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Carbon monoxide (CO) is ubiquitous in the environment. In this literature review, the
biological CO transformations in ecosystems were summarized as an inspiration for the
biorefinery industry. Specifically, for the first time, information about CO fate in soil, water,
and the atmosphere was collected, and CO impact on plants, animals, and humans was
discussed. The review also addresses the need to develop new solutions to implementing
circular bioeconomy and highlights the potential of CO use in biologically mediated
processes as an untapped valuable resource. Specific key areas of research were
identified as 1) development of water-gas shift (WGS) bioreaction, 2) electricity
production during bioelectrochemical syngas conversion (BESs), and 3) electro-
fermentation (EF) as a source of added-value biochemicals and fuels.
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INTRODUCTION

Human’s pursuit of knowing and understanding the mechanisms and interdependencies in the
environment certainly applies to carbon monoxide (CO). CO is a colorless, odorless, and highly
flammable gas. It is considered toxic and threatens air quality and human health (Mahajan and
Jagtap, 2020; Ramezani et al., 2020). The harmful effects of CO on higher living organisms are well-
documented based primarily on the formation of carboxyhemoglobin (Ruth-Sahd et al., 2011). CO can also
be considered an indirect greenhouse gas (GHG). CO reacts withOH radicals in the atmosphere, depleting
OH reservoirs, which can effectively control the primary of GHGs such as methane. Atmospheric CO
balance can also contribute to the formation of tropospheric ozone (Rozante et al., 2017). On the other
hand, the lack of CO classification as a greenhouse gas has led to its omission in many environmental
studies, leaving a considerable gap in knowledge about its formation’s exact conditions and pathways.

However, CO links and participates in many processes and reactions in the ecosphere, being a part
of water, soil, and atmospheric chemistry. The topic of CO formation and consumption in various
ecosystems seemed to be well-known, and most of the literature on the subject was published in the
20th century. However, the knowledge about CO gained earlier has the potential to be used in
innovative and future-oriented concepts related to gas processing. The natural presence of CO in all
elements of the environment has provoked people to ask questions about the possibility of using CO
for industrial purposes in biological-inspired processes–in the area of biorefinery.
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The concept of biorefinery attracts the widespread interest of
researchers, industry, and policy makers, being a part of circular
economy, which is currently one of the most significant
environmental undertakings and challenges of the 21st
century. However, the transition from a linear to a circular
model requires a high level of awareness, well-established,
science-based, and transdisciplinary approaches that
acknowledge multiple ramifications that can be linked into a
closed loop. Solutions for moving to green and sustainable
production and energy systems from conventional fossil
sources are needed. The biorefinery concept is well-positioned
to address the increasing demand for energy and materials,
natural resource depletion, and societal ecological awareness,
with CO as one of the promising chemicals for these
purposes. If subjected to biological processing, CO can become
a source of energy, fuels such as H2, and biochemicals (Santoro
et al., 2017).

In this literature review, the biological CO transformations in
ecosystems were summarized as an inspiration for the biorefinery
industry. Specifically, information about CO fate in soil, water,
and the atmosphere was collected, and CO impact on plants,
animals, and humans was discussed. The review also addresses
the need to develop new solutions to implementing circular
bioeconomy and highlights the potential of CO use in
biologically mediated processes as a valuable resource. Here,
for the first time, we aimed to address the questions:

1) Is it possible to treat CO in biologically-mediated biorefinery
processes using microorganisms despite its toxic nature?

2) What are the possible pathways of using CO in biologically
mediated processes?

3) What are the risks associated with the CO considered for a
biorefinery feedstock?

THE FATE OF CO IN THE ENVIRONMENT

CO Fate in the Atmosphere
CO is one of the most common air pollutants, and its
concentration in contaminated continental air masses reaches
up to several ppmv (Badr and Probert, 1994). CO is emitted to the
atmosphere through anthropogenic processes, such as biomass
combustion, fossil fuels, waste incineration, industrial processes,
and transport. Additional contributors are natural sources
(oceans, soils, plants, forest fires), atmospheric oxidation of
CH4, and other non-CH4 hydrocarbons (NMHC) (Badr and
Probert, 1995; Tarr et al., 1995; Schade and Crutzen, 1999;
Bruhn et al., 2013). CH4 oxidation has the largest share of
these sources, producing approximately 700 Tg-CO·yr−1
(Bergamaschi et al., 2000; Monson and Holland, 2001); fossil
fuel combustion together with biofuel use and other industrial
emissions are responsible for 500–900 Tg-CO·yr−1, while biomass
burning–for 400–800 Tg (Duncan et al., 2007). Photochemical
CO production due to the oxidation of naturally emitted and
anthropogenic NMHC equals 450 and 110 Tg-CO·yr−1,
respectively, (Rozante et al., 2017). In general, global CO levels
rose from the Industrial Revolution until 1980; then a gradual

decrease in its concentration, especially in the Northern
Hemisphere, was observed in measurements from the global
surface network from the National Oceanic and Atmospheric
Administration (NOAA), caused by both the use of catalytic
converters in cars and technological advances in combustion
since 2000 (Bakwin et al., 1994; Voiland, 2015; Gaubert et al.,
2017). More recently, the downward trends in CO observed for
both the Northern and Southern Hemispheres have shown good
consistency with long-term trends in bottom-up emissions in
Europe, the United States, and China; where an improvement in
combustion efficiency and a reduction in emissions from
anthropogenic sources was observed (Gaubert et al., 2017). It
is worth noting, however, that despite its main global sources,
atmospheric CO levels show spatial as well as seasonal variability.
While the oxidation of CH4, a gas that is evenly distributed
around the world, provides a similarly constant CO background
of around 25 ppb, the remaining emission groups depend on
space-time aspects. Thus, inter alia, CO from fossil fuels shows
higher levels in the northern mid-latitudes, mainly in winter,
while biomass combustion in tropical continents contributes to
higher CO concentrations in the summer, during the dry season,
along with the rainforests (Andreae et al., 2012). Additionally, the
spatial variation in CO concentration is also characteristic on a
smaller scale, e.g., in urban areas, where it depends not only on
meteorological conditions or thermal inversion but also directly
on atmospheric turbulence and traffic intensity (Oliveira et al.,
2003).

Nevertheless, the determination of the atmospheric CO
concentration is still a challenge; despite the variety of
analytical techniques available, there is still remaining
uncertainty. Therefore, in addition to the most commonly
used methods, such as gas chromatographic combined with a
mercuric oxide (HgO) reduction detection or a flame ionization
detector (FID), non-dispersive infrared absorption (NDIR),
vacuum ultra-violet resonance fluorescence (VURF), and
tuneable diode lasers spectroscopy (TDLS), comparative
studies were also performed (Ou-Yang et al., 2009; Zellweger
et al., 2012). In addition to the analytical methods of CO
measurement, further possibilities were gradually added, such
as the use of closed path Fourier Transform Infrared (FTIR)
absorption, cavity-enhanced off-axis integrated cavity output
spectroscopy (ICOS), or multi-path quantum cascade laser
(QCL) absorption in the mid-infrared range, and cavity ring-
down spectroscopy (CRDS) in the near-infrared range (Zellweger
et al., 2012).

CO is mainly utilized by the tropospheric reaction with the
OH hydroxyl radical (Logan et al., 1981; Khalil and
Rasmussen, 1984; Badr and Probert, 1995). CO is oxidized
to CO2 in the stratosphere, where it migrates via convection,
turbulence, and mixing (Seiler and Warneck, 1972; Seiler,
1974). The reaction is fast and independent of temperature;
thanks to it, the residence time of CO in the atmosphere is
relatively short, from 2 weeks to 3 months (Rozante et al.,
2017; Rakitin et al., 2021). Soils and oceans are also involved
in CO capture (Ingersoll et al., 1974; Conrad et al., 1982) and
higher plants and algae (Krall and Tolbert, 1957; Chappelle,
1962).
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Taking into account the characteristics of greenhouse gases, CO is
not considered one of them as it is not capable of absorbing infrared
radiation (Rozante et al., 2017). However, because of the primary
mechanism for removing atmospheric CO by reaction with the OH
radical, CO is recognized as an essential trace gas that controls the
oxidative ability of the atmosphere (Bruhn et al., 2013). An increase in
CO concentration in the troposphere causes changes in the
distribution and amount of OH; reactions of the radical with CO
and CH4 constitute about 97% of its destruction (Logan et al., 1981;
Levine et al., 1985; Badr and Probert, 1995). The change in the
atmospheric OH affects the concentration of other gases, including
CH4 and O3 (Hameed et al., 1980). Thus, CO indirectly affects the
energy budget of the atmosphere (Evans and Puckrin, 1995),
increasing the concentration of GHGs and the time of their
utilization in the troposphere, as well as controlling the transfer to
the stratosphere, which in turn has an impact on stratospheric O3

(Ramanathan et al., 1985; Thompson, 1992; Bruhn et al., 2013). The
radiative forcing from CO is estimated more than from N2O and
halogenated hydrocarbons (Rakitin et al., 2021).

CO Fate in Soil
CO is constantly supplied to the atmosphere, which results from
both natural and anthropogenic sources. Despite the significant
amount of gas emitted, its concentration in the atmosphere does
not seem to increase (Bartholomew and Alexander, 1979). It’s
because natural processes are responsible for utilizing CO shortly
after its release (Inman et al., 1971).

Soil is considered one of the main sinks of atmospheric CO,
responsible for 40% of total consumption (Seiler, 1978). However,
soils can also be a CO source in the global CO cycle, as noted,
especially in the savannas and deserts (Conrad and Seiler, 1985a;

Kuhlbusch et al., 1998). For this reason, CO uptake by soils is a
net flux consisting simultaneously of consumption and
production (Figure 1) (Seiler, 1978; King and Crosby, 2002;
Bruhn et al., 2013; van Asperen et al., 2015; Pihlatie et al.,
2016). Simultaneous chemical, physical and microbiological
processes (Kuhlbusch et al., 1998) depend on many climatic,
biological, and physical soil factors, making the equilibrium CO
vary between a few ppbv up to hundreds of ppbv (parts per billion
by volume) (Conrad and Seiler, 1979; Conrad and Seiler, 1980b;
Conrad and Seiler, 1982a). The most important soil parameters
include water content, temperature, organic matter content, pH,
soil type, the depth of CO consumption horizon, and CO
concentration in the gas phase (Potter et al., 1996). Even small
changes in this balancing between CO production and soil uptake
can severely impact tropospheric chemistry (Moxley and Smith,
1998b).

Soils have been analyzed for the production and consumption
of CO for over 40 years. The soil processes were considered for
most CO budget analyses in the atmosphere (Crutzen and Gidel,
1983; Conrad, 1996). Soil CO absorption studies were conducted
in static and dynamic chamber systems to investigate gross and
net exchanges or both (Ingersoll et al., 1974; Conrad and Seiler,
1985b; Sanhueza et al., 1994a). CO consumption was defined as a
first-order process, while CO production is a zero-order process
for CO (Conrad and Seiler, 1982a; Duggin and Cataldo, 1985;
King, 1999b). Gross CO exchanges were determined mainly
based on 14CO oxidation, while both gross production and
consumption were estimated using models and empirical
estimates of net uptake rate constants and steady-state
headspace CO concentrations (Bartholomew and Alexander,
1981; King, 1999b).

FIGURE 1 | Carbon monoxide cycle in soil.
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CO uptake by soils is mainly due to the activity of
microorganisms (Inman et al., 1971; Conrad and Seiler, 1980b;
Sanhueza et al., 1998; Whalen and Reeburgh, 2001). The
biological nature of the CO consumption has demonstrated,
among others, the fact that CO use activity in autoclaved soils
disappears and returns when they are inoculated again with fresh
and non-sterile soil (Inman et al., 1971; Ingersoll et al., 1974; Liebl
and Seiler, 1976; Seiler, 1978). However, CO uptake may be
limited at elevated CO levels due to microbial metabolic
limitations [above 1,000 ppbv, (Bartholomew and Alexander,
1979)]. When CO levels reach lower values that are closer to
atmospheric levels of this gas (100–200 ppbv), indicators of CO
consumption by soils are higher than its production into the
atmosphere (Potter et al., 1996).

The process of CO consumption by microorganisms is
considered a result of several mechanisms. CO can be
metabolized and incorporated into cellular material, catabolicly
oxidized to CO2 by autotrophs as a source of energy or carbon,
and used as an additional electron donor by heterotrophic
microorganisms; the first of these processes appearing to be
dominant (Bartholomew and Alexander, 1979). The
assumption that CO uptake by soils is based on the
metabolism of the microorganisms is confirmed by research
using antibiotics that caused immediate inhibition of this
process. For this reason, it is assumed that the CO
consumption is controlled by the anabolic activity of
microorganisms that consume it during growth and not in the
case of protein biosynthesis (Conrad and Seiler, 1980b). In this
way, microorganisms are responsible for removing CO from 10%
to as much as 50% of its global emissions, depending on sources
(Heichel, 1973; Liebl and Seiler, 1976; King, 1999a).

CO consumption is correlated with the total organic
carbon present in soil (Inman et al., 1971; Ingersoll et al.,
1974). It is associated with organic matter as a source of
energy and carbon by CO oxidizing microorganisms (Heichel,
1973; Kiessling and Meyer, 1982; Meyer and Schlegel, 1983;
Moxley and Smith, 1998a). The opposite tendency was
observed by (Conrad and Seiler, 1985b), proving that the
rate of CO uptake depends only on soil enzymes and
microorganisms that are not limited by the available
organic matter. It is also worth emphasizing that the CO
exchange between soil and atmosphere is mainly determined
by the top 5 cm of soil (King, 1999a); concentration profiles of
this gas do not show a significant amount at greater depth, and
below 10 cm they are close to zero (Sanhueza et al., 1998). CO
consumption and production processes in these few upper
centimeters of soil are also most vulnerable to changes in
temperature and humidity and other factors such as fires
(Kuhlbusch et al., 1998).

Soil CO consumption based on the activity of microorganisms
can occur both under aerobic and anaerobic conditions; in the
latter case, it occurs at a lower rate (Conrad and Seiler, 1980b). It
is assumed that there are anaerobic sites in the soil in which
certain groups of microorganisms break down CO without the
presence of O2 (Zavarzin and Nozhevnikova, 1977). This is
confirmed by observations of CO consumption in anaerobic
conditions in fresh soil, which was just directed to incubation

in an anaerobic atmosphere. Anaerobic CO consumption then
increased by 15%, while aerobic CO consumption decreased by
40% (Conrad and Seiler, 1980b). The conversion of 14CO to CO2

in anaerobic conditions has also been noted (Bartholomew and
Alexander, 1979).

CO absorption rates are controlled by environmental factors
such as humidity and temperature (Conrad and Seiler, 1985b;
Moxley and Smith, 1998b; King, 1999a). Soil absorption of this
gas reaches its maximum value under optimal humidity and
temperature conditions. However, these processes have not
been extensively studied for various soil types (Moxley and
Smith, 1998b; Sun et al., 2018). CO consumption was reported
under temperature conditions in the range of 20–30°C with an
optimum uptake at 30°C (Inman et al., 1971; Heichel, 1973;
Ingersoll et al., 1974; Liebl and Seiler, 1976; King, 1999a). The
temperature reactions of the CO flux between soil and
atmosphere are complex and include the consumption of this
gas and its production by an abiotic path (Conrad and Seiler,
1985b). According to (King, 1999a), CO formation processes
become more and more important at temperatures above 30°C
and become dominant when the temperature exceeds 35°C.
Data reported by (Scharffe et al., 1990) agree with this
observation, according to which 30°C is the temperature
limit at which the ability to consume CO is exceeded. In
addition (Inman et al., 1971) found that at 40°C, CO was
about 30% higher in the presence of light than in the dark.
Soil heating above 40°C resulted in CO production (Inman et al.,
1971; Ingersoll et al., 1974).

Due to the possibility of lower than optimal humidity of the
annual soil moisture range in natural conditions, field
observations of the impact of this parameter on CO flux are
challenging (Sun et al., 2018). Nevertheless, it has been
investigated that wetland soils have low CO uptake (Moxley
and Smith, 1998b). This tendency may be caused by limiting
O2 diffusion by filling the soil pores with water and hindering gas
transport. Reduced water content causes an increase in CO
consumption up to an optimum value at soil moisture in the
range of 30–60% (King, 1999a). In addition, CO absorption
ceases when the soil water freezes or the soil is desiccated
(Potter et al., 1996; Moxley and Smith, 1998b). A renewed
increase in humidity in dry soils leads to the restoration of
CO uptake. However, the hysteresis becomes visible. Water
stress contributes to this, resulting from increased water
content to optimal values immediately after its low level (King,
1999a).

The combination of the above factors contributes to the
seasonality of CO consumption in soils. CO intake shows
daily variability as a function of CO concentration changes in
the atmosphere and temperature (King, 1999b). For this reason,
soil can be seen as a source of CO during the day, while it absorbs
it at night (Conrad and Seiler, 1982a). In addition, changing
weather conditions also affect soil moisture, which translates into
the activity of microorganisms. For this reason, lower CO uptake
rates in winter were observed when the microbial activity is
relatively small (Conrad and Seiler, 1980b).

CO production in soils is mainly abiotic, although there are
also reports of the production of this gas in laboratory conditions

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8224634

Sobieraj et al. CO From Environment to Biorefineries

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


by root microorganisms (Conrad and Seiler, 1985b; Zepp et al.,
1997; King and Crosby, 2002). The non-biological nature of CO
formation is confirmed by the tendency to increase it after
autoclaving or other sterilization processes of soil samples,
such as the use of heat, ultraviolet light, or fumigation (Smith
et al., 1973; Conrad and Seiler, 1980b; Conrad and Seiler, 1982a).
CO emission is based on chemical and biochemical reactions
leading to loss of organic matter by rotting, lysis of
microorganisms, and oxidation of dead microbiological
material (Conrad and Seiler, 1980b). Heat treatment of dry
soil stimulates the efficiency of CO production, which is
caused by the breakdown of complex organic substances into
simpler particles–including plant residues (Conrad and Seiler,
1982a).

Photochemical production has an important share, as
evidenced by the linear relationship of CO emissions from the
intensity of solar radiation and the lack of this gas production in
the dark (Seiler et al., 1978; Conrad and Seiler, 1980b; Yonemura
et al., 2000; van Asperen et al., 2015). Illumination of mineral
soils, litter, and plant tissue with light at < 400 nm wavelength
stimulates CO production (Valentine and Zepp, 1993). There are
also conflicting reports regarding this parameter; (Conrad and
Seiler, 1985c) observed CO production both in light and in the
dark, which they explained by moisture rather than the
photochemical nature of CO forming processes. The
stimulating effect on CO production was, among others, an
increase in soil moisture–those saturated with water emitted
CO into the atmosphere (Conrad et al., 1988). Higher
moisture may involve the activation of soil enzymes and
dormant microorganisms, which may multiply and reach
other habitats in the soil (Conrad and Seiler, 1985b). In
addition, moist organic matter is better for microorganisms
compared to a dry substrate for CO production.

Data on the impact of soil pH on the amount of CO stream
between soil and atmosphere can be found in the literature. An
increase in soil pH causes an increase in this gas stream by
stimulating abiological CO production (Conrad and Seiler,
1985a). According to the authors, this abiological CO
production in soil follows the Arrhenius equation, and
increasing pH causes a decrease in energy and entropy of
activation. Studies by (Inman et al., 1971) proved that acidic
soils participate in more active CO utilization.

CO formation in soils is also based on the chemical oxidation
of humic acids and other phenolic substances in an O2

atmosphere (Miyahara and Takahashi, 1971). One of the most
important factors affecting the activation energy of CO
production is the physicochemical state of humic acid. Its
decrease was noted simultaneously with the increase of
dissolved humic acid polymers in soil (Conrad and Seiler,
1985a). The CO production from humic acids is a heat-
stimulated reaction (Conrad and Seiler, 1985a). In addition,
this reaction was stimulated by the presence of O2, but the
addition of chemicals quenching singlet oxygen, superoxide, or
hydroxyl radicals did not inhibit it (Conrad and Seiler, 1985a).

The CO flux between soil and atmosphere is also affected by
how the soil is cultivated. However, these trends are not clear;
some research shows an increase in CO use by arable land

compared to non-cultivated soils (Scharffe et al., 1990;
Sanhueza et al., 1994b; Sanhueza et al., 1994a). It is explained
by the loss of organic matter in the soil and changes in pH and
water conditions in cultivated soils (King, 2000). In addition,
plowing buries the surface layer of soil and mulch, which reduces
CO production in the surface layer and leads to diffusion of CO
deep into the soil, where it is consumed by microorganisms
(Sanhueza et al., 1994b).

For this reason, forests and native grasslands are seen as areas
with lower CO consumption (King, 2000). However, the data
obtained in studies of temperate soils underline the minimal
impact of agriculture on CO flux. Evidence grows that soil
cultivation reduces CO consumption (Moxley and Smith,
1998a; Moxley and Smith, 1998b).

CO Fate in Water
The ocean has been recognized as a source of CO released into the
atmosphere since the early 1970s (Swinnerton et al., 1970;
Lamontagne et al., 1971). Despite the low ocean share
(0.4–9%) among all sources of CO in the atmosphere (Bates
et al., 1995), it can constitute up to 50% of the load in the marine
boundary layer (Erickson and Taylor, 1992; Stubbins et al.,
2006a). The southern hemisphere is particularly important
here, in which CO production accounts for almost 60% of the
total CO flux from the ocean surface (Erickson, 1989). Surface
ocean waters are saturated with CO compared to atmospheric
equilibrium, which causes a net flux of this gas at the ocean-
atmosphere interface (Linnenbom et al., 1973; Logan et al., 1981;
Zuo et al., 1998). The CO emissions to air are controlled mainly
by the concentration of this gas in water (Bates et al., 1995). It
depends on several factors such as photochemical production,
consumption by microorganisms, exchange between air and
water, and physical mixing (Figure 2) (Wilson et al., 1970;
Conrad et al., 1982; Butler et al., 1987; Jones, 1991). Due to
the impact of these factors, CO concentration in waters
shows diurnal, seasonal, and regional diversification (Bates
et al., 1995).

CO was identified as the second most important product of
dissolved organic matter (DOM) photolysis in water bodies
(Mopper and Kieber, 2000; Stubbins et al., 2006b). The rate of
CO formation is one order of magnitude higher compared to
other low molecular weight carbon photoproducts produced
under aqueous conditions (Mopper et al., 1991; Zuo and
Jones, 1995). It is the photodegradation of the DOM by part
of the UV solar radiation that is indicated as the main source of
CO from both ocean and sea waters, as well as from the surface of
lakes, rivers, wetlands, and coastal waters (Zuo and Jones, 1997;
Pos et al., 1998; Zuo et al., 1998; Stubbins et al., 2006a; Blomquist
et al., 2012).

The rate of CO production is linearly dependent on the
concentration of DOM, mainly derived from the degradation
of dead biomass, fragmented organic matter particles, and
droppings of living organisms, as well as light absorption and
water fluorescence (Zuo and Jones, 1997). Carbonyl compounds
and phenols are an important part of the soluble organic matter in
waters; they build aqueous fulvic acids, then oxidize to quinones.
It is phenols and carbonyls found in the surface layer of water that

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8224635

Sobieraj et al. CO From Environment to Biorefineries

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


absorb solar rays, producing CO. Their mechanism as
photosensitizers is also a possible pathway, thanks to which
solar energy is transferred to other carbonyl compounds (Zuo
and Jones, 1997).

Ozone depletion and the resulting increase in UV-B radiation
that reaches the earth’s surface have been noted as a factor
increasing CO photoproduction in ocean waters (Erickson,
1989; Pos et al., 1998). Additionally, the photodegradation of
DOM and thus the associated CO production in waters are
affected by dissolved iron. It forms complexes with organic
matter (including carbonyls and carboxylates) that are highly
photoreactive (Zuo and Hoigne, 1992), which speeds up CO
formation. This is confirmed by studies of (Zuo and Jones, 1997),
who showed that CO photoproduction increases with increasing
Fe (III) concentration.

Due to the dependence of the CO flux on the photolysis
processes of soluble organic materials and thus on the light
intensity, CO photoproduction in the water surface proceeds
according to the daily cycle. Field studies showed maximum
CO production in the early afternoon, fall in the evening, and
minimum around dawn (Swinnerton et al., 1970; Conrad
et al., 1982; Jones, 1991; Bates et al., 1995; Zuo and Jones,
1995; Pos et al., 1998; Xie et al., 2002; Zafiriou et al., 2003;
Stubbins et al., 2006a). CO production is also characterized by
a time delay relative to light intensity, which draws attention
to its mechanism–gas production is initiated by light, and then
CO is released within a few hours (Conrad and Seiler, 1980a;
Conrad et al., 1982). In addition, the highest daily CO
concentration amplitudes were recorded during sunny days,
while on rainy days, when the light intensity was lower, the

dissolved CO content in water showed lower fluctuations or
was constant (Conrad et al., 1982). This demonstrates the
short-term residence of CO in the water column of about
3–4 h, strongly coupled with the day-night cycle (Zuo et al.,
1998; Tolli and Taylor, 2005).

The correlation between the CO production rate and dissolved
organic carbon concentration affects the regional flux. Higher
rates of CO formation are observed in coastal places rich in
organic matter and other chemical and physical compounds,
compared to open oceanic spaces (Lamontagne et al., 1971;
Linnenbom et al., 1973; Jones and Amador, 1993; Johnson and
Bates, 1996; Zuo et al., 1998). Within the latter, higher CO
saturation rates were observed in the waters of the North-
West region of Africa and in the equatorial area, which is
explained by the activity of equatorial currents mixing surface
waters with nutrient-rich waters (Voituriez and Herbland, 1979;
Katz et al., 1980; Conrad et al., 1982).

The CO concentration in waters varies with depth. Its gradient
can be observed in the euphotic zone, with the highest values at or
near the water surface, where the light is not suppressed (Tolli
and Taylor, 2005). At greater depths, the CO concentrations
decrease, reflecting decreasing light intensity (Seiler, 1978). Below
the mixed layer (> 100 m depth), CO concentration is low and
constant. The exception is higher concentrations occurring at the
water/sediment interface (Swinnerton and Lamontagne, 1974;
Johnson and Bates, 1996), as well as small maximum CO
concentrations, which are explained by the functioning of
microorganisms producing CO very slowly in the dark
(Conrad et al., 1982). This indicates a very low net CO
exchange between these two zones, which does not

FIGURE 2 | Carbon monoxide cycle in water.
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significantly affect the daily variability in the surface water layer
(Conrad et al., 1982; Mopper et al., 1991; Zuo et al., 1998).

The CO flux from the water surface depends on transfer
velocity, which is affected by wind speed and water
temperature (Erickson, 1989). The first factor affects the
intensity of light–when the wind speed drops to about 2 m
s−1 on calm days, the CO concentration increases; the rough
surface of the water causes a significant reduction in the
amount of CO (Conrad et al., 1982).

Microbiological consumption influences the cyclic daily
variability of CO concentration at the water surface (Conrad
et al., 1982; Blomquist et al., 2012) and atmospheric exchange
(Zuo and Jones, 1995). CO consumption by microorganisms
follows the Michaelis-Menten kinetics; the CO oxidation rate
increases linearly with increasing CO concentration and
depends on the size and type of microbial population
(Conrad and Seiler, 1982b; Tolli and Taylor, 2005).
However, their species are not known.
Chemolitotrophicamonnium oxidizers (Nitrosomonas) and
methane oxidizers (methanothrops) have a high affinity for
CO in waters, and they are mainly suspected of CO
consumption processes (Zuo et al., 1998). The first group
includes, for example, Nitrosococcus oceanus and N. europaea,
the activity of which is catalyzed by ammonia
monooxygenase; on the other hand, in the methanotrophs
group, CO oxidation was confirmed in the case of, among
others, Methylomonas methanica, Methylococcus capsulatus
andMethylomonas albus, and the responsible enzyme was not
precisely indicated (Ferenci, 1974; Hubley et al., 1974; Bédard
and Knowles, 1989; Jones and Morita, 2011). These
microorganisms are capable of oxidizing CO at
concentrations <100 nM (Jones et al., 1984).

During the day, sunlight has been shown to significantly
inhibit the activity of microorganisms responsible for CO
oxidation in the surface water layer (Zuo et al., 1998; Tolli and
Taylor, 2005). The opposite situation can be observed at night.
The sharp decrease in CO concentration is caused by the lack
of CO photoproduction and the resumption of the first-order
reaction of gas oxidation by microorganisms. Their activity is
no longer inhibited, and the decreasing level of dissolved CO
does not cause the supersaturation of enzymes responsible for
its consumption (Tolli and Taylor, 2005). The microbiological
consumption of CO in situ by converting it to CO2 is the
dominant mechanism for the utilization of this gas; it is
generally not included in microbial biomass, although there
are observations that some autotrophic bacteria may build in
CO-C after it has been oxidized. However, they are not
necessarily those strains that participated in this process
(Tolli and Taylor, 2005).

CO ROLE FOR ORGANISMS

CO Impact on Plants
Biosynthesis and photoproduction of CO in plants were observed in
the second half of the 20th century (Wilks, 1959; Schade et al., 1999).
This compound is formed during oxidative heme catabolism due to

the activity of the enzyme heme oxygenase (HO). The result is three
products: CO, biliverdin, and free iron Fe2+ (Figure 3). The second
one is immediately transformed into bilirubin, while the iron is
involved in ferritin induction (Bilban et al., 2008). Among the three
isoforms of HO discovered so far, HO-1, HO-2 and HO-3 have been
distinguished, the last two of which are characterized by low activity
(Maines, 1997).

Additionally, (Muramoto et al., 2002) foundAtHO1, plastid heme
oxygenase, hemoprotein forming a complex with heme in 1:1 ratio.
Their research led to the production of CO by catalyzing the heme to
biliverdin IX conversion reaction, which was catalyzed by the AtHO1
mentioned above. In addition to producing CO in plants using HO
enzyme-catalyzed reactions, which are the predominant method of
producing this compound, researchers also found other ways to form
it. (Zilli et al., 2014) observed an increase in CO levels in soybean
during the first week after planting, but this effect was not correlated
with the increase in HO activity. The authors indicated lipid
peroxidation and ureide metabolism as an alternative source of
CO in this plant.

Research on the effects of CO on plants covers many aspects of
their development, including seed germination. While
investigating the influence of gases such as O2, N2, and CO on
Setaria faberii, it was observed that the latter might have a twofold
influence (Dekker and Hargrove, 2002). Depending on the CO
concentration, it stimulated seed germination (it increased from
37 to 56% at 1% CO) or inhibited it (75% CO added resulted in a
decrease in germination from 37 to 14%). The authors explain the
negative CO effect on seed development by inhibiting the plant’s
mitochondrial respiration; in terms of promoting germination,
the researchers rejected the idea that this gas acted on a
respiratory apparatus, leaning more towards CO interacting
with CO, an undefined physiological factor in the seed.

CO has also been found to influence the response of plants to
abiotic stress caused by environmental salinity, drought, ultraviolet
radiation, and heavy metal pollution (Wang and Liao, 2016). These
factors, influencing plant growth, resistance, and yield, can
significantly limit their development. One of the most frequently
analyzed elements from the above mentioned is salt stress. The
researchers conducted experiments on plants such as Triticum
aestivum, Oryza sativa, and Cassia obtusifolia, analyzing both their
seeds, leaves, and roots (Xu S. et al., 2006; Liu et al., 2007; Xie et al.,
2008; Ling et al., 2009; Zhang et al., 2012). Research on the influence
of CO on sprouting was conducted by (Liu et al., 2007) by analyzing
the reaction of Oryza sativa seeds to the addition of this compound’s
donors (hematin and its aqueous solution) under salt stress. CO
suppressed the adverse effects of NaCl salinity, mitigating the
inhibition of sprouting.

Additionally, CO limited oxidative damage by activating
antioxidant enzymes. A similar situation was observed in
Cassia obtusifolia seeds and seedlings, where CO ensured
cytoprotection, activated anti-oxidant enzymes, and increased
osmotic substances (Zhang et al., 2012). In an analysis of the
effect of a salted environment on seeds of wheat by (Xu S. et al.,
2006), low CO concentrations counteracted lipid peroxidation in
germinating seeds by enhancing catalase (CAT), ascorbate
peroxidase (APX), superoxide dismutase (SOD), and guaiacol
peroxidase (GPOX) activities. Similar to the mitigation of
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oxidative damage in the seeds of Oryza sativa, CO caused the
same effect in the leaves of Triticum aestivum (Huang et al.,
2006). When treated with a hematin CO donor, they showed a
reversal of chlorophyll breakdown and water loss previously
experienced due to the treatment of wheat tissues with NaCl
solution. Moreover, the authors noted an increase in enzymes, as
reported by (Xu S. et al., 2006).

Additionally, the mechanism of mitigating the inhibition of
germination of its seeds under simulated osmotic stress
conditions was analyzed by (Liu et al., 2010). The beneficial
CO effect based on the endogenous HO/CO signal, possibly
integrated with NO, was proven. Triticum aestivum was also
analyzed for the effects of salt stress on the roots. (Xie et al., 2008)
and (Ling et al., 2009) found that COwas involved in maintaining
ion homeostasis and reduced superoxide anion production.

The ability to mitigate its response to environmental pollution
with heavy metals such as Hg, Cd, Cu, or Fe is an important
aspect of CO activity in the context of increasing plant resistance
to stress conditions. These metals, which pose a threat to plants
and the organisms consuming them, could be mitigated thanks to
both NO and CO (Wang and Liao, 2016). The experiments
conducted by (Han et al., 2007) involving Medicago sativa L.
plant exposed to mercury (in the form of HgCl2) showed that the
increase of lipid peroxidation and limitation of root growth could
be inhibited by water solution of CO or hematin. Researchers
noted the HO-1 transcript induction cells in Alfalfa after 12–24 h
of increased activity of the enzymes glutathione reductase (GR),
monodehydroascorbate reductase (MDHAR), and SOD. Plant
exposure to Hg in Brassica juncea was also carried out by (Meng

et al., 2011), who reported the activation of CAT and APX in
addition to the SOD. Additionally, it was proven that reducing the
toxic effect of Hg due to the CO activity is also based on proline
and reduced non-protein thiols.

The addition of exogenous CO improves the accumulation of
chlorophyll, contributing to the prevention of chlorosis as
reported by (Kong et al., 2010), investigating the regulation of
iron homeostasis by CO in Arabidopsis. Moreover, the CO effect
on the plant contributed to the accumulation of NO in the root
tips. These results prove not only the beneficial effect of CO on
plant adaptation in a Fe-deficient environment but also cross-
communication with NO. The role of CO in signaling oxidative
damage was also confirmed in the environment with an increased
concentration of Cd in Medicago sativa roots (Han et al., 2008).
Among the stressors for plant function, researchers also analyzed
UV-B radiation, which leads to the formation of reactive oxygen
species (ROS). An increase in HO-1 protein expression was noted
in the Glycine max L. leaves subjected to irradiation (Yannarelli
et al., 2006), demonstrating the mechanism of plant protection
tissues against oxidative damage.

The interaction between CO and other signaling molecules,
such as NO, phytohormones, or H2S, aroused the broad interest
of researchers (Wang and Liao, 2016). It was found that
phytohormones can induce various distinct developmental
CO-dependent responses in plants. Research by (Guo et al.,
2008) on lateral tomato roots (LR) formation showed that CO
is partly involved in this process. The researchers, analyzing haem
oxygenase-1 (LeHO-1), the source of intracellular CO in
tomatoes, found that an increase in proteins and transcripts of

FIGURE 3 | Impact of CO on plants development.
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LeHO-1 caused a simultaneous increase in LR. This effect was
shown for tomato mutants with loss of LeHO-1 function, during
which the development of impaired LR was observed. Treatment
with CO helped restore LR’s normal development. Further
analyses of the CO role in LR development were based on
auxin (indole-3-acetic acid, IAA) and the NO mediator
(Correa et al., 2004). The tests showed that the influence on
the tissues of tomatoes with CO increased the level of IAA in
them; however, intracellular NO generation induced by CO was
observed in the roots of this plant. Moreover, the activity of CO
was inhibited by N-1-naphthylphthalamic acid and carboxy
PTIO [cPTIO, [[2-(4-carboxylatophenyl)-4,4,5,5-tetramethyl-2-
imidazoline 3-oxide]-1-yloxy] radical], which are known
inhibitors of auxin and NO (Fricker, 1999). These
observations were also supported by (Cao Z.-Y. et al., 2007;
Xuan et al., 2008). The use of naphthylphthalamic acid by the
former reduced the HO activity, the CO content was lower, and
auxin-mediated induction of cucumber rooting (Cucumis sativus)
was inhibited. This effect was mitigated by adding IAA, CO water
solution, and hematin (HO-1 activator and CO donor), leading to
a reduction in root growth inhibition. Greater CO levels were
observed due to the use of IAA and/or hematin and an increase in
HO activity (or HO-1 expression). The effect of Zn
protoporphyrin IX (ZnPPIX), an inhibitor of HO-1, was also
tested (Liu et al., 2007) to determine its inhibitory effect on IAA
and hematin. The use of CO aqueous solution did not
significantly inhibit accidental rooting of the cucumber.
Moreover, the aqueous CO solution increased the endogenous
CO content. A similar effect was achieved by (Cao Z. et al., 2007).
During their experiments, exogenous CO, dependent on NO,
increased the number and length of six lateral roots of Brassica
napus L. Yangyou. Analyzes of the influence of CO on plant root
growth also concerned the development of root hair and root tip
segments [Solanum lycopersicum and Triticum aestivum,
respectively, (Xuan et al., 2007; Guo et al., 2009)], as well as
adventitious root development [Cucumis sativus and Phaseolus
radiates, (Xu J. et al., 2006; Xuan et al., 2008; Xuan et al., 2012; Lin
et al., 2014; Cui et al., 2015)]. It has been proven that CO can
regulate the expression of target genes CSDNAJ-1 and
CSCDPK1/5 (Xuan et al., 2008), restore the ability to develop
them after the use of inhibitors during treatment in CH4-rich
water (Cui et al., 2015), and take part in with the growth of
cucumber adventitious roots in hydrogen-rich water (Lin et al.,
2014).

The relationship between the activity of CO, NO, HO, cPTIO,
and ZnPP were also investigated by (Cao Z. et al., 2007). Their
research tested the HO response to abscisic acid (ABA) in the
context of stomatal closure in Vicia faba leaves. Their research
proved that the addition of ZnPP or Hb (CO/NO scavenger)
blocked this ABA-induced process, while, as in the case of
previous authors, the application of hematin or CO aqueous
solution increased the CO-generated and stimulated stomatal
closure. The authors also declared that the CO generated by HO
activity is involved in the stomata closure process and that NO
and cyclic guanosine monophosphate (cGMP) act as downstream
intermediates. In addition, HO-1/CO was analyzed in the context
of programmed cell death (Xie et al., 2014). Observations of ZnPP

interactions were performed to test their role during (H2S)-
induced cytoprotection. The authors observed that the
addition of CO aqueous solution or bilirubin mitigated the
negative effect of this HO-1 inhibitor on NaHS responses.

CO Impact on Animals
CO is considered an important endogenous signaling gas with
similar properties to NO, produced in their organisms through
heme degradation (Dulak and Józkowicz, 2003; Verma et al.,
1993). Some of the CO can be generated in vivo by non-enzymatic
haem metabolism by hydrogen peroxide or ascorbic acid. CO is
then produced by breaking methylene bridges (Dulak and
Józkowicz, 2003). The similarity to NO is due, inter alia, to
the ability of both of these compounds to bind the iron atom
derived from the heme moiety, which is linked to the soluble
guanylate cyclase. This binding activates this enzyme and thus
stimulates the production of intracellular cGMP (Cao Z. et al.,
2007). The relationship between CO and NO in animal organisms
has been confirmed in the studies of bovine pulmonary artery
endothelial cells, which proved that 11–110 nmol/L of CO in
them increases the concentration of released NO (Thom et al.,
1997).

Research on the influence of CO on animals was indirectly
initiated at the beginning of the 20th century by using them as
detectors of vitiated air in mines (Burrell and Seibert, 1914). The
analyses were conducted on commonly available animals, such as
chickens, dogs, mice, pigeons, rabbits, canaries, and guinea pigs.
One of the first reports on the experiments taking place in 1914 in
the United Kingdom proved that the most sensitive to the effects
of CO were mice and canaries, which meant that they were
repeatedly used in rescue operations in mines as organisms
experiencing stress caused by CO faster than humans (Burrell
and Seibert, 1914).

Most of the studies concerned the effect of high concentrations
of CO on animals. Only a few sources reported the effects of
prolonged or repeated exposure to CO (Jones et al., 1971), and the
results were often contradictory (Preziosi et al., 1970). Analyzes
conducted in the mid-20th century showed that 11-weeks
exposure of dogs for 6 days a week for 5.5 h to 100 ppm CO
caused brain and heart muscle damage (Lewey and Drabkin,
1944). In the latter case, CO poisoning in these animals led to
many pathological changes, such as muscle fibers degenerative
changes, necrosis, and hemorrhage in the ventricle, associated
with a COHb level of 75% (Ehrich et al., 1944). Myocardial
changes have also been reported in other animals, such as rabbits,
that showed necrosis after 30–60 min exposure to 3,000 ppm CO
(Takahashi, 1961) or, inter alia, myofibrillar disintegration after
exposure to 100 ppm CO for 4 h (Hugod, 1981). (Preziosi et al.,
1970) reported the mortality of the studied dogs of 31%; the
remaining surviving animals showed extensive central nervous
system and myocardial fiber degeneration pathologies, similar to
hypoxia-induced lesions. The authors also noted that the most
severe changes occurred in animals exposed to CO for 60 min or
more but were less severe than those exposed to short-term
exposure at high gas concentrations. In addition, CO can
reduce vascular resistance in the coronary vessels of animals,
leading to too high blood flow, which has been studied in dogs
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(Einzig et al., 1980; Kleinert et al., 1980), and it can also reduce
myocardial contractility [seen in both dogs and goats, (Erickson
and Buckhold, 1972; James et al., 1979)]. Experiments on the
exposure of monkeys and dogs to CO also proved that this gas
reduces the required threshold leading to ventricular fibrillation
and arrhythmia (DeBias et al., 1976; Vanoli et al., 1989). On the
other hand, it was later proven that the produced CO dilates
blood vessels and prevents platelet aggregation, which maintains
tissue microcirculation at an appropriate level (Katori et al.,
2002).

CO has also been identified as affecting the respiratory system
of animals. Researchers found many changes, including capillary
and alveolar epithelial endothelial cell edema in the lungs of rats
exposed to 0.5–1% CO (Niden and Schulz, 1965). A higher
concentration of 95% led to a 56% decrease in ATP (Bassett
and Fisher, 1976). In rabbits, CO exposure resulted in endothelial
and epithelial swelling, and additionally, the endothelium was
detached from the basement membrane (Fein et al., 1980). A
similar effect was also observed in rats (Smialek et al., 1973).
Changes caused by CO led to a decrease in dynamic lung
compliance and increased resistance in the respiratory tract of
animals (Fein et al., 1980). Results opposite to those presented
above were obtained by (Musselman et al., 1960). 3-months long
exposure of rats, rabbits, and dogs to 50 ppm CO did not cause
any observed side effects in these animals. The absence of toxic
effects of long-term exposure of rats, dogs, monkeys, and guinea
pigs to three different concentrations of CO (51–200 ppm) was
also observed by (Jones et al., 1971). No changes in lung tissues
were observed in the analyzed dogs, despite being exposed to a
20–30 times higher CO dose than the lethal dose in humans
(8–14%) (Fisher et al., 1969). A similar lack of toxic effects in the
same animals was observed by (Halebian et al., 1984).

CO also has metabolic effects on animal organisms. It was
reported that it changes blood glucose levels in rats (Smith and
Penrod, 1940), rabbits (Gothert et al., 1972), and dogs (Schrenk
et al., 1932). The hyperglycemia due to CO poisoning was
explained by the animals’ livers’ decreased ability to produce
and store glycogen. It is also influenced by an increased
adrenaline level in the central nervous system and not, as
initially thought, disruption of insulin production (von
Oettingen, 1944). Additionally, after injection of CO under the
skin of rats, catecholamine excretion in the urine significantly
increased (400–600%) a few hours after the procedure (Pankow
and Ponsold, 1978).

CO can dissolve in tissue fluids, which has been observed in
rabbits, guinea pigs (Göthert et al., 1970), rats (Savolainen et al.,
1980), and dogs (Coburn et al., 1971) exposed to CO followed by
measuring carboxymyoglobin (COMb) levels (Sokal et al., 1984).
The COMb concentration after CO exposure is lower than the
COHb level in the blood and skeletal muscles. In addition, long-
term exposure does not cause CO accumulation in the latter and
the extravascular heart compartment (Sokal et al., 1984).
Importantly, however, exposure of animal organisms to CO in
combination with their workload increases the risk of tissue
hypoxia due to the increased tissue level of CO, as shown in
studies on rats (Sokal et al., 1986). Additionally, exposure to CO
causes changes in specific enzymes in animal organisms, such as

plasma leucine aminopeptidase (Katsumata et al., 1980), lactate
dehydrogenase, creatine phosphokinase (Penney and Maziarka,
1976), cardiac cytochrome oxidase (Fukui et al., 1987) and
cerebral cytochrome oxidase (Savolainen et al., 1980). In the
first three enzyme cases, CO increased their activity, and the
plasma leucine aminopeptidase level tested in rats exposed to CO
depended on the duration of absorption (Katsumata et al., 1980).
Enzymes susceptible to CO activity reached a high level of
activity, reaching 117 and 132% above controls (lactate
dehydrogenase and creatine phosphokinase, respectively,
(Penney and Maziarka, 1976).

Behavioral studies of the effects of CO on animals were carried
out as early as the second half of the 20th century. These analyses
covered a broad spectrum of behaviors but were mainly based on
rats, mice, monkeys, and pigeons (Laties and Merigan, 1979). For
the first two groups, it was reported that CO interfered with
several activities such as food and water intake and activities such
as running, swimming, or digging. The eating disorder was
associated with exposure of rodents to a CO concentration
from 50 ppm for 120 h per week (Stupfel and Bouley, 1970),
through 250 ppm per day (Koob et al., 1974; Annau, 1975) to
400–500 ppm (Theodore et al., 1971) and in each case, it was
correlated with a reduction in weight gain. The running
performance of rats showed a decrease in both long-term
exposure of rodents to CO (200 ppm per day) and acute but
high gas concentration (700 ppm for 30 min), while in the second
case, it was lower (Plevova and Frantik, 1974). CO also limited the
mice’s ability to move; in the final stage of the 17-h treatment with
CO, the distance covered was shortened from 33% (55 ppm), 50%
(84 ppm) to 75% (160 ppm) (Malorny, 1972). A similar
inhibitory effect on the activity of animals was observed
during rats swimming (over 50% decrease in swimming ability
after 1-h and 7-h exposure to CO concentrations of 300 and
100 ppm, respectively), and hamster’s digging [decrease by 75%
after exposure to 50 ppm CO, (Malorny, 1972)]. The behavior of
the animals’ conditioned reflexes was also analyzed. After the rats
were exposed to CO, researchers observed a significant decrease
in their responses, including pressing on a lever to obtain food
[exposure to 500 ppm CO (Teichner, 1967)]. The animals were
also negatively affected with a gas concentration of 250, 500, and
10,000 ppm (Goldberg and Chappell, 1967; Annau, 1975).
Analyzes of this type were also carried out on monkeys, which
showed reduced responsiveness after being exposed to 383 ppm
CO for 1 week (Back and Dominguez, 1968; Theodore et al.,
1971).

Accidental animal poisoning with CO is rarely described in the
literature. However, due to their cohabitation with people, pets
such as cats and dogs are also exposed to elevated CO
concentrations due to poor ventilation, faulty heating
installations, or fires (Sobhakumari et al., 2018). Few reports
are addressing the toxicity threshold of CO for pets, and no
evidence of pathology and histological changes induced by CO
have been reported (Berent et al., 2005). The analysis showed that
after 6–8 h of exposure of cats and dogs to exhaust gases
containing CO, the animals were confused, inclined to a lying
position, showed stiffness, and suffered from dyspnea (Berent
et al., 2005). On the other hand, cats found dead after a fire in
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their habitats were characterized by visible signs of poisoning,
such as irregular red skin spots on the abdominal surface and the
auricle, as well as a bright color of blood and muscles
(Sobhakumari et al., 2018). Smoke inhalation also caused
epileptic seizures in dogs and, as a consequence, their death
(Kent et al., 2010).

Additionally, the literature reported human-analogous
delayed neurological symptoms in dogs after exposure to
smoke (2–6 days after the animals initially improved). Of the
dogs tested, 60% either died or were euthanized because of their
injuries (Jackson and Drobatz, 2002). Slightly different results
were obtained by (Mariani, 2003). The initial acute condition of
the Australian shepherd found during the fire showed that
dementia and pneumonia were alleviated during 7 days of
treatment.

In addition to inducing toxic effects in animal organisms,
CO has functional properties. It has been indicated as a potent
inhibitor of cell apoptosis (Katori et al., 2002; Liu et al., 2003),
which, by activating the cGMP signaling pathway, alleviates
vascular disorders, including lesions caused by arterial
damage (Liu et al., 2003). In addition to preventing
programmed cell death, CO can regulate inflammation
(Otterbein, 2002). In mice, this immunoregulatory role of
CO was confirmed during the analysis of sensitized to
ovalbumin (Chapman et al., 2001), while in miniature
swine in ischemia-reperfusion injury lungs (Sahara et al.,
2010). By modulating cytokine production and cell
proliferation, CO creates protection against stressors and
increases organ transplants’ effectiveness in rodents (Nakao
et al., 2006). Additionally, it was found that endogenous CO
influences contractile responses by regulating vascular tone
(Wang et al., 1997). However, the above effects induced by CO
require an appropriate and significantly reduced
concentration of this compound.

CO Impact on Humans
CO is known to be toxic because of its ability to interfere with
oxygen delivery at high concentrations. CO is inhaled from the
lungs into the bloodstream. Since the affinity of CO for
hemoglobin (Hb) is 230- to 270-times greater than that of
oxygen, COHb is formed in erythrocytes (Eq. 1):

CO +Hb → COHb (1)

The formation of COHb in the blood depends on various
factors, including the concentration of inspired CO, duration of
exposure, pulmonary ventilation, exercise, and health status
(Kinoshita et al., 2020). Tissue hypoxia is the main toxic effect
of acute CO poisoning due to the formation of COHb. It causes
decreases the oxygen transport capacity, resulting in insufficient
oxygenation at the tissue level. Typical symptoms of CO
poisoning are headache, dizziness, weakness, vomiting, chest
pain, and confusion was often mistaken for flu. Prolonged
exposure causes brain damage and death (Adach et al., 2020)
(Table 1).

In urban areas, high concentrations of inhaled CO can have a
negative impact on human health. CO is often formed due to the
incomplete combustion of carbon-containing compounds,
primarily in internal combustion engines. Studies by Mandal
et al., 2011 show that between 6 and 20% of homes in London
have CO levels above World Health Organization (WHO) upper
limits (Table 2) (Mandal et al., 2011). The worldwide incidence of
CO poisoning has remained stable during the last 25 years
(Kinoshita et al., 2020). Moreover, results from China show
that a 1-mg m−3 increase of CO concentrations was associated
with ~2–3% increments in daily years of life lost (YLL) from non-
accidental causes, cardiovascular diseases, respiratory diseases,
coronary heart disease, stroke, and chronic obstructive
pulmonary disease, respectively, (Wang et al., 2021).
Associations were more robust in the elderly (≥65 years),
females, populations with low education attainment, and those
living in southern regions. The role of expired-air CO as an
independent marker of 16-y all-cause, cardiovascular, and cancer
mortality in a substantial sample of apparently healthy subjects
after adjustment for smoking was also evaluated (Bérard et al.,
2015). Results provided a better understanding of the potential
CO role on mortality and developing new prognostic and
therapeutic tools for prevention.

Additionally, the newest studies show a strong correlation
between the concentration of air pollutants such as CO and the
number of SARS-CoV-2 cases. A report by (Meo et al., 2021)
shows that the PM2.5 concentration increased by 221%, O3 by
20%, and CO concentration increased by 151% after the
California wildfire. This was compared with the number of
cases, and deaths due to COVID-19 increased by 56.9 and
148.2%. An increase in ambient concentrations of toxic
pollutants, which were temporally associated with an increase
in the incidence and mortality of COVID-19, could also depend
on other reasons, including temperature, humidity, changes in
societal patterns of social distancing, and mass gatherings or
adherence to wearing masks. Nevertheless, researchers obtain
similar results from London (Ayoub Meo et al., 2021). A one
AQI unit in the increase in CO level significantly increased the
number of cases and deaths by 21.3 and 21.8%, respectively.
Air pollutants, such as PM2.5, CO, and O3, are positively
associated with increased SARS-CoV-2 cases and daily deaths
in London, United Kingdom, but the CO influences the most on
new cases.

Despite the toxic effects on the nervous system and the
cardiovascular system, CO also plays an essential role in the
proper functioning of the human body, where it is also produced

TABLE 1 | Levels of carboxyhemoglobin (COHb) saturation (%) and symptoms
(Kinoshita et al., 2020).

COHb (%) Clinical symptom

<1 normal range (due to endogenous production)
<10 smoker’s blood (no symptom)
10–20 headache, fatigue, ear ringing
20–30 headache, weakness, nausea, vomiting
30–40 severe headache, dizziness, nausea, vomiting
40–50 syncope, confusion, increased respiration, and heart rate
50–60 coma, convulsions, depressed respiration
60–70 coma, convulsions, cardiopulmonary depression, often fatal
70< respiratory failure, death
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endogenously. Like plants and animals, the primary source of
endogenous CO in the human body is heme degradation,
catalyzed by HO (Olas, 2014). This enzyme breaks up
porphyrin in the presence of NADP and molecular oxygen,
resulting in the formation of various so-called primary
degradation products (HDP): CO, ferrous cations (Fe2+), and
biliverdin (Figure 4). The next stage in decay is catalyzed by
biliverdin reductase, which begins the reaction of biliverdin to the
2nd-degree metabolite bilirubin in the presence of NADPH and
H+. This bilirubin is then secreted into the bile and excreted in
the urine (Adach et al., 2020).

Recent findings have indicated that heme oxygenases and
generation of CO serve as a critical mechanism to maintain

the integrity of the physiological function of organs and
supported the development of a new paradigm that CO, at
low concentrations, functions as a signaling molecule in the
body and exerts significant cytoprotection (Adach et al., 2020).
Gaseous modulators, such as CO, NO, and H2S, are important
physiological mediators in the body. CO has antiapoptotic,
signaling, and anti-inflammatory effects; hence,
pharmacological agents that can imitate its action may yield
therapeutic benefits. Pharmacists and biochemists have
extensively studied such practical applications for many years
(Kramkowski et al., 2012). Significant amounts of preclinical data
indicate that exogenously provided CO can ameliorate I/R injury
associated with organ transplantation. A study examining the

TABLE 2 | Indoor carbon monoxide guidelines World Health Organization (WHO) (World Health Organization, 2010).

Averaging time Concentration (mg·m−3) Comments

15 min 100 Excursions to this level should not occur more than once per day
Light exercise

1 h 35 Excursions to this level should not occur more than once per day
Light exercise

8 h 10 Arithmetic mean concentration
Light to moderate exercise

24 h 7 Arithmetic mean concentration
Awake and alert but not exercising

FIGURE 4 | Heme catabolism (Adach et al., 2020).
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safety and tolerability of inhaled CO in kidney transplant patients
was reported by (Ozaki et al., 2012). However, the basic problem
with administering CO is that it exists in gaseous form at room
temperature. Although inhalation would commonly result in
toxic effects, devices have been invented that strictly control
the concentration of inhaled CO and automate the level of its
release. The need to avoid the toxic effects of CO administration is
not the only complicating aspect of inhalation therapy (Adach
et al., 2020).

CO has also held great promise in cancer and other treatments
due to its multifaceted regulation of cellular function and the
tumor microenvironment. These days, it is growing at a
somewhat accelerated pace, including the fast progress in a
wide range of intelligent CO donors and CO delivery-related
nanoplatforms (Zhou et al., 2020).

BIOREFINERY APPLICATION

The natural processes of CO transformation taking place with the
participation of microorganisms in media (e.g., soil or water)
inspired researchers to try to restore them under controlled
conditions. In this way, biologically-mediated processes
compete with inorganic ones. For example, the growing
demand for H2 in the 20th and 21st centuries began to be
increasingly satisfied by the water-gas shift reaction (WGS)
(Reddy and Smirniotis, 2015). This exothermic reaction, taking
place according to Equation 2, is carried out at high temperatures
and a pressure of 1.0–1.6 MPa (Cui et al., 2019):

CO +H2O → H2 + CO2 (2)
Gradually, however, the possibility and advantages of using

anaerobic bacteria enabling CO metabolization began to be
noticed, indicating the economic and ecological effectiveness
of the biologically-mediated WGS (BMWGS). Studies have
shown that CO is oxidized to CO2 by a broad range of aerobic
and anaerobic microorganisms from various physiological and
taxonomic groups, treating CO as an energy or carbon source
necessary for growth (Table 3). The majority of those
microorganisms use The Wood-Ljungdahl (acetyl-CoA)
pathway both in the metabolism and production of CO. The
Wood–Ljungdahl pathway is the central metabolism for
acetogenic growth, mainly in different types of fermentation

by mesophilic and thermophilic bacteria and thermophilic
Archaea (Diender et al., 2015).

Thus, the use of bacteria in the BMWGS reaction fits in with the
goals of the circular economy by using biomass and bio-waste as
raw materials for the production of fuels and organic compounds
(Henstra et al., 2007). These raw materials are also available in
developing countries where the bioeconomy can be advantageous.
Process conditions such as ambient temperature and pressure also
influence the biological competitiveness of a method (Alfano and
Cavazza, 2018). The advantage of BMWGS is the natural
regeneration of microorganisms, which, compared to inorganic
catalysts, can quickly replicate their cells to avoid poisoning
(Henstra et al., 2007). Notably, from the point of view of
industrial use of WGS, this reaction occurs in the dark so that
it can be carried out in closed reactors. Thus, for this reason,
process costs are minimized, including the elimination of the need
for photo-bioreactors (Amos, 2004).

Another beneficial method of CO use with the participation of
microorganisms is the Fischer-Tropsch (FT) reaction, taking
place at a temperature of 150–300°C and using syngas as a
substrate converted catalytically (Maitlis and Klerk, 2013;
Selvatico et al., 2016). The primary purpose of FT is to make
liquid hydrocarbons by converting CO and H2 mixture (Alfano
and Cavazza, 2018). In this reaction, both waste and biomass can
be carbon sources (Maitlis and Klerk, 2013), and depending on
the material used, the required H2/CO ratio changes (Selvatico
et al., 2016). Initially, this reaction, especially in the commercial
sector from 1936, used mainly conventional non-renewable
substrates such as coal or natural gas to ensure economic
viability (Köpke and Simpson, 2020). An example of a mass-
scale operation is The Shell Pearl Gas-to-Liquids installation
located in Qatar, which since 2012 uses a natural gas well to
produce up to 140,000 barrels per day (Shell, 2022). However, due
to environmental reasons, based on the concern to reduce carbon
emissions, the spectrum of materials used in the FT process has
been expanded to various groups of waste, including agricultural,
organic industrial, or municipal solid waste; the use of the latter is
implemented at the Fulcrum Bioenergy plant, whose production
capacity is <1,000 barrels per day (Fackler et al., 2021).

One of the newest technologies aimed at producing
sustainable fuels and chemicals using the abundant above-
ground carbon feedstocks is gas fermentation. The metabolism
of chemolithoautotrophic microorganisms enables the utilization

TABLE 3 | Microorganisms involved in different CO production pathways.

Microorganism Pathway/cycle Reference

Clostridium thermoaceticium

The Wood-Ljungdahl (acetyl-CoA)

Schlegel, (2004)
Clostridium formicoaceticum Drennan et al. (2001)
Rhodospirillum rubrum Drake and Daniel (2004); Pierce et al. (2008)
Moorella thermoacetica Wu et al. (2005)
Carboxydothermus hydrogenoformans
Klebsiela pneumoniae Conversion of S-methylthioadenosine to methionine Dai et al. (1999)
Morganella morganii Aromatic amino acid metabolism by bacteria Hino and Tauchi, (1987)
Clostridium aceticum

Homoacetate fermentation Schlegel, (2004)
Clostridium thermoaceticum
Clostridium formicoaceticum
Moorella thermoacetica
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of carbon oxides, including CO (Fast and Papoutsakis, 2012;
Claassens et al., 2019). Thanks to this, gas fermentation offers a
wide range of potential substrates, including 1) industrial waste
gas, e.g., from steel and ferroalloy production, refinery processes,
2) syngas formed from organic waste, biomass residues, and
municipal solid waste, as well as 3) CO2 from various processing
plants, processes of ethanol production from corn biomass or
direct air capture (Köpke and Simpson, 2020). Such a wide variety
of input materials, however, makes them compositionally
variable, and additionally, the syngas used in the process is
characterized by a high level of impurities. They include,
among others, heavy metals, nitric oxides, NH3, aromatic
compounds, and sulfur compounds (Infantes et al., 2020).
While FT processes encounter technical and hence economic
problems resulting from the need to provide a purified feedstock
to produce high-purity gases, gas fermentation shows high
process tolerance to contaminants (Köpke and Simpson,
2020). As in the case of the BMWGS reaction mentioned
above, it results from the ability of the microbial catalyst to
self-replicate and the process tolerance is based on the binding of
pollutants with microorganisms, which are washed out of the
reactor after being killed (Köpke and Simpson, 2020). This is
facilitated by the continuous process lasting several weeks or
months (Fackler et al., 2021). This situation does not lead to the
accumulation of unfavorable substances in the process, unlike in
traditional chemical thermocatalytic processes. This has its
economic consequences, making the fermentation process
possible to reduce capital expenditure by keeping the high
selectivity of the products despite the variability of the
substrates, e.g., by lowering the required level of raw materials
(Clomburg et al., 2017). Moreover, this high selectivity increases
the conversion efficiency due to the formation of fewer by-
products than is the case with catalyzed chemical processes
(Fackler et al., 2021). In addition, the features of the process
enable the creation of modern facilities, which, unlike the
previously adopted classic industrial model, are able to flexibly
operate with various groups of microorganisms using one
infrastructure. Thus, depending on the type of microbial
strain, the same gas composition can lead to a variety of
products (Köpke and Simpson, 2020).

Learning about acetogenesis in 1932, willingness to find the
added value of fossil sources, and to ensure energy security, were
the driving force behind scientific research on syngas
fermentation as early as the 1980s. After groundbreaking
events, such as the demonstration of the use of gas
fermentation to produce ethanol in 1989 and the isolation of
the first acetogens producing various compounds in 1990, gas
fermentation was considered ready to be attempted on a larger
scale (Köpke and Simpson, 2020; Fackler et al., 2021). The top
three organic solvents from syngas identified based on their
octane values were methanol, ethanol, and iso-propanol
(Fackler et al., 2021). The efforts and knowledge gained from
the laboratory studies were then transferred to the Bioengineering
Resources, Inc., pilot plant in 2003 (which obtained rights to
commercialize the technology in 2008), Coskata company
(established in 2006, since 2015 as Synata Bio), and INEOS
New Planet BioEnergy commercial venture in 2011 (closed in

2016 due to problems related to with a high content of hydrogen
cyanide in syngas). Importantly, in 2005, research on C.
autoethanogenum at LanzaTech in New Zealand led to the up-
scaling of the technology using a 500-L pilot fermenter (Liew
et al., 2016) and, consequently, to the creation of a commercial
installation in China in 2018, occupying ethanol production with
a capacity of 16 million gallons per year, jet fuel and plastic and
nylon precursors (Beijing Shougang LanzaTech New Energy
Science & Technology Co., Ltd.) (Fackler et al., 2021). The
aforementioned growing interest in using municipal solid
waste and agricultural waste in the process is also visible. The
first of these groups was processed into ethanol by the Japanese
company Sekisui Chemical in cooperation with LanzaTech in
2017, which led to the establishment of SEKISUI Bio-Refinery
CO., Ltd., a company that verifies the developed technology,
3 years later. One of the above-mentioned shareholders,
LanzaTech, also started a joint operation with Indian
associates in the same year to implement the process on
agricultural substrates (Fackler et al., 2021). Another
alternative and innovative course are the in vitro utilization of
enzymes present in the BMWGS reaction. The research
undertaken concerns hydrogenases; due to the difficulties in
understanding the biogenesis of CODH, this enzyme is not yet
considered ready to be used on an industrial scale (Alfano and
Cavazza, 2018).

However, the industrial applications of CO and CO-
transforming bacteria are still being explored and described,
and so far, several problems related to these processes have
been identified.

One of the limitations is the toxicity of CO, which, due to its
high affinity to metalloenzymes, may inhibit the growth and
catabolic activity of bacteria (Alfano and Cavazza, 2018). The
concentration of this gas in the liquid phase greater than 0.15 m
mol L−1 decreases the reaction rate, which may result in the
complete closure of BMWGS (Amos, 2004). Therefore,
researchers point to the need for an in-depth understanding of
syngas metabolism, which should allow the development of
microorganisms resistant to the toxic effects of CO (Ismail
et al., 2008). On the other hand, CO availability to the
bacteria could be a problem since their activity potential
depends on the CO content. It is necessary to optimize the
distribution of microorganisms, the CO concentration in the
substrate, and the gas-to-liquid mass transfer (Alfano and
Cavazza, 2018). The latter is one of the most problematic
aspects affecting the operation of the BMWGS on an
industrial scale in large reactors. Due to the low solubility of
CO, this reaction is characterized by slow, diffusion-limited mass
transfer from the bulk gas into the pores of the catalyst; but the
rate of mass transfer is much higher than the rate of mass transfer
from a gas into a liquid. In effect, for most reactor configurations,
microorganisms have to “wait” for a dose of CO in the solution
due to the slow mass transfer rate, which significantly reduces the
rate of BMWGS (Amos, 2004). Another potential threat is also
CO2, the presence of which at higher process pressure leads to the
formation of, among others, carbonic acid. In general, biological
WGS is highly active when the pH of the process is in the range of
6.8–8. When it is less than 6.5, the microorganisms are lysed;
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similar inhibition occurs when pH > 8 (Amos, 2004). Higher
molecular weight contaminants may also cause concern when the
BMWGS reaction is used in syngas conditioning, which may
negatively affect microbial cells (Amos, 2004). An important
aspect indicated by the researchers is that BMWGS kinetics
can only be determined experimentally (Amos, 2004).

Too high a concentration of CO in the process is also a
problem in the case of syngas fermentation, affecting its
efficiency. This is based on the inhibitory effect of this gas on
the activity of the key enzyme, hydrogenase, and hence the H2

utilization rate (Devarapalli and Atiyeh, 2015). Therefore, in
industrial applications, it would be necessary to use fast-
response sensors, which by measuring CO and H2

concentrations, would be able to accurately determine them
online, enabling high yields of ethanol and stability of the
process (Dang et al., 2021). However, currently, dedicated
sensors are not available on the market; solutions such as
membrane-coated electrochemical sensors in the power
industry are not suitable for the CO and H2 concentration
measurements required in the process due to the slow reaction
time and labor-intensive operation (Dang et al., 2021).
Additionally, the challenge for this type of device is the ability
to measure both compounds simultaneously; the cross selectivity
of CO andH2 is currently not developed, which does not allow for
the precise differentiation of these gases by one sensor.

As mentioned earlier, it is necessary to consider the
appropriate H2/CO ratio in the FT reaction. The most popular
substrate for the production of syngas used is wood and straw,
and the syngas produced in this way is characterized by a too low
substrates ratio for industrial purposes (Sansaniwal et al., 2017).
Therefore, the currently preferred direction is to use the BMWGS
reaction and control it to obtain a specific and desired H2/CO
ratio with the help of microorganisms (Bukur et al., 2016).

What was mentioned before, syngas fermentation has an
advantage over FT processes due to, i.a. higher biocatalysts

specificity (Henstra et al., 2007; Wainaina et al., 2018).
However, the traditional approach to fermentation is
associated with a few significant problems, such as redox
imbalance and limited growth and effectiveness of CO-
converting microorganisms due to the limited reducing power
of the Wood-Ljungdahl pathway (Barbosa et al., 2021). For this
reason, in 2009, research on bioelectrochemical syngas
conversion (bioelectrochemical systems, BESs) in dedicated
systems began (Kim and Chang, 2009). BESs technology,
based on integrated biological conversion and production of
electricity, uses the activity of electrochemically active bacteria
(EAB) capable of the use of insoluble electron acceptors or
donors-anodophiles and cathodophiles-biocatalysts that are
applied at the anode and cathode, respectively, (Figure 5)
(Barbosa et al., 2021). In these processes, the chemical energy
stored in compounds is transformed into bioenergy; both for
electricity production thanks to oxidation (anode) and for
production of added-value biochemicals thanks to reduction
reactions [cathode, (Logan et al., 2008; Lovley, 2011; Choi and
Sang, 2016)].

The first solution, electricity production from syngas/CO
using microbial fuel cells (MFCs), is the most popular and
tested BESs method (Mehta et al., 2010; Hussain et al., 2011b;
Neburchilov et al., 2011; Hussain et al., 2012; Kumar et al., 2017;
Santoro et al., 2017). Researchers have proposed three theories
about the mechanism of this process. The first is the direct
electricity generation by transferring electrons by Fe (III)-
reducing carboxydotrophic bacteria to the anode; this process
occurs in the one-stage chamber (Mehta et al., 2010). Another
assumes that this process is indirectly based on the change of CO
to compounds such as H2 or acetate (CO fermentation products,
resulting from acetogenic carboxydotrophic microorganisms,
such as Alkalibaculum bacchi, C. ljungdahlii, Acetobacterium
spp. or C. carboxidivorans). Anodophilic bacteria then convert
acetate as a substrate for electricity production in MFCs (e.g.,
Geobacter sulfurreducens) (Kim and Chang, 2009; Hussain et al.,
2011a; Hussain et al., 2014). The third theory allows for the
possibility of producing energy from the resulting H2 or
converting it and CO2 into acetate (Mehta et al., 2010).
Additionally, the influence of temperature on CO in MFCs
conversion was analyzed. Greater process efficiency and higher
power density were observed in thermophilic conditions
(Hussain et al., 2012).

Researchers are increasingly interested in biochemicals
production (e.g., CH4, acetate, or H2) in the electrochemically-
assisted fermentation process (electro-fermentation, EF) (Rabaey
and Rozendal, 2010). This technology is based on the
introduction into electric circuits an electrode to provide
additional energy and induce the transformation of the
substrate into the expected product. Its advantage over
conventional fermentation is based on increased production
efficiency while reducing costs and increasing product purity
(Engel et al., 2019). This is possible thanks to modifying redox
balances and fine-tuning metabolic pathways with the need to use
special additives (Barbosa et al., 2021).

Analyzes of the use of syngas/CO for the production of
biochemicals were initiated in 2010 (Köpke et al., 2010; Nevin

FIGURE 5 | Bioelectrochemical syngas conversion in BESs using
electrochemically active bacteria (EAB) applied at the anode and cathode to
produce bioenergy and biochemicals, respectively.
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et al., 2011), and the process itself is considered future-oriented
due to carbon capture and storage in the form of valuable
products (Barbosa et al., 2021). Related reactions may become
a support for the 4th generation biofuels (Barbosa et al., 2021).
Several compounds have been obtained in EF processes using
syngas/CO, including, e.g., 1,3-propanediol [G. sulfurreducens,
(Moscoviz et al., 2018)], 3-hydroxypropionic acid (3-HP)
[Klebsiella pneumoniae, (Kim et al., 2017)], lactate and 2,3-
butanediol [Clostridium autoethanogenum, (Kracke et al.,
2016)], butanol [C. pasteurianum, (Choi et al., 2014)].
Promisingly, the amounts of these compounds exceeded those
obtained with conventional fermentation, for example:

• Production of 1,3-propanediol was improved by the yield of
10% [G. sulfurreducens, (Moscoviz et al., 2018)],

• 1.7-fold enhancement of 3-hydroxypropionic acid (3-HP)
production was observed by (Kim et al., 2017),

• Production of lactate and 2,3-butanediol increased by 35-
fold and 3-fold, respectively, in electrically enhanced
fermentation of fructose (Kracke et al., 2016),

• Improvement of butanol production from glucose and 1,3-
propanediol production from glycerol by 20 and 21%,
respectively, was noted by (Choi et al., 2014).

A wide spectrum of waste that can be used in biorefinery
processes, including municipal, industrial, agricultural waste,
etc., is a valuable alternative to the use of fossil resources for
the production of fuels, chemicals, or electricity. Above mentioned
results indicate the need to develop described technologies and to
scale up for industrial applications in the near future. Introducing
them to mainline production can bring benefits on the economic
and environmental side, possibly through credit and tax incentives.
However, these solutions have limitations that affect the economic
aspects of implementing it at a commonly used, commercial level.
Streams of this waste are abundant, but their characteristic feature
is significant dispersion. In order for them to compete with
traditional feedstocks in petrochemical processes, they must be
delivered to the plant in an integrated manner in quantities that
exceed the current capacity (hundreds or thousands of tons per day
compared to hundreds of thousands of tons for fossil raw
materials). Increased efficiency and competencies of
biorefineries largely depend on the availability of these
resources, i.e., on a consistent logistic system for collecting,
storing, and transporting waste to processing sites. It is also
important for each industrial process to be stable and handle to
produce large amounts of a uniform product; process specifications
also need to consider the variability in raw material, which is
extremely important when the substrate is waste (high possibility of
inhomogeneity). What is also important, is that biorefinery
technology should provide easy and inexpensive storage and
transport of gases like H2; new technology like proton-
exchange-membrane (PEM) is still not cost-competitive to the
alternative steam-methane-reformation (SMR) process that uses
natural gas (Takors et al., 2018). Additionally, the competitiveness
of biorefinery plants could be based on the economic benefits of
recovering CO2 as a by-product of the processes carried out. For
this purpose, it is necessary to analyze the possibilities of

implementing various methods, depending on the composition
of the substrates, e.g., waste or synthesis gas.

An interesting direction is also the integration of aerobic
treatment of organic waste with biorefinery processes. The
expanding range of possible routes to use biological CO as a
valuable resource in reference to recent reports on the production
of this gas from the composting process (Stegenta et al., 2019a;
Stegenta et al., 2019b) raises a new, important question: is it
possible to control and enhance the biological CO production
from aerobic processes for the biorefinery industry and/or H2
production? Observations made for green waste (Kurola et al.,
2010), their mixture with manure (Hellebrand and Kalk, 2001),
organic waste (Haarstad et al., 2006), the municipal waste
((Phillip et al., 2011; Stegenta et al., 2018) and studies on the
dual nature of CO production biotic and abiotic, (Stegenta-
Dąbrowska et al., 2019) indicate that the composted mass may
contain bacteria responsible for metabolizing CO, capable of
producing the enzyme carbon monoxide dehydrogenase
(CODH). If this hypothesis was confirmed, it would
significantly increase the potential sources of CO to be used in
the further development of biorefineries. Therefore, laboratory-
scale studies are needed to understand in detail the process and
biological factors influencing CO production during composting.

Additionally, due to the described earlier problems associatedwith
CO high affinity to metalloenzymes, there is a concentration barrier
for this compound in the liquid phase that limits the growth and
activity of microorganisms. Therefore, it is essential to develop strain
engineering using tools developed on the organismmodel, which will
allow not only to prepare the bacteria to work in the harsh anaerobic
environment of the process with gaseous substrates but also to obtain
new products from the same substrates. The support may be
predictive models based on omics data and the use of
bioinformatics tools that enable learning about the rules and
variables affecting metabolic processes, as well as their control and
optimization. Moreover, one of the biggest problems with the
efficiency of biorefinery processes, mass transfer limitations, is
being gradually addressed by the latest technological advances
such as the use of high mass-transfer bioreactors and anaerobic
biofoundries. However, further efforts are needed to develop
technologies on a larger scale, which is linked to the need to
finance pilot operations.

CONCLUSION

As shown in this review article, such an inconspicuous molecule as
COplays an essential role in each of the elements of the environment,
directly and indirectly influencing the processes taking place.
Moreover, its absence would disrupt natural changes in nature
and affect plants and the organisms’ functioning—both animals
and humans.

Ignored in many aspects of pro-environmental and economic
activities, CO is becoming noticed by an increasing number of
researchers, activists, and industry representatives, gaining more
and more importance, e.g., in medicine, veterinary medicine, and
the chemical industry and energy industries. The initial neglect of
CO as a harmful gas over many years of research conducted on
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plants, animals, and humans has turned into an approach
consisting of minimizing the effects of CO and the pathways
of its effective use and achievement of intended goals. Similarly,
the first observations and research conducted on CO fate in the
atmosphere, soils, and water bodies became the basis for the
currently extended analyzes of the ways of metabolizing CO in a
biological way using microorganisms, which are crucial for the
development of the biorefinery industry. The first laboratory
analyses, as well as experiments carried out in pilot plants,
subsequently led to the transfer of CO as a substrate to
commercial plants, which proves that despite its toxic nature,
this compound is a valuable material for biological processes.

Because of that, CO application in biorefinery can be a part of the
circular economy. However, the technically and economically
successful implementation of such processes has been revealed to
be very challenging and requires continuous progress. Like every
industrial process, using CO in biorefinery should be economically
efficient, which is connected with the possibility of stable production
of large amounts of a standardized product. Additionally, process
specifications need to consider the variability in raw waste material.
Therefore, further studies on the processes’ kinetics in fully controlled
and well-mixed laboratory-scale stirred-tank bioreactors are needed
to provide the data allowing for the modeling of the biorefinery
concept on an industrial scale.
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