AUTHOR=Ma Yameng , Huang Xiao , Han Qi , Yu Jianghua , Yu Fengjiao , Zhu Jia TITLE=Decomplexation Performance of Cu–EDTA and Parameter Optimization by Three-Dimensional Electro-Fenton JOURNAL=Frontiers in Environmental Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2022.818142 DOI=10.3389/fenvs.2022.818142 ISSN=2296-665X ABSTRACT=

The strong stability of Cu–ethylenediaminetetraacetic acid (Cu–EDTA) results in the low decomplexation efficiency by the traditional Fenton process. For breaking this limitation, a three-dimensional electro-Fenton (3D-EF) system was constructed to study the decomplexation of Cu–EDTA at different pH, and the effects of Fe2+ concentration, particle electrode dosage, current density, and coexisting ions on decomplexation performance were investigated. The results showed that 3D-EF exhibited high pollutant removal efficiency in a wide pH range compared with the traditional electro-Fenton process. The optimal conditions for the removal of Cu–EDTA were as follows: the pH was 7, Fe2+ was 1 mmol L−1, granular activated carbon was 2 g L−1, and current density was 10 mA cm−2, and the optimum Cu–EDTA removal efficiency reached 90.95%. In addition, the presence of Cl slightly improved the decomplexation efficiency, whereas NO3 and HPO42− inhibited the removal of Cu–EDTA. The kinetics of Cu–EDTA decomplexation in all experimental groups followed the first-order kinetic equation.