transfer
and the imbalance between the supply and demand of
factors. In turn, the imbalance between supply and demand
of production factors will affect the process of industrial
transfer. When the direction of factor mobility does not
match that of industrial transfer, the contradiction between
factor mobility, industrial transfer and carbon emission
reduction will be strengthened. Therefore, we propose the
second research hypothesis of this paper. Figure 1 shows the
theoretical analysis framework of this paper.

H2: The matchability of factor mobility and industrial transfer
will affect the carbon emission reduction effect of industrial transfer.

METHOD AND DATA

Estimation of Factor Mobility
According to the Cobb-Douglas production function, technology,
labor, and capital are the main factors that determine the level of

industrial development. Therefore, in this paper, we mainly focus
on the impact of labor, capital, and technology mobility on
carbon emissions.

Labor mobility (lf)
China conducts a population census as well as migrants statistics
every 10 years, and conducts a migrant population dynamic
survey (CMDS) every year, but the coverage of the dynamic
survey is small, with a sample size of about 200,000 households,
which only accounts for about 0.04% of China’s total population.
In other words, there is no continuous official data on labor
mobility that covers the whole country in China. Considering the
lack of official statistics, we learn from the common practice of
scholars and use net population change after excluding natural
growth factors (Lin and Wang, 2006) to measure the macro-level
population mobility. From the 2010 census in China, the
proportion of labor force in the mobile population is about
90%. Therefore, this paper uses the net population change
after excluding the natural growth factor multiplied by the
proportion of labor force in the mobile population to measure
inter-provincial labor mobility, which is defined as follows:

lfi,t � (Li,t − Li,t−1
Li,t−1

− ni,t) × 0.9 (1)

where Li,t represents the total population of province i at the end
of year t, and ni,t is the natural growth rate of province i in year t.

Capital mobility (cf)
Since there are no official public data on inter-provincial
capital mobility in China, we follow the common practice
of Chinese scholars to approximate the inter-provincial capital
mobility by using the expenditure approach principles of
national economic accounting (Hu and Wu., 2012).
According to the formula of national economic accounting,
GDP can be decomposed into final consumption (C), capital

FIGURE 1 | Theoretical analysis framework.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8228114

Zheng et al. Factors, Industries and Carbon Emissions

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


formation (I) and net outflow of goods and services (X), where
X can be assumed to be the consumption of goods and services
in the province by residents outside the province (including
other domestic provinces and abroad). Therefore, based on the
principle that the direction of goods and services mobility is
opposite to that of capital mobility, the size of inter-provincial
capital mobility is approximated by the net outflow of goods
and services minus the net export of foreign trade. In this
paper, the ratio of the size of inter-provincial capital mobility
to GDP is used as a proxy variable for capital mobility, which
can also be used to capture domestic market trade.

Technology mobility (tf)
Technology market transaction is a suitable indicator to
measure inter-regional technology mobility (Yu et al.,
2019). However, it is worth noting that, unlike labor and
capital mobility, technology outflow does not lead to a
decline in the technology level of the outflowing area, so
technology market transactions in inflowing areas can be
used as a proxy variable for inter-provincial technology
mobility, specifically measured by the ratio of technology
market transactions to GDP.

Estimation of Industrial Transfer
Manufacturing transfer is the main form of industrial transfer.
Developed countries have well-developed information on the
location of enterprises and can directly judge the scale and
direction of industrial transfer based on changes in the
location of enterprises (Arauzo-Carod et al., 2010), while
such information is difficult to obtain in China, so
industrial transfer in China is usually measured in an
indirect way. Zhao and Yin (2011) propose a method to
measure industrial transfer based on the idea of share
transfer. Sun et al. (2018) point out that the change in the
number of enterprises cannot accurately reflect the transfer of
manufacturing industries, so they make some improvements
based on Zhao’s study by using the change in production scale
after excluding the natural growth of industries to reflect
industrial transfer, which is defined as follows:

IRci,t � Pci,t − Pci,t0

� qci,t∑n
c�1qci,t

/ ∑m
i�1qci,t∑m

i�1∑n
c�1qci,t

− qci,t0∑n
c�1qci,t0

/ ∑m
i�1qci,t0∑m

i�1∑n
c�1qci,t0

(2)

where IRci,t denotes the industry transfer index of industry i of
area c in year t, Pci,t and Pci,t0 denote the total production scale of
industry i in year t and year t0 (base period), respectively. m
presents the number of industries, qci,t denotes the production
scale of industry i in area c in year t, and ∑m

i�1qci,t denotes the
overall production scale. Eq. 2 examines the industrial transfer
related to a specific year, however, the industrial transfer
examined by a fixed base period cannot better reflect the
dynamics of industrial transfer. Moreover, in order to make
the industrial transfer index relatively comparable to the factor
mobility based on the previous year, we improve Eq. 2 by defining
the industrial transfer index as the difference between the relative

proportion of production scale in the current year and the relative
proportion in the previous year, and defining the index as a
dynamic industrial transfer index, which can be expressed as
follows:

IRd
ci,t � Pci,t − Pci,t−1

� qci,t∑n
c�1qci,t

/ ∑m
i�1qci,t∑m

i�1∑n
c�1qci,t

− qci,t−1∑n
c�1qci,t−1

/ ∑m
i�1qci,t−1∑m

i�1∑n
c�1qci,t−1

(3)

When IRd
ci,t = 0, the industry is not transferred. If IRd

ci,t > 0, it
means that industry i of area c in year t undergoes transfers in
relative to the previous year. Otherwise, the industry is relatively
transferred out.

Estimation of Industrial Carbon Emission
Intensity
Carbon intensity is usually defined as CO2 emissions per unit of
GDP (Zhou et al., 2019). Accordingly, industrial carbon intensity
(ci) can be defined as CO2 emissions per unit of industrial
outputs, and the combustion of fossil energy is the main
source of CO2 emissions (Zhao and Luo, 2018). Based on the
general approach of existing studies, the consumption of fossil
energy is used to estimate CO2 emissions according to the 2006
IPCC Guidelines for National Greenhouse Gas Inventories, as
shown in Eq. 4.

C � ∑ADi × NCVi × EFi × Oi ×
44
12

(4)

where C denotes CO2 emission and i denotes energy type. In this
paper, the fossil energy mainly includes raw coal, washed coal,
other washed coal, coal, coke, coke oven gas, blast furnace gas,
other gas, crude oil, gasoline, kerosene, diesel, fuel oil, naphtha,
lubricating oil, paraffin, solvent oil, petroleum asphalt, petroleum
coke, liquefied petroleum gas, refinery dry gas, natural gas, other
petroleum products and other coking products, etc., ADi, NCVi,
EFi and Oi represent energy consumption, average low level heat
content, carbon content per unit calorific value and carbon
oxidation rate, respectively.

Control Variables
Refer to existing researches, we choose economic externality
(eo), technological innovation (inv), industrial structure
(ind), urbanization rate (urban), fiscal self-sufficiency rate
(fss), and environmental regulation (mier) as control
variables. eo, ind, and mier are all relative indicators, which
are measured by the proportion of total exports and imports
in GDP (Waugh and Ravikumar, 2016), the proportion of
secondary industry output in GDP, and the proportion of
resource tax, vehicle use tax, and environmental tax (sewage
charge) related to environmental protection in GDP
(Jorgenson and Wilcoxen, 1990), respectively. inv, urban,
and fss are expressed as the number of invention patent
applications per 10,000 people, the proportion of urban
population, and the proportion of budget revenue to
budget expenditure (Zou et al., 2019), respectively.
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Data Source
After combing through the sustainable development and low-
carbon emission reduction policies of China, we found that the
Scientific Outlook on Development, introduced in July 2003, is of
great significance to China’s energy conservation and to the
sustainable development. Therefore, 2004 is chosen as the
starting point of this paper. The energy consumption data
used to calculate CO2 emissions are from the China Energy
Statistical Yearbook (2005–2020). The year-end population
and natural growth rates required for labor mobility and the
data required for capital mobility are from the China Statistical
Yearbook (2004–2020), where data on “net outflows of goods and
services” for 2019 are missing for some provinces, and we use the
average growth rates of the last 5 years for estimation. The
technology market transactions in the inflowing areas required
for technology mobility are obtained from the China Statistical
Yearbook on Science and Technology (2005–2020). The
manufacturing industries are divided into labor-intensive,
capital-intensive and technology-intensive according to the
intensity of production factors. The data on industrial output
value required for industrial transfer come from the China
Industry Statistical Yearbook (2004–2020), wind database and
statistical yearbooks of relevant provinces. The data required for
the control variables are from the China Statistical Yearbook
(2005–2020) and the Finance Yearbook of China (2005–2020).
The VIF test shows that the variance inflation coefficients of all
variable are less than 10, which can prove that there is basically no
multicollinearity in these variables (Hair et al., 1995).

Method
Moderating Effect Model
In this paper, the panel fixed effects model is used to examine the
relationship between factor mobility, industrial transfer and
industrial carbon emissions. Combined with the theoretical
analysis, the impact of the interaction between factor mobility
and industrial transfer on carbon emissions is the focus of our
attention. Therefore, in addition to factor mobility and industrial
transfer, the interaction term of these two indicators is added to
the model to examine the effect of their interaction on industrial
carbon emissions, and the model is shown in Eq. 5.

ciit � α0 + α1ffit + α2 × intit + α3ffit × intit + α∑Xit + ui + λt

+ εit

(5)
where ci represents industrial carbon emission intensity, ff
denotes factor mobility, which include labor mobility (lf),
capital mobility (cf), and technology mobility (tf), respectively.
int is industrial transfer, including labor-intensive industry
transfer (lit), capital-intensive industry transfer (cit), and
technology-intensive industry transfer (tit). X denotes a set of
potential control variables, ui denotes individual fixed effects, λt
denotes time fixed effects, and εit denotes a random error term.

Quantile Regression Model
Considering that the industrial carbon emission intensity may
represent the ability to reduce emissions, the impacts of factor

mobility and industrial transfer on industrial carbon emission
intensity may be heterogeneous at different industrial carbon
emission intensities. Quantile regression is one of the effective
methods to examine the heterogeneous impacts of explanatory
variables on the explained variables at different quantile levels,
and it uses the conditional expectation of the explained variable to
obtain a regression equation in any quantile level of the explained
variable by adding the absolute value of the minimum residual
weights (Koenker, 2004). The formula for the quantile regression
is as follows:

Qyi(τ|xi) � XT
i βτ (6)

Following Alvarado et al. (2021), we use the panel quantile
regression approach to estimate the heterogeneous impacts of the
factor mobility and industrial transfer on industrial carbon
emission intensity at different quantile levels. We specify the
quantile τth (0 < τ < 100) of the dependent variable’s conditional
distribution as a function of a set of explanatory factors Xit. The
equation is shown in Eq. 7.

Qt(ciit
Xit

) � αt +Xitβt + αtεit (7)

The matrix Xit is the set of all the explanatory and control
variables, and εit is the error term. In this paper, the model of
quantile regression can be specifically expressed as Eq. 8.

Q(ci)i(τ|αi, εt, Xit) � αi + εt + β1τffit + β2τ intit + β3τffit × intit
+β4τeoit + β5τ invit + β6τ indit + β7τurbanit + β8τfssit + β9τmierit

(8)

DESCRIPTION OF OBJECTIVE FACTS

Spatial Matchability of Factor Mobility and
Industrial Transfer
From the spatial matchability of factor mobility and industrial
transfer, production factors generally flow from the central and
western areas to the eastern areas, while the direction of industrial
transfer is opposite. Especially labor-intensive industries and
technology-intensive industries generally transfer from the
eastern areas to the central and western areas, and there is a
relatively obvious spatial mismatch between the direction of
factor mobility and the trend of industrial transfer.

Figures 2A, B reflect the spatial layout of labor mobility and
labor-intensive industrial transfer, respectively. As can be seen
from the China Census in 2010, employment is the main factor of
labor mobility across provinces, accounting for 77.2%. More than
55.4% of the mobile labor force is employed in manufacturing
industries, and the labor force with a college degree or above is
less than 11.6%. Overall, labor-intensive industries are the main
industries absorbing low-skilled labor. Comparing Figures 2A, B,
we can find that, during 2004–2019, labor-intensive industries
basically show a trend of transferring from the eastern areas to the
central, western, and northeastern areas, while labor force shows
a trend of moving from the central and western areas to the
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eastern areas. Although the trend of labor inflow in eastern
provinces such as Beijing, Shanghai and Shandong slows down
after 2016, and there is even a net outflow, the labor force in some
central and western areas begin to return at the same time, the
contradiction between labor supply and demand in the central
and western areas remains prominent with the transfer of labor-
intensive industries to central and western areas.

Figures 2C, D reflect the basic situation of capital mobility
and capital-intensive industry transfer. And we can see that,
from 2004 to 2019, capital flows from the central and western
areas to the eastern areas, while capital-intensive industries do
not show a clear trend of transferring from the eastern to the
central and western areas, just like the findings of (Fu et al.,

2021b). In general, capital-intensive industries in the eastern
provinces such as Tianjin, Hebei, Shandong, Zhejiang, Fujian,
Guangdong and Hainan remain net inflows. Comparing the
regional input-output tables of China, we find that Beijing,
Tianjin, Shanghai, Jiangsu, Shandong and Fujian generally
show net outflows of domestic and provincial capital-
intensive products, while the central and western areas
mostly show net inflows of domestic and provincial capital-
intensive products, indicating that the eastern areas are still the
main production base for capital-intensive products. It also
indicates that although capital mobility and capital-intensive
industry transfer are more consistent in some provinces, the
matchability between them still needs to be improved.

FIGURE 2 | The spatial layout of factor mobility and industrial transfer.
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It can be seen from Figures 2E, F that technology-intensive
industries transfer from the eastern areas to the central and
western areas, which is like the findings of Cao and Zhang.
(2021). However, there is still a mismatch between technology
mobility and technology-intensive industry transfer in terms of
technology market transactions. The main manifestation is that
technology-intensive industries mainly transfer to areas where
technology inflows are lower than the national average. Next, we
examine the independent innovation capacity of areas that absorb
technology-intensive industries. Among them, the number of
invention patent applications per 10,000 people in eastern coastal
areas such as Beijing, Shanghai, Jiangsu, and Zhejiang exceeded 2,
however, it is less than 0.5 in the central and western areas. The
above information shows that there is also an imbalance in the
spatial layout and innovation level of technology-intensive
industrial transfer. Although some technology-intensive
industries have transferred into the central and western areas
where the level of independent innovation is relatively weak due
to industrial layout adjustment, the direction of technology
mobility represented by technology market transactions and
the transfer direction of technology-intensive industries cannot
be matched in time.

Basic Performance of Industrial Carbon
Emission Intensity
According to the national average industrial carbon emission
intensity from 2004 to 2019 (the average value is 8.1382), the 30
provinces are divided into low carbon emission intensity areas
(low-carbon areas) and high carbon emission intensity areas
(high-carbon areas). From Table 1, we can see that the
industrial carbon emission intensity of China shows obvious
regional distribution characteristics, with a spatial pattern that
the east is lower than the west, and the south is lower than the
north. Among them, the southeast coastal area has the lowest
carbon emission intensity. From the perspective of industrial
carbon emission intensity trends, the carbon emission intensity of
all provinces decreases significantly from 2004 to 2019. The
overall industrial carbon emission intensity of China decreases
from 11.5210 to 6.3521, with a decrease of about 44.87%. The
average industrial carbon emission intensity of low-carbon areas
decreases from 7.3773 to 3.2648 with a decrease of about 55.75%.
The average industrial carbon emission intensity in high-carbon
areas decreases from 19.1107 to 12.8883, with a decrease of

32.56%. Thus, we can see that the central and western areas
with high carbon emission intensity are still the key areas for
carbon emission reduction in China.

RESULTS AND DISCUSSIONS

Baseline Regression
Before performing empirical analysis, we conduct a panel unit
root test using the LLC test and the ADF-Fisher test. The results
in Table 2 show that the original hypothesis of the existence of a
unit root for each variable is strongly rejected, so the panel series
is stationary.

Table 3 is the analysis results of full samples. Col. (1) indicates
that labor force inflow can exacerbate industrial carbon intensity,
which is similar to the findings of Liu et al. (2021). One possible
reason is that the cross-regional labor mobility is accompanied by
the adjustment of labor structure, which is mainly manifested in
the transfer of rural labor and the transfer of labor from the
primary industry to the secondary and tertiary industries.
Especially, the increase in employment in the secondary
industry implies the expansion of the industrial scale and the
increase in energy consumption and carbon emission intensity.
Col. (2) and Col. (3) show that labor-intensive industrial transfer
contributes to the reduction of industrial carbon emission
intensity. The negative estimated value of the interaction term

TABLE 1 | Average industrial carbon emission intensity in various provinces in China from 2004 to 2019 (tons/million).

Low-carbon areas High-carbon areas

No. Area Ci No. Area Ci No. Area Ci No. Area Ci

1 Guangdong 3.0382 9 Hubei 6.2271 1 Anhui 8.8136 9 Jilin 14.9307
2 Fujian 3.6593 10 Sichuan 6.3628 2 Shandong 9.0787 10 Hainan 16.6122
3 Zhejiang 3.6751 11 Hunan 6.4236 3 Shaanxi 9.7852 11 Xinjiang 17.1204
4 Jiangsu 4.2196 12 Tianjin 7.5717 4 Yunnan 10.4012 12 Qinghai 18.4463
5 Shanghai 4.9240 13 Henan 7.7095 5 Heilongjiang 12.4795 13 Guizhou 19.7336
6 Chongqing 5.4303 14 Guangxi 7.7609 6 Gansu 14.2102 14 Inner Mongolia 28.7514
7 Jiangxi 5.6533 — — — 7 Liaoning 14.2747 15 Ningxia 31.3141
8 Beijing 5.6771 — — — 8 Hebei 14.9024 16 Shanxi 33.8554

TABLE 2 | Results of the panel unit root test.

Variables LLC test ADF-Fisher test

Statistic p-value Statistic p-value

ci −7.5425*** 0.0000 109.0661*** 0.0001
lf −7.4093*** 0.0000 243.3295*** 0.0000
cf −3.0962*** 0.0010 155.2880*** 0.0000
tf −3.1674*** 0.0008 143.9097*** 0.0000
lit −3.0554*** 0.0011 147.5111*** 0.0000
cit −4.1994*** 0.0000 133.3901*** 0.0000
tit −3.8887*** 0.0001 147.0320*** 0.0000
eo −2.2931** 0.0109 147.0443*** 0.0000
inv −7.4075*** 0.0000 177.9160*** 0.0000
ind −4.8320*** 0.0000 147.2384*** 0.0000
urban −3.5233*** 0.0002 138.3170*** 0.0000
fss −4.8094*** 0.0000 175.0018*** 0.0000
mier −6.0502*** 0.0000 137.1842*** 0.0000
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TABLE 3 | Results of baseline regression.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

lf 0.0016* (1.93) — 0.0018** (2.12) — — — — — —

lit — −0.0019*** (−3.25) −0.0020*** (−3.43) — — — — — —

lf*lit — — −0.0001* (−1.85) — — — — — —

cf — — — −0.0013 (−1.42) — −0.0015 (−1.64) — — —

cit — — — — 0.0095*** (9.42) 0.0103*** (9.55) — — —

cf*cit — — — — — 0.0001** (2.44) — — —

tf — — — — — — −0.0736*** (−3.57) — −0.0472** (−2.34)
tit — — — — — — — −0.0046*** (−5.32) −0.0014* (−1.85)
tf*tit — — — — — — — — −0.0017*** (−4.34)
eo 0.0390 (1.03) 0.0413 (1.11) 0.0308 (0.82) 0.0588 (1.53) 0.0868** (2.51) 0.1060*** (3.01) 0.0292 (0.78) 0.0844** (2.27) 0.0489 (1.33)
inv −0.1430*** (−6.59) −0.1584*** (−7.29) −0.1541*** (−7.09) −0.1450*** (−6.69) −0.1661*** (−8.35) −0.1580*** (−7.83) −0.1364*** (−6.32) −0.1535*** (−7.29) −0.1332*** (−6.40)
ind −0.6098*** (−5.44) −0.6083*** (−5.51) −0.6442*** (−5.78) −0.5583*** (−5.00) −0.7157*** (−6.97) −0.6934*** (−6.77) −0.6198*** (−5.62) −0.6848*** (−6.24) −0.7433*** (−6.40)
urban −0.6621*** (−3.63) −0.4231** (−2.33) −0.5031*** (−2.71) −0.6335*** (−3.49) −0.1961 (−1.17) −0.3311* (−1.91) −0.5564*** (−3.18) −0.4243** (−2.43) −0.6011*** (−3.44)
fss −0.0272*** (−3.38) −0.0291*** (−3.64) −0.0296*** (−3.71) −0.0253*** (−3.11) −0.0399*** (−5.32) −0.0364*** (−4.83) −0.0189** (−2.28) −0.0339*** (−4.27) −0.0263*** (−3.27)
mier 0.0471 (1.27) 0.0250 (0.68) 0.0361 (0.98) 0.0313 (0.85) 0.0316 (0.94) 0.0316 (0.93) 0.0547 (1.49) 0.0390 (1.09) 0.0602* (1.72)
cons 10.4450*** (13.14) 4.8604*** (6.33) 5.3112*** (6.64) 10.1321*** (13.22) 4.4845*** (6.40) 4.9563*** (6.84) 10.1525*** (13.51) 5.2384*** (7.10) 6.2149*** (8.37)
Area fixed yes yes yes yes yes yes yes yes yes
Time fixed yes yes yes yes yes yes yes yes yes
R2 0.5444 0.5513 0.5567 0.5426 0.6172 0.6240 0.5534 0.5681 0.5949
Obs 480 480 480 480 480 480 480 480 480
F−value 75.16*** 77.74*** 61.54*** 75.09*** 102.05*** 81.31*** 78.42*** 83.25*** 71.95***

Note: *, ** and, *** indicate that the statistical value is significant at the 10%, 5%, and 1% levels, respectively.
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between labor mobility and labor-intensive industrial transfer
indicates that the emission reduction effect of labor-intensive
industrial transfer can be strengthened with the inflow of labor.
The reason may be that labor-intensive industries such as food
processing, furniture manufacturing, and textiles have lower
carbon emission intensity compared with capital-intensive
industries such as metal products and chemical raw material
processing (Fu et al., 2021a). While the spatial mismatch between
labor-intensive industry transfer and labor mobility will lead to a
structural shortage of labor, forcing labor-intensive industries to
undergo automation and intelligent transformation and
upgrading. In addition, due to the natural labor-dependent
attributes of labor-intensive industries, the return of labor will
alleviate the contradiction between labor supply and demand in
areas where labor-intensive industries are transferred in.
Therefore, with the increase of labor inflow, the carbon
emission reduction effect of labor-intensive industry transfer
areas is strengthened.

In Table 3, col. (4)–(6) show that the estimated value of
capital mobility is negative but not significant, the capital-
intensive industries transfer aggravates the industrial carbon
emission intensity, and the interaction term between the two
indicators indicates that the negative impact of capital-intensive
industrial transfer on carbon emission reduction is enhanced by
the capital inflow. Generally speaking, capital inflows are
conducive to promoting the adjustment of the industrial
structure, and promoting the transformation of industries
that have lost their comparative advantages and high energy-
consuming industries, thus promoting carbon emission
reduction. However, capital inflows represent a net outflow of
trade in goods and services, it means that the areas with goods
outflows bear the carbon emissions from the production of
goodes for other areas (Seo et al., 2015). The more the capital
inflows, the higher the implied carbon emissions, which in turn
may weaken the emission reduction effect of capital inflow. From
the industrial perspective, since capital-intensive industries often
have the characteristics of high energy consumption and high
pollution (Hu et al., 2021), the transfer of capital-intensive
industries is actually accompanied by the transfer of carbon
emissions, so industrial carbon emissions intensity will increase
with the transfer of capital-intensive industries, which is
consistent with the theoretical analysis. In addition, since the
capital mobility examined in this paper reflects the trade of
goods and services in the domestic market, combined with the
direction of capital mobility and capital-intensive industry
transfer in Figure 2, it can be seen that the areas of capital
inflow are mainly those with low carbon emission intensity.
Although capital inflow can provide the basic conditions for
industrial transformation and upgrading, however, capital
inflow makes the area bear the carbon emissions generated in
the production of goods exported to other areas. Capital inflow
areas such as Shandong and Tianjin are also areas where capital-
intensive industrial are transferred in. The directions of capital
mobility in these areas are relatively matched with that of
capital-intensive industry transfer, which also exacerbates the
negative impact of capital-intensive industry transfer on carbon
emission reduction.

In Table 3, col. (7)–(9) show that both technology mobility
and technology-intensive industrial transfer are conducive to
reducing industrial carbon emission intensity, and the
interaction of the two indicators further enhances the effect of
carbon emission reduction, indicating that technology mobility
and technology-intensive industrial transfer are effective ways to
promote carbon emission reduction and achieve “Carbon Peak
and Carbon Neutrality”. The result of the control variables show
that independent innovation also significantly reduces industrial
carbon emission intensity, which can further demonstrate that
technological progress is an important way to achieve carbon
emission reduction goals (Sun et al., 2021).

The above analysis shows that the matching of labor mobility
and labor-intensive industrial transfer, and the matching of
technology mobility and technology-intensive industrial
transfer are both conducive to carbon emission reduction.
While the matching of capital mobility and capital-intensive
industrial transfer is unfavorable to carbon emission reduction
in areas where capital-intensive industries are transferred in.
Combining with the spatial matchability of factor mobility and
industrial transfer in Figure 2, it can be found that, during the
2004–2019, the matchability of labor mobility and labor-intensive
industrial transfer, and that of technology mobility and
technology-intensive industrial transfer is poor, while the
matchability of capital mobility and capital-intensive industrial
transfer is better. This result indicates that there is a
fragmentation between factor mobility and industrial transfer,
which makes factor allocation ineffective in serving the needs of
industrial layout adjustment and cannot effectively play the
positive role of carbon emission reduction mechanism of
industrial transfer.

Endogeneity Discussion and Robustness
Test
Although some control variables and fixed effects are added in the
model to reduce the estimation bias caused by omitted variables,
the potential endogeneity caused by reverse causality still needs to
be considered. In this paper, we mainly explore that, under the
pressure of carbon emission reduction in China, local
governments may adjust their industrial transfer strategies
according to carbon emissions, thus affecting the spatial layout
of industries transfer.

The average listing price of industrial land can be used as an
instrumental variable for industrial transfer (Hou and Liang,
2021). The cost of industrial land is an important factor in the
process of industrial transfer, and in order to maximize corporate
profits, enterprises tend to move to regions with low industrial
land costs, so industrial transfer is closely related to the listing
price of industrial land. Besides, the average listing price of
industrial land is generally not affected by carbon emission
intensity, so it can be used as an instrumental variable for
industrial transfer. We crawled 381,161 industrial land
transaction data from 2004 to 2019 from the China Land
Market website using crawler technology. After that, based on
the industrial classification criteria in this paper and the “industry
type” in the land transaction information, we divide the listing
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price of industrial land into listing price of labor-intensive
industrial land, listing price of capital-intensive industrial land
and listing price of technology-intensive industrial land, which
were then used as instrumental variables for labor-intensive
industrial transfer, capital-intensive industrial transfer and
technology-intensive industrial transfer, respectively. And then
we use the 2sls method to estimate them. The higher the listing
price of industrial land, the less conducive to industrial transfer.
Therefore, we use the opposite value of the listing price of
industrial land in the endogeneity discussion to compare with
the baseline regression results. As shown in Col. (1)–(3) of
Table 4, although the regression results of the 2sls model are
slightly different from the baseline regression results in the
estimates of some explanatory variables, the signs and
significance of the coefficients are basically consistent, which
can indicate that the regression results are still robust after
considering the interference of endogeneity problems.

In addition, we adopt the method of replacing key variables for
robustness tests to test the reliability of the experimental results.
Since factor mobility and industry transfer are the key
explanatory variables in this paper, the choice of their proxy
variables is crucial to the empirical results. We replace the proxy
variables for factor mobility and industrial transfer, respectively,
and the results are shown in Table 4. Col. (4)–(6) are the results
after replacing proxy variables of factor mobility. We replace
labor mobility, capital mobility, and technology mobility with the
changes in the proportion of the labor force in each province to
the total national labor force (Chen and Bai, 2019), the changes in
the proportion of fixed asset investment in each province to the
total national investment (Qiang and Hu, 2022), and relative
share of technology market transactions to GDP, respectively.
Col. (7)–(9) are the results after replacing proxy variables of
industrial transfer, we recalculate the industrial transfer index by
replacing the total industrial output value with the industrial sales
value. As can be seen from Table 4, the relationship between
factor mobility, industrial transfer and industrial carbon emission
intensity does not change substantially after replacing the
explanatory variable, and the signs of other estimated variables
are consistent with that of baseline regression and remain
significant. Therefore, we believe that the results of this paper
are basically robust.

Discussion on the Heterogeneity of Carbon
Emissions Intensity
Yu et al. (2018) shows that industrial carbon emission intensity
can reflect the carbon reduction capacity of the industrial
sector in an area. A lower carbon intensity may represent a
greater ability to reduce emissions, and then reducing the
negative impact of transferring high carbon industries to
the area. Conversely, areas with high industrial carbon
emission intensity and weak emission reduction capacity
may be more negatively affected by the transfer of high-
carbon industries. In other words, the influence of the
interaction of factor mobility and industrial transfer on
industrial carbon emission intensity may be heterogeneous
at different industrial carbon emission levels, and the panelT
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quantile regression is one of the effective methods to verify the
above point (Opoku and Aluko, 2021). The results reported at
different quantiles of industrial carbon emission intensity are
shown in Table 5.

As shown in Table 5, the estimated value of labor mobility is
always positive but significant only at the 30th to 70th
quartiles. The process of labor mobility across areas is also
accompanied by labor transfers between rural and urban areas,
and between agricultural and non-agricultural sectors. The
higher the ratio of the labor force working in the non-
agricultural sector, the higher the carbon emissions (Hao
et al., 2021). Therefore, in general, labor mobility
exacerbates the intensity of industrial carbon emission. In
contrast, the estimated value of labor-intensive industry
transfer is negative and its absolute value decreases as the
quantile increases, indicating that the labor-intensive industry
transfer can reduce industrial carbon emission intensity (Fu
et al., 2021b). And the lower the industrial carbon emission
intensity, the stronger the emission reduction capacity, the
more obvious the emission reduction effect of labor-intensive
industries transfer. While at the 90th quartile level, the
emission reduction effect of labor-intensive industries is no
longer significant. Looking at the interaction term of labor
mobility and labor-intensive industry transfer, the magnitude
of the estimated value does not change significantly at each
quartile level, but the significance of the estimated value is the
same as that of labor mobility, which indicates that the carbon
reduction effect of labor-intensive industries can be
strengthened with labor inflow.

The estimated value of capital mobility is negative but
insignificant, while the estimated value of capital-intensive
industry transfer is significantly positive at all quartile levels,
and gradually become larger as the quartile increases. This result
indicates that the negative effect of capital-intensive industry
transfer on carbon emission reduction gradually increases with
the increase of industrial carbon intensity. The interaction term
between capital mobility and capital-intensive industrial transfer
is significantly positive at the 30th to 90th quartiles, but the
estimated value does not change significantly, which is similar to
the baseline regression results, indicating that capital mobility
exacerbates the negative impact of capital-intensive industrial
transfer on carbon emission reduction again.

When the industrial carbon emission intensity is at the 50th to
90th quartiles, technology mobility has a significant positive effect
on industrial carbon reduction, and the absolute value of the
coefficient increases as the quartile level increases. Technology-
intensive industrial transfer also has a positive effect on industrial
carbon reduction, but it is only significant at the 50th to 90th
quantiles, and the emission reduction effect of technology-
intensive industrial transfer gradually decreases with the
increase of carbon emission intensity. One possible reason is
that, compared with low carbon emission areas, high carbon
emission intensity areas have relatively weaker emission
reduction capacity and a relatively lower overall technology
level. Therefore, although the transfer of technology-intensive
industries can reduce industrial carbon emission intensity, the
technology level in these areas may not be able to meet the needs
of technology-intensive industry development in a short time.
Besides, since the supporting facilities required for technology-
intensive industry development are inadequate, the emission
reduction effect of technology-intensive industry transfer
continues to weaken as industrial carbon emission intensity
increases.

CONCLUSION AND POLICY
RECOMMENDATIONS

Reducing industrial carbon emission intensity is an important
way to promote carbon emission reduction and achieve the goal
of “Carbon Peak and Carbon Neutrality”. This paper proposes a
dynamic industrial transfer index and discusses the impact of the
spatial matchability of factor mobility and industrial transfer on
industrial carbon emission intensity by using Chinese provincial
panel data from 2004 to 2019. There are several findings as
follows.

First, there is an obvious spatial mismatch between the
direction of factor mobility and the trend of industrial transfer
in China. Taking the national average industrial carbon emission
intensity as the basis for division, production factors generally
flow from high-carbon to low-carbon areas, labor-intensive and
technology-intensive industries generally transfer from low-
carbon to high-carbon areas. However, the transfer of capital-
intensive industries is relatively lagging behind, and low-carbon

TABLE 5 | Results of quantile regression.

Variable Quantiles

10 30 50 70 90

lf 0.0017 (1.15) 0.0017* (1.66) 0.0018** (2.16) 0.0018* (1.82) 0.0019 (1.23)
lit −0.0023** (−2.32) −0.0022*** (−3.07) −0.0020*** (−3.59) −0.0019*** (−2.72) −0.0017 (−1.60)
lf*lit −0.0001 (−0.92) −0.0001** (−2.07) −0.0001** (−2.06) −0.0001*** (−2.63) −0.0001 (−0.31)
cf −0.0019 (-0.96) −0.0017 (−1.25) −0.0016 (−1.36) −0.0014 (−1.00) −0.0012 (-0.53)
cit 0.0097*** (5.18) 0.0100*** (7.74) 0.0103*** (9.40) 0.0106*** (7.96) 0.0110*** (5.21)
cf*cit 0.0001 (0.49) 0.0001* (1.85) 0.0001** (2.13) 0.0001** (2.05) 0.0001* (1.77)
tf −0.0281 (−0.82) −0.0376 (−1.59) −0.0467** (-2.40) −0.0556** (−2.30) -0.0670* (−1.79)
tit −0.0020 (−0.99) −0.0017 (−1.23) −0.0015** (−2.26) −0.0012* (−1.83) −0.0009** (−2.38)
tf*tit −0.0018*** (−2.87) −0.0017*** (−4.07) −0.0017*** (−4.85) −0.0017*** (−3.82) −0.0016** (−2.40)

Note: *, ** and, *** indicate that the statistical value is significant at the 10%, 5%, and 1% levels, respectively.
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areas are still the main production bases for capital-intensive
products. Second, China’s carbon emission reduction capacity
has been improving, and the industrial carbon emission intensity
has decreased significantly, with the national average industrial
carbon emission intensity decreasing from 11.5210 to 6.3521 (a
decrease of about 44.87%). Third, the interaction between factor
mobility and industrial transfer can affect the industrial carbon
emission intensity. When the directions of labor mobility and
technology mobility are consistent with that of labor-intensive
and technology-intensive industrial transfer, respectively, the
carbon emission reduction effect of industrial transfer will be
strengthened. When the direction of capital mobility is consistent
with capital-intensive industrial transfer, the capital inflow will
aggravate the negative impact of capital-intensive industry
transfer on carbon emission. Finally, the impacts of factor
mobility, industrial transfer, and the matchability of the two
on industrial carbon emission intensity are heterogeneous, the
carbon reduction effects of labor-intensive and technology-
intensive industries are more obvious in low-carbon areas,
while the negative effects of capital-intensive industrial transfer
on emission reduction are more obvious in high-carbon areas.

In response to the above findings, we propose the following
recommendations. First, it is necessary to make reasonable use of
the “invisible hand” of the market and the “visible hand” of the
government. On the one hand, it is necessary to play the decisive
role of the market in factor allocation, speed up the reform of
factor market prices, and promote the optimal allocation of
factors according to market rules and market prices. On the
other hand, in the process of promoting the government’s role to
change from “setting prices” to “setting rules,” it is necessary to
promote the coordination of the market-oriented reform of factor
allocation and regional coordinated development policies to
alleviate the problem of regional factor mismatch.

Second, the strategic arrangement of industrial transfer should
focus on the “trinity” of industrial structure upgrading, spatial
layout adjustment and carbon emission reduction targets to
achieve technological and structural emission reduction of
industrial transfer. The central and western areas should raise
the environmental access threshold and implement stricter
environmental supervision policies to force the transformation
and upgrading of the “high-pollution and high-consumption
industries” and avoid becoming a “pollution refuge” for

domestic industrial transfer. At the same time, it is necessary
to strengthen the planning of industrial transfer to weaken the
negative impact of the transfer of the “high-pollution and high-
consumption industries” on carbon emission reduction in terms
of the location of transferred industries, supporting facilities, and
the construction of industrial parks. The eastern areas should give
full play to its advantages of strong independent innovation
capability, high energy efficiency and industrial concentration,
take the lead in promoting green transformation, and promote
industrial emission reduction through industrial upgrading.

Third, a green and low-carbon modern industrial pattern
should be actively built. On the one hand, it is necessary to
accelerate the adjustment of energy structure and increase the
proportion of renewable energy in the final energy consumption.
At the same time, pay more attention to green independent
technology innovation, and take the energy saving and clean
technology as the focus of research, so as to promote the process
of clean production. On the other hand, it is necessary to speed up
the adjustment of industrial structure, curb the “high-pollution
and high-consumption industries,” and focus on the
development of strategic emerging industries and high-tech
industries. In addition, it is necessary to give full play to the
role of the carbon trading market and carbon tax in reducing
carbon emissions. The coverage of the carbon emissions trading
market needs to be gradually expanded, more attention should be
paid to the role of fiscal policy in carbon emission reduction, and
the introduction of the “carbon tax” should be actively explored.
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