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Improving urban ecological efficiency is an integral part of ecological protection and high-
quality development of the Yellow River Basin. We used the super-efficiency slacks-based
model with unexpected output to measure the ecological efficiency of 62 prefecture-level
cities in the Yellow River Basin from 2005 to 2018. Its spatial distribution characteristics
and convergence are discussed. The influencing factors and spatial spillovers of the
ecological efficiency are assessed through the spatial Dubin model. The results show that:
1) The ecological efficiency is highest in cities in the lower reaches of the Yellow River Basin,
mid-level in the upper reaches, and lowest in the middle reaches. 2) There is no σ

convergence in the ecological efficiency of the Yellow River Basin, but there is absolute
β convergence and conditional β convergence. 3) Economic development, financial
development, and technological innovation significantly promote ecological efficiency,
and the spatial spillover effects are significant. Increased connection with the outside world
can significantly improve ecological efficiency, but there is no apparent spatial spillover
effect for these connections. The industrial structure and urbanization rate reduced
ecological efficiency and have a significant negative spillover effect. The energy
consumption structure reduces the level of ecological efficiency, and the spillover effect
is not significant.

Keywords: ecological efficiency, spatial distribution, convergence, spatial econometric, Yellow River basin,
economic development

1 INTRODUCTION

China has identified ecological protection and high-quality development in the Yellow River Basin as
among its critical national strategies (Symposium on Ecological Protection and High-quality
Development in the Yellow River Basin, 2019). The Yellow River Basin, although rich in
resources, is characterized by large gaps in regional economic development levels, a fragile
ecological environment, and large differences in natural resource endowments among different
regions. These issues pose severe challenges to sustainable development. Strengthening ecological
protection and management, and continuously improving ecological efficiency, have become
inevitable choices for the sustainable development of the Yellow River Basin. The term “eco-
efficiency” was first proposed by German scholars Schaltegger and Sturm (1990) and is promoted by
the Organisation for Economic Co-operation and Development (OECD). According to the OECD
(1998), the target of eco-efficiency is a typical input-output process that can achieve more economic
value with fewer environmental impacts. Estimating the ecological efficiency value, analyzing spatial
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distribution characteristics, influencing factors, and spatial
spillover effects are imperative to provide a reference for the
government to formulate effective ecological protection and high-
quality development policies.

The existing methods of measuring ecological efficiency
include the single ratio method, data envelopment analysis
(DEA), stochastic frontier analysis (SFA), and parameter
analysis. In the ratio method, ecological efficiency is the ratio
of the ecological cost of a product or service to the actual market
price (Vogtländer et al., 2002). The ratio method is relatively
simple and cannot distinguish the impact on different
environments, making it challenging to measure ecological
efficiency comprehensively. It is necessary to use multiple
input-output indicators and form a more comprehensive
evaluation system (Wang et al., 2011). DEA and SFA have the
advantage of objective weighting, so they are widely used to
measure ecological efficiency (Huang et al., 2014; Orea and Wall,
2017; Yue et al., 2017). In addition, some scholars use ecological
footprints (Yang and Yang, 2019), life cycle assessments (Avadí
et al., 2014; Lorenzo-Toja et al., 2015; Beltrán-Estevea et al., 2017),
and other methods. The outcomes of different models and
methods have different coverage and accuracy. The
measurement results of the basic DEA model are not
comprehensive, so researchers have put forward two-stage and
three-stage DEA methods (Zhang et al., 2017; Shao et al., 2019).

In order to study the evolution of ecological efficiency gap, we
need to conduct convergence analysis. Xu et al. (2021) found a
severe ecological imbalance in 11 eastern and western provinces
along the Yangtze River Economic Belt. Camarero et al. (2013)
assessed the convergence in eco-efficiency of a group of 22 OECD
countries over the period 1980–2008 and found that both the
most eco-efficient countries (and the worst) tend to form groups
of convergence. Kounetas et al. (2021) used the nonparametric
distribution dynamics method based on a Markov chain to study
the convergent and divergent hypothesis of ecological efficiency
of American states from 1990 to 2017; they revealed the existence
of regional clusters and at least two convergence groups in the
United States. Huang et al. (2018) found that the ecological
efficiency of urban agglomerations has an echo effect on the
ecological efficiency of non-urban agglomerations and reduces
the convergence rate of ecological efficiency.

After understanding the spatial distribution characteristics
and trends of ecological efficiency, it is necessary to explore its
underlying driving mechanisms. This branch of literature has
identified some main factors are scale, structure, technology,
economy, and policy. Chen W. et al. (2020) found that better
innovation could improve the ecological efficiency of cities in
China. There was a U-shaped relationship between educational
investment in innovative talents and urban ecological efficiency,
whereas there was an inverted U-shaped relationship between
capital investment and innovation performance. Dan et al. (2021)
found that the impact of economic development level and
urbanization on the ecological efficiency of western Chinese
cities was U-shaped, and the proportion of the secondary
industry, FDI, trade activities, environmental regulations, and
technological innovation capacity had a positive impact on the
ecological efficiency. Tong et al. (2020) applied the panel smooth

transition regression (PSTR) model and found that FDI harms
ecological efficiency at low economic development levels, and it
promotes the improvement of ecological efficiency when the
economic level exceeds a certain threshold. Zhou et al. (2018)
estimated the eco-efficiency of 21 cities in Guangdong province
over the period 2005–2014 and found that technical innovation
had the greatest positive influence on eco-efficiency, followed by
government regulation, openness, and population density.

Spatial spillover and diffusion effects of geospatial factors on
inter-regional ecological efficiency are becoming increasingly
evident. It is difficult to fully understand the causes of differences
in ecological efficiency only from a single region’s development
mode and characteristics. It is useful to start from the perspective of a
whole system, considering the impact of spatial interactions between
regions on the efficiency differences and their related mechanisms.
Zhou et al. (2019) discussed eco-efficiency using data envelopment
analysis on 48 cities in Bohai Rim and suggested negative spillover
effects of industrial structure upgrades on surrounding cities, which
reflects an industry transfer phenomenon related to eco-efficiency.
Peng et al. (2020) studied a spatial correlation network and its
characteristics of energy eco-efficiency and found spatial
heterogeneity in energy eco-efficiency. However, the spatial
correlation network was unevenly distributed, and the spillover
effect between areas was relatively low. Chen P. et al. (2020)
found that environmental regulation has a significant positive
impact on the ecological efficiency of neighboring cities, and the
significant increase in the ratio of direct and indirect effects of
industrial structure upgrading and technological progress indicates
that the positive spatial externalities of the two are enhanced. Yao
et al. (2021) used panel data of Chinese provinces and found that
local social urbanization inhibits the ecological efficiency of
surrounding areas, whereas the local urbanization level could
promote the ecological efficiency of surrounding areas.

High-quality development and ecological protection in the Yellow
River Basin are important development targets in China, and thus the
ecological efficiency of the Yellow River basin has become a focal
research area. Sun (2020) calculated the energy ecological efficiency
considering the unexpected output with the SBM-DEA model,
discussed the spatial difference of different regions in the Yellow
River Basin, and analyzed the internal and external influence of
factors. Chen M. et al. (2020) analyzed the influencing factors of the
ecological efficiency of the Yellow River Basin and put forward policy
recommendations for the upper, middle, and lower reaches. Li et al.
(2021)measured industrial eco-efficiency with the super-SBMmodel,
analyzed the spatial differentiation characteristics, and investigated
the influencing factors of industrial eco-efficiency with an
econometric model. Yan and Tu (2021) divided the resource-
based cities in the Yellow River Basin into four types and
analyzed the heterogeneity of their ecological efficiency. Chen
et al. (2021) constructed a MINDs model and explored the spatial
difference and dynamic evolution of eco-efficiency using a Dagum-
Gini coefficient and kernel density estimationmethod.With this, they
investigated the driving factors of the spatio-temporal evolution of
eco-efficiency with a geographical component.

Building on existing research, this paper attempts to
supplement research on the ecological efficiency of the Yellow
River Basin in the following aspects. First, in terms of research
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content, the ecological efficiency convergence and spatial
spillover effects in the upper, middle, and lower reaches of the
Yellow River Basin are analyzed, providing for more spatially-
explicit insights. Therefore, this paper analyzes the convergence
of ecological efficiency, to provide a theoretical basis for the
coordinated development of cities in the Yellow River Basin. The
Basin has a large spatial span, and the similarities in upstream and
downstream reaches can be relatively small. Therefore, this paper
analyzes the spatial spillover effects of the ecological efficiency
both for the Yellow River Basin as a whole and for individual
reaches. Second, in terms of research methods, the geographic
economic weight matrix and the geographic economic-nested
weight matrix are used for spatial econometric analysis of key
influencing factors. Simple geographic distance metrics cannot
explain the economic significance of certain variables and their
regional relevance in economic development. Therefore, this
paper extends the spatial geographic weight matrix, with
geographic proximity and economic proximity, an approach
that may help identify the most important influencing factors
in the Basin.

2 MATERIALS AND METHODS

2.1 Study Area
For the Yellow River Basin, we selected the prefecture-level cities
that the Yellow River main channel flows through and the
prefecture-level cities that are adjacent. Based on data
availability, the research samples included 62 cities in eight
provinces. The samples were divided into three regions:
upstream areas, (including Qinghai, Gansu, and Ningxia),
midstream areas (including Shanxi, Shaanxi, and Inner
Mongolia), and downstream areas (including Henan and
Shandon, according to the “Sustainable Development Planning
of the National Resource-Based Cities (2013–2030)” issued by the
State Council of China (2013) (see Table 1).

2.2 Research Method
2.2.1 Super Efficiency SBM Model
This paper uses the super efficiency, SBM, undesirable model
improved by Tone (2002) to calculate the ecological efficiency.
The model includes slack variables and uses unexpected output as
input to overcome the problem of ignoring additional
environmental and resource factors in measuring efficiency.

Additionally, the super-efficiency model solves the ranking
problem of effective decision-making units to reflect the
essence of the ecological efficiency of cities. Assuming that the
ecological efficiency of n decision-making units (DMUs) is
measured, each DMU has m inputs, represented as xi (i = 1,
2,..., m) and q outputs, in which the expected output is
represented as yr (r = 1, 2,..., q1) and the unexpected output is
recorded as bt (t = 1, 2,..., q2). As such, the super efficiency SBM
model is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minρ �
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t ≥ 0, j � 1, 2, ..., n(j ≠ k)

(1)

In Eq. 1, ρ is the relative efficiency value of the kth decision-
making unit, si

-, sr
+, st

b- represent the slack variables of the input
variable, expected output, and unexpected output, respectively, xij
is the ith input of the jth decision-making unit, yrj is the rth
expected output of the jth decision-making unit, btj is the tth
unexpected output of the jth decision-making unit, and λj is the
weight of the jth decision-making unit. If ρ ≥ 1, the DMU has
reached DEA validity, and the larger the DEA, the better the
coordination between resource utilization and ecological
protection. If 0 < ρ < 1, DMU has not reached DEA validity.

2.2.2 Convergence Analysis Method
2.2.2.1 σ Convergence
The σ convergence is used to reflect the dynamic evolution of a
research object deviating from an overall development level over
time. In our case, it is used to analyze whether the ecological

TABLE 1 | The division of cities in the upper, middle, and lower reaches of the Yellow River Basin.

Region City

Upstream 1 Lanzhou, 2 Baiyin, 3 Wuwei, 4 Pingliang, 5 Qingyang, 6 Dingxi, 7 Xining, 8 Yinchuan, 9 Shizuishan, 10 Wuzhong, 11
Guyuan, 12 Zhongwei

Midstream 13 Taiyuan, 14 Datong, 15 Yangquan, 16 Changzhi, 17 Jincheng, 18 Shuozhou, 19 Jinzhong, 20 Yuncheng, 21 Xinzhou, 22
Linfen, 23 Luliang, 24 Hohhot, 25 Baotou, 26 Wuhai, 27 Ordos, 28 Bayannur, 29 Ulanqab, 30 Xi’an, 31 Tongchuan, 32
Xianyang, 33 Weinan, 34 Yan’an, 35 Yulin, 36 Shangluo

Downstream 37 Jinan, 38 Zibo, 39 Zaozhuang, 40 Dongying, 41 Weifang, 42 Jining, 43 Tai’an, 44 Linyi, 45 Dezhou, 46 Liaocheng, 47
Binzhou, 48 Heze, 49 Zhengzhou, 50 Kaifeng, 51 Luoyang, 52 Pingdingshan, 53 Anyang, 54 Hebi, 55 Xinxiang, 56 Jiaozuo,
57 Puyang, 58 Xuchang, 59 Sanmenxia, 60 Nanyang, 61 Shangqiu, 62 Zhoukou
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efficiency gap of different research objects in the region shrinks
over time and whether there is a trend between low-value cities to
high-value cities. In this study, the σ convergence of ecological
efficiency is calculated by the σ index (Rezitis, 2010). The
formula is:

σt �

�������������������������
1
N

∑N
i�1
⎛⎝EEi(t) − 1

N
∑N
i�1
EEi(t)⎞⎠2

√√
(2)

where N represents the number of prefecture-level cities, and
EEi(t) represents the ecological efficiency of the ith prefecture-
level city in period t. If σt > σt+1, σ convergence exists for the
ecological efficiency of the region and vice versa.

2.2.2.2 Absolute β Convergence
Absolute β convergence indicates that as time passes, the lagging
DMU catches up with the leading DMU because of its higher
growth rate, and eventually, each DMU moves to the same
steady-state level. In other words, the ecological efficiency of
cities can reach the same value as that of advanced cities through a
faster growth rate. The model of absolute β convergence is (Barro
and Sala-I-Martin, 1997):

ln(EEi,T/EEi,0)/T � α + β lnEEi,0 + εi,t (3)
where EEi,0 and EEi,T represent the eco-efficiency value of the ith
prefecture-level city at the initial stage and the T stage,
respectively, ln (EEi,T/EEi,0)/T represents the annual average
growth rate of ecological efficiency of the ith prefecture-level
city from the initial stage to T period, α is a constant, β is the
coefficient of initial ecological efficiency, and εi,t is the random
error term. If β < 0 and is significant, the growth rate of eco-
efficiency in each region is inversely proportional to the initial
eco-efficiency level, that is, absolute β convergence exists.
Conversely, if β > 0 and is significant, there is no absolute β
convergence. The speed λ of absolute β convergence can be
expressed as:

β � e−λT − 1 (4)

2.2.2.3 Conditional β Convergence
Conditional β convergence assumes that the economic basis and
characteristics of each region are different, and each region will
develop along with its steady-state level, but the absolute
differences of variables between regions always exist (Barro
and Sala-I-Martin, 1992). From the above analysis, it can be
seen that under the assumption of the same economic basis in all
regions, the ecological efficiency of the overall, the upper, the
middle, and the lower reaches of the Yellow River Basin cannot
reach the same steady-state growth level. Therefore, to better
understand the real-world situation, it is necessary to test the
conditional β convergence of ecological efficiency of the overall
system and upper, middle, lower reaches.

Two methods of conditional β convergence test are used in the
existing literature. One is to add explanatory variables to the
absolute β convergence regression model and test them based on

manipulating these variables. The second is the panel data fixed-
effect model. The panel data fixed-effect model cannot analyze
the impact of various influencing factors on ecological efficiency
convergence but we resolve this issue in the subsequent sections
of this paper. Therefore, this study uses the panel data fixed-effect
model for the conditional β convergence test. The advantages of
this model are: 1) There is no need to add explanatory variables,
which avoids the subjectivity and incompleteness of selecting
variables, and 2) It can avoid the multicollinearity problem
caused by too many variables. The conditional β convergence
model constructed in this paper is:

ln(EEi,t/EEi,t−1)/T � α + β lnEEi,t−1 + εi,t (5)
where EEi,t-1 and EEi,t represent the eco-efficiency values of the ith
prefecture-level city in period t and t-1, respectively; ln (EEi,t/
EEi,t-1)/T represents the annual average growth rate of ecological
efficiency of the ith prefecture-level city from period t-1 to period
t; T is the time interval between two periods; α is a constant; β is
the coefficient of initial ecological efficiency; and εi,t is the random
error term. If β < 0 and is significant, the growth rate of ecological
efficiency in each region is inversely proportional to the initial
level of ecological efficiency. That is, there is conditional β
convergence, which means that ecological efficiency in
different regions will reach different steady-state levels over
time due to differences in geographical environment,
economic development level, or other factors. This situation
can confirm the existence of a development gap between the
eco-efficiency level of advanced and under-developed economic
regions during the study period. Conversely, if β > 0 and is
significant, there is no conditional β convergence.

2.2.3 Spatial Autocorrelation Analysis Method
With the development of regional economics, people realized that
urban development in different regions was not independent, and
there were key linkages among cities. Spatial effect theory
addresses these patterns and the Moran index can be used to
measure spatial correlation. The formula is as follows:

Moran′s I � ∑n
i�1∑n

j�1Wij(xi − �x)(xj − �x)
S2∑n

i�1∑n
j�1Wij

(6)

where S2 � 1
n∑n

i�1(xi − �x)2 represents the sample variance, �x �
1
n∑n

i�1xi is the sample mean, xi is the ecological efficiency of the ith
prefecture-level city, and n is the total number of prefecture-level
cities. In this study, n = 100,Wij is the spatial weight matrix, and∑n

i�1∑n
j�1Wij is the sum of all the spatial weight elements (Xiong

et al., 2019).
To systematically investigate the spatial autocorrelation of

ecological efficiency in the Yellow River Basin, the following
four spatial weight matrices are constructed. The first is the
common geographical distance weight matrix (W1), whose
element wij represents the reciprocal of the nearest highway
mileage of city i and city j. To reflect the correlation between
regional economies, the geographic adjacent term is expanded to
economic terms, and the economic distance weight matrix (W2),
geographic-economic weight matrix (W3), and geographic-
economic-nested weight matrix (W4) is constructed. The
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element wij of W2 is expressed by the reciprocal of the absolute
difference between the annual mean of per capita GDP of region
i and region j. The element of W3 is the product of the reciprocal
of the nearest highway mileage of the provincial capitals in
region i and region j and the reciprocal of the absolute difference
between the annual mean of per capita GDP of region i and that
of region j. W4 = φW1 + (1-φ) W2, and φ is between 0 and 1,
indicating the proportion of the geographical distance weight
matrix. To simplify the analysis, the value of φ in this paper
is 0.5.

The global Moran index examines the spatial agglomeration of
the whole region. To observe the spatial agglomeration around a
particular region, local Moran’s I can be used, and the specific
form is shown in Formula (7) (Tepanosyan et al., 2019):

Moran′Ii � (xi − �x)
S2

∑n
j�1
Wij(xj − �x) (7)

2.2.4 Spatial Econometric Model
The spatial econometric model is used to analyze the spatial
substantial correlation and spatial disturbance correlation of
research objects in a given space (Anselin, 1988; LeSage and
Pace, 2009). Spatial substantive correlation refers to the value of a
specific attribute of a research object in space that is affected by its
neighboring objects; that is, two attribute values appear to be
more similar than random. Spatial disturbance correlation means
that the value of an attribute is affected by random disturbance
terms in space but has little influence from explanatory variables.
Spatial econometric models include the following three forms.

2.2.4.1 Spatial Lag Model
The spatial lag model (SLM) describes the influence of the whole
system in space by its adjacent regional variables and tests
whether an independent variable has a diffusion or spillover
effect. The spatial lag model is also called the spatial
autoregression model, and is expressed as:

Y � ρWY +Xβ + ε
ε ~ N(0, σ2In) (8)

where Y is the explained variable, i.e., the ecological efficiency
value of each prefecture-level city, X is the explanatory variable,
W is the spatial weight matrix, WY is the spatial lag term of the
explained variable, ρ is the spatial autoregression coefficient, β is
the regression coefficient of the explanatory variable, and ε is the
random error term that follows a normal distribution.

2.2.4.2 Spatial Error Model
The spatial error model (SEM) differs from the spatial lag model
in that it assumes that the dependence in the spatial region is
affected by the random perturbation error term. The expression
of its model is:

Y � Xβ + μ
μ � λWμ + ε
ε ~ N(0, σ2In) (9)

In Eq. 9, λ is the spatial error coefficient and represents the
degree to which the dependent variable of a prefecture-level city,
namely the level of ecological efficiency, is affected by the
disturbance term of the dependent variable of its surrounding
city, μ is the spatial correlation vector which has disturbance
influence on the explained variable but not on the explanatory
variable, and ε is a random error term that follows a normal
distribution.

2.2.4.3 Spatial Dubin Model
The spatial Dubin model (SDM) integrates the characteristics of
the spatial lag model and spatial error model and can explain the
influence of independent variables and dependent variables of
neighboring cities on the level of urban ecological efficiency. Its
expression is:

Y � ρWY +Xβ +WXδ + ε
ε ~ N(0, σ2In) (10)

where WXδ is the influence of the explanatory variable in the
adjacent area on the explained variable in the local area, and δ is
the coefficient vector of the cross multiplier between the
explanatory variable of adjacent regions and the geographical
distance space weight matrix. When δ = 0, the spatial Dubin
model will approach the spatial lag model. When ρ = 0, the spatial
Dubin model will approach the spatial error model.

2.3 Index Selection and Data Description
2.3.1 Evaluation Index of Ecological Efficiency
The construction of the eco-efficiency evaluation index system
should be analyzed according to the concept and theoretical
connotation of eco-efficiency. The core idea of ecological
efficiency is to exchange the maximum economic benefits with
the minimum resource input and environmental pollution, which
meets the basic requirements of the DEA model on input and
output. We draw on previous research to adopt the model of
multiple inputs and yield per unit area and construct the
ecological efficiency evaluation index system of Yellow River
Basin from three aspects: resources, economy, and
environment (see Table 2 for details).

2.3.1.1 Input Index
We selected the input index from three aspects: labor, economy,
and resources. Labor input was measured by the number of
employees in urban units at the end of the period. The fixed
capital stock was estimated using the perpetual inventorymethod.
Resource input included water resource input, land resource
input, and energy input. Water resources input was measured
by the total amount of water used in prefecture-level cities. Land
resource input was measured by the urban construction land area
of each prefecture-level city. Energy input was measured by the
total energy consumption of each prefecture-level city. Because
the total energy consumption of most prefecture-level cities
cannot be obtained, we estimated all primary energy
consumption of prefecture-level cities with a bottom-up
approach, using carbon emissions, by collating relevant
statistical yearbooks and county-level data published in China
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Emission Accounts and Datasets (CEADs). We then convert the
energy use into standard coal use.

2.3.1.2 Expected Output Indicator
Expected output refers to the output that people expect to obtain in
actual economic activities. Here, we only consider the economic
output and use the GDP of each city as its measure. To eliminate the
impact caused by price changes, the GDP of all prefecture-level cities
was converted into real GDP based on the 2005 GDP index.

2.3.1.3 Undesired Output Index
Production activities include not only expected output
represented by economic growth but also unexpected output
represented by environmental externalities. Common
undesired output includes three industrial “waste” emissions:
sulfur dioxide, chemical oxygen demand, and carbon dioxide
emissions. Due to data availability limitations, we chose industrial
wastewater discharge to represent the impact of wastewater on
the environment, and industrial smoke, dust discharge, and
industrial sulfur dioxide discharge to infer the impact of waste
gas pollution on the environment.

2.3.2 Selection of Influencing Factors
Based on existing literature and our research, ecological efficiency
in the Yellow River Basin was explored from five perspectives:
economic, demographic, technical, resource, and environmental
factors. The selection of influencing factors and measurement
methods of ecological efficiency in the Yellow River Basin was as
follows. 1) Explained variable: ecological efficiency (EE),
expressed by the ecological efficiency value calculated by the
super efficiency SBM model considering unexpected output. 2)
Explanatory variables: economic development level (lnPGDP)
expressed as the logarithm of per capita regional GDP at constant
prices; opening to the outside world (lnO) measured by the
amount of foreign capital used in the current year; industrial
structure (IS) measured by the proportion of secondary industries
in regional GDP; financial development (lnF) measured by the
balance of deposits and loans of financial institutions at the end of
the year; urbanization rate (UR) measured by the proportion of
the urban resident population in the total population at the end of
the year; technological innovation (lnTP), expressed in science
and technology expenditures; the energy consumption structure

(ES) is expressed by the proportion of coal consumption of the
total energy consumption; and environmental regulation (ER) is
expressed by constructing a comprehensive index. The
descriptive statistics of each influencing factor are shown in
Table 3.

2.3.3 Data Sources
The data used in this study are from the China Urban Statistical
Yearbook, China Statistical Yearbook, and CEADs (2017)
database from 2006 to 2019. Some missing data are adjusted
and supplemented according to the Municipal Statistical Bulletin
and the National Bureau of Statistics of China (2019).
Interpolation and trend extrapolation methods were adopted
to process individual data that could not be found. We used
MaxDEA software to calculate the overall ecological efficiency of
the Yellow River Basin and the upper, middle, and lower reaches
from 2005 to 2018.

3 RESULTS

3.1 Spatial Characteristics of Ecological
Efficiency
3.1.1 Analysis of the Calculation Results of Ecological
Efficiency
The ecological efficiency of 62 cities was 0.65–0.9 and shows a
fluctuating upward trend from 2006 to 2019 (see Figure 1).

TABLE 2 | Evaluation index system of ecological efficiency in Yellow River Basin.

Index type Index name Index description Unit

Input index Labor input Number of people employed in urban units 10 thousand people
Economic input Fixed capital stock 100 million Yuan
Resource input Total water consumption 10 thousand tons

Urban construction land area Square kilometers
Total energy consumption 10 thousand tons of standard coal

Expected output index Economic output Regional GDP 100 million Yuan
Undesired output index Environmental pollution Industrial sulfur dioxide emission Tons

Industrial wastewater discharge 10 thousand tons
Industrial smoke and dust emission Tons

TABLE 3 | Descriptive statistics of factors influencing ecological efficiency in the
Yellow River Basin.

Variable Number of
samples

Mean Std. Dev Min Max

EE 868 0.801 0.373 0.142 2.964
lnPGDP 868 10.304 0.748 7.782 12.492
lnO 868 9.193 1.955 2.639 13.708
IS 868 52.252 10.876 9.000 82.280
lnF 868 16.742 1.097 13.457 19.879
UR 868 32.443 21.894 3.825 100.000
lnTP 868 9.358 1.440 4.190 13.086
ES 868 69.285 54.009 19.131 560.925
ER 868 75.498 24.499 0.240 100.000
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Looking at different watersheds, the ecological efficiency is highest
for cities in the lower reaches, medium in the upper reaches, and
lowest in the middle reaches. The downstream area has the highest
ecological efficiency because this area has a solid economic
foundation, strong scientific and technological innovation
ability, a more robust industrial structure, and relatively minor
damage to the environment from economic development. The
ecological efficiency of the upstream region is in the mid-range
because the economic foundation of the upstream region is
relatively weak, the technical level is relatively undeveloped, and
the proportion of the secondary industry is relatively high. The
middle reaches have the lowest ecological efficiency because they
are rich in coal, iron, and other natural resources. They not only
form a resource-intensive industrial structure but also become the

primary choice for the transfer of high energy consumption and
high pollution industries in other regions.

The hierarchical spatial distribution map of urban ecological
efficiency in the Yellow River Basin at four times (2005, 2009,
2014, and 2018) shows a large difference in the hierarchical
spatial distribution of ecological efficiency among cities (see
Figure 2). However, after 2009, the hierarchical difference of
urban ecological efficiency gradually narrowed, and the trend
showed significant characteristics of watershed spatial
dependence. Specifically, in 2005, the level of ecological
efficiency in the upper, middle, and lower reaches of the
Basin was generally low; 39 cities were at a low or lower
level, and no significant watershed spatial characteristics
were identified. In 2009 and 2014, the overall ecological
efficiency level significantly improved. There were 35 and 32
cities at low or lower levels, respectively, and a large range of
high-value areas had formed in upstream and downstream
areas. By 2018, 11 cities were at a low level and five cities were
at a high level. But the ecological efficiency level of some cities
decreased compared with 2014, including Dongying, Weinan,
Tongchuan, Taiyuan, and Baotou.

3.1.2 Convergence Analysis of Ecological Efficiency
3.1.2.1 σ Convergence Analysis
According to Eq. 2, the σ values of ecological efficiency
convergence in the Yellow River Basin for the whole system
and the upper, middle, and lower reaches 2005–2018 were
calculated separately, and the trend of σ convergence was
quantified (see Figure 3).

The σ value of the ecological efficiency of the Yellow River
Basin fluctuates with time (see Figure 3). The overall ecological

FIGURE 1 | Mean variation of eco-efficiency in the Yellow River Basin
from 2005 to 2018.

FIGURE 2 | Spatial distribution trends of ecological efficiency in the Yellow River Basin from 2005 to 2018. (A) 2005, (B) 2009, (C) 2014, and (D) 2018.
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efficiency of the Yellow River Basin shows a trend of overall
divergence and local convergence, so there is no σ convergence,
which also indicates that the ecological efficiency difference
between cities in the Yellow River Basin still exists. In the
upstream region, the σ convergence index increases first and
then decreases, and in the downstream region, it is the
opposite.

These findings show that there are still deviations in the
levels of sustainable economic development among cities in the
Yellow River Basin. The green transformation is not
extensive enough, and the relationship between
economic development and environmental protection is not
advanced. The gap in ecological efficiency did not disappear
during the sample period, and the differences among cities
still exist.

3.1.2.2 Absolute β Convergence Analysis
According to Eqs 3, 4, the convergence rate λ was calculated, and
the absolute β convergence test was carried out for the ecological
efficiency of the system as a whole and its upper, middle, and
lower reaches. In the absolute β convergence test, the Hausman
test is first used to determine the choice between the fixed effects
model and the random-effects model. The absolute β convergence
of the overall ecological efficiency passes the 1% Hausman test.

Therefore, we selected the fixed-effect model, for which the
results are shown in Table 4.

There is absolute β convergence in the overall ecological
efficiency of the whole Yellow River Basin and the upstream,
midstream, and downstream reaches, which shows that the
growth level of ecological efficiency is negatively correlated
with its initial level. Prefecture-level cities with low ecological
efficiency have a “catching-up” trend on prefecture-level cities
with initially high ecological efficiency, thus showing a statistical
convergence pattern. The convergence rate of ecological
efficiency changes from slow to fast as we move from the
middle reaches to both upstream and downstream, which
means that cities in each region approach the same steady-
state efficiency value with different convergence rates. Among
them, the downstream area has a faster growth rate, so there is an
evident absolute β convergence, and the gap between prefecture-
level cities is narrowing.

In the upper reaches of the Yellow River Basin, the industrial
structure is relatively single and the economic development is
relatively slow, which limits the improvements in ecological
efficiency. In addition, most of the cities with low ecological
efficiency in the middle reach of the Yellow River Basin focuses
on the development of heavy industries that have severe
environmental pollution and complex industrial
transformations, so the speed of absolute convergence is
relatively low. Although there are regional differences
between the upper and lower reaches of the Yellow River
Basin, their general patterns seem to change together. This is
mainly because after China put forward the regional
coordinated development strategy in 2005, the connection
between provinces and cities has been strengthened, and the
complementarity has been dramatically improved. The
increasingly close ties between provinces and cities have
played an important role in promoting the joint development
of the Yellow River Basin. Although the differences between
cities still exist, with the further promotion of ecological
protection and high-quality development strategies, the gap
between cities should further diminish. This is the reason for

FIGURE 3 | Trends of ecological efficiency σ in the Yellow River Basin from 2005 to 2018.

TABLE 4 | Absolute β test of ecological efficiency of the Yellow River Basin.

Coefficient Overall Upstream Midstream Downstream

α −0.003 −0.013 −0.017* −0.012**
(-0.72) (-1.43) (-1.67) (−2.03)

β −0.101*** −0.099*** −0.084*** −0.136***
(−18.40) (−11.20) (−7.85) (−9.56)

λ 0.106 0.104 0.088 0.146
Hausman 44.26 8.47 11.27 23.45
P value 0.000 0.000 0.000 0.000
Conclusion Fixed effect Fixed effect Fixed effect Fixed effect

Note: the values in parentheses are t values; ***, **, * indicate significance at the level of
1%, 5%, and 10%, respectively.
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absolute β convergence in the upper and lower reaches of the
Yellow River Basin.

3.1.2.3 Conditional β Convergence Analysis
The conditional β convergence test results show that the
regression coefficient (β) of overall ecological efficiency of the
Yellow River Basin and the upper, middle, and lower reaches
throughout 2005–2018 is less than 0 and significant at 1% (see
Table 5). This means that there is conditional β convergence for
the overall ecological efficiency of the entire Yellow River Basin,
as well as the upper, middle, and lower reaches. This suggests that
the ecological efficiency of each prefecture-level city has a steady-
state level and will converge to this steady-state level over time.
The middle reach area has the highest convergence rate (0.369),
followed by the upper reaches (0.364), and the lower reaches
(0.267).

The convergence rate in the middle reaches of the Yellow River
Basin is the fastest, which may indicate that these cities have
improved pollution levels, promoted economic development, or
made progress in the coordination between economic
development and environmental protection. Due to their
strong economies, many cities in the lower reaches of the
Yellow River Basin are relatively wealthy and have a strong
economic foundation to support environmental measures.

However, they lack technical support to fully transform and
develop traditional industries for a green economy and have
entered a stage of stable development. Therefore, the convergence
speed is the slowest in this area.

3.2 Analysis of Factors Influencing
Ecological Efficiency
3.2.1 Spatial Autocorrelation Test
According to the global autocorrelation test results, for the four
weight matrices, Moran’s I index is greater than 0 and significant at
the 1% level, indicating that the distribution of ecological efficiency
in the Yellow River Basin has positive spatial correlation
characteristics. Taking W3 as an example, the local
autocorrelation scatter plots of ecological efficiency in four
representative years are given in Figures 4–7. The horizontal axis
represents the standardized eco-efficiency value, and the vertical axis
represents the spatial lag value of eco-efficiency value. It can be seen
thatmost cities are located in the first and third quadrants of positive
spatial correlation, which further indicates that the ecological
efficiency of the Yellow River Basin has a significant positive
spatial spillover effect.

3.2.2 Analysis of Regression Results
We selected the geo-economic weight matrix W3 and the geo-
economic nested weight matrix W4 for the Lagrange
multiplier (LM) test on the data. Under W3, the statistical
values of LM-lag, LM-error, and robust LM-error were all
significant at the 1% level, but the robust LM-lag did not
pass the significance test. Under W4, LM-lag, robust LM-lag,
LM-error, and robust LM-error all had significant values at the
1% level. Further, whether the SDM model can be simplified to
the SAR or SEM models can be seen in the LR test. The results
support the rejection of the null hypothesis. Therefore, the SDM
model results were selected for further analysis in this study. The
results of the Hausman test show that under both matrices, p
values are less than the critical significance level of 1%, so the

TABLE 5 | Conditional β test for ecological efficiency of the Yellow River Basin.

Coefficient Overall Upstream Midstream Downstream

α −0.116*** −0.023 −0.021 −0.032***
(−10.42) (−1.06) (−1.38) (−2.60)

β −0.410*** −0.305*** −0.309*** −0.234***
(−15.51) (−3.42) (−4.53) (−7.47)

λ 0.528 0.364 0.369 0.267
Hausman 36.24 30.65 70.67 50.02
P value 0.000 0.000 0.000 0.000

Note: the values in parentheses are t values; *** indicate significance at the level of 1%.

FIGURE 4 | Moran scatter plot of eco-efficiency in 2005.
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null hypothesis is rejected, and the fixed effects model is chosen.
The results of the time-fixed effect test also supported the
rejection of the null hypothesis, so the time-fixed effect
model was selected.

Some key results were found from the regressions, as shown in
Table 6, and summarized in the following points.

(1) The coefficients of lnPGDP are all positive and have a
significant positive correlation with the
ecological efficiency of the Yellow River Basin. This
indicates that the economic development of the Yellow
River Basin is conducive to the improvement of
ecological efficiency. Developed provinces and cities can
attract funds, talents, and technology, and form centers for

economic development and subsequent ecological
protection.

(2) The coefficients on lnO are all positive and significant,
indicating that linkages to the outside world are conducive
to the improvement of ecological efficiency. While vigorously
attracting foreign investment, the region has made rational
use of it, introducing advanced technologies, equipment, and
management concepts. This has reduced resource
consumption and pollution, thus improving the ecological
efficiency of the Yellow River Basin.

(3) The coefficients of IS are negative and significant in the
overall watershed and upper and lower reaches, indicating
that the existing industrial structure in the Yellow River Basin
is not conducive to dramatically improved ecological

FIGURE 5 | Moran scatter plot of eco-efficiency in 2009.

FIGURE 6 | Moran scatter plot of eco-efficiency in 2014.
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efficiency. Optimizing industrial structures is often
considered to have a significant role in promoting eco-
efficiency (Yue et al., 2018). The coefficients in the
middle reaches are significantly positive, which is
inconsistent with previous studies. The reason may be
that most of the cities in the middle reaches are
industrialized, and the contribution of industrial output
to economic growth is valued greater than the cost of
harming resources and the environment.

(4) The coefficients of lnF in the overall system and middle and
lower reaches are positive, indicating that the improvement
of financial development level is conducive to the
improvement of ecological efficiency in these areas. For
example, high-tech industries have more advanced
technologies in resource utilization and pollution control
and promote enterprises to develop green modes of
production. However, the essence of capitalism is profit-
seeking. More financial resources may be allocated to other
technologies than to resource and environmental protection.
Production-augmenting technologies can aggravate
environmental pollution and reduce ecological efficiency,
which may be the reason for the negative coefficient of
upstream reaches.

(5) The UR coefficients are all negative and significant,
indicating a negative correlation between urbanization and
ecological efficiency. Urbanization requires substantial
resource investment and can damage the environment,
which inhibits the improvement of regional ecological
efficiency.

(6) The lnTP coefficients are all positive and significant,
indicating that technological innovation in the Yellow
River Basin is conducive to improving ecological
efficiency. The increase of science and technology
expenditures promotes the research and development of
new technologies. With the improvement of production
technology, the utilization efficiency of resources also

improves, and pollution is reduced, thus promoting the
improvement in ecological efficiency.

(7) The ES coefficients are all significant and negative,
indicating that the increase of the coal consumption
ratio in the Yellow River Basin reduces ecological
efficiency. Taking coal as the primary energy source for
economic development, air pollution, and other negative
externalities will remain.

(8) The coefficient of ER only passes the significance test in the
upper reaches of the Basin, indicating strengthening
environmental governance alone cannot effectively
improve ecological efficiency.

3.2.3 Analysis of Spatial Spillover of Ecological
Efficiency
Based on the partial differential method proposed by LeSage and
Pace (2009), the spatial effect decomposition results of various
factors on ecological efficiency were obtained. The spatial effect
can be decomposed into direct and indirect effects. The direct
effects arise from the change of regional economic variables on
local ecological efficiency when other conditions remain
unchanged. Indirect effects, namely the spatial spillover effect,
are the influence of the changes of economic variables in
neighboring regions on the change of regional ecological
efficiency when other conditions remain unchanged. The sum
of the direct and indirect effects is the total effect. Table 7 shows
the specific results of spatial effect decomposition of explanatory
variables using the W3 matrix.

According to the effect decomposition results shown in
Table 7, a series of findings are apparent.

(1) The direct effect and indirect effect coefficients of lnPGDP on
ecological efficiency are significant and positive. The indirect
effect coefficient is greater than the direct effect coefficient,
which shows that the impact of the economic development
level of cities on the ecological efficiency of that city is less

FIGURE 7 | Moran scatter plot of eco-efficiency in 2018.
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than that of the surrounding cities. The economic
development level has an obvious spatial spillover effect.

(2) The direct effect of lnO on ecological efficiency is significant
and positive. However, the indirect effect coefficient is not
significant, which shows that the impact of the opening of
cities on the ecological efficiency of those cities is significantly
greater than that of the surrounding cities, and there is no
spatial spillover effect of opening to other areas.

(3) The indirect effects of IS on ecological efficiency are
significant and negative for the overall system, and
upstream and downstream reaches, indicating that the
spatial spillover effect of industrial structure harms
ecological efficiency. However, the coefficient in the
middle reaches is significantly positive, and there is a
spillover effect.

(4) The lnF indirect effect coefficients of the overall system and
upstream and downstream reaches are significant and

positive, indicating that the level of financial development
can drive the ecological efficiency of adjacent regions.
However, the indirect effect coefficient of the midstream is
significant and negative, indicating that local financial
development will reduce the ecological efficiency of
adjacent cities.

(5) The direct and indirect effect coefficients of UR are
significant and negative, indicating that the improvement
of urbanization rate at this stage not only has some inhibitory
effect on the improvement of ecological efficiency in the
region, but it will also affect the ecological efficiency of
surrounding areas, which may lead to the intensification
of resource competition among regions. This is not
conducive to the improvement of ecological efficiency in
adjacent areas.

(6) The indirect effect coefficients of lnTP are significant and
positive in the overall system and midstream and

TABLE 6 | Spatial econometric model regression results.

Overall Upstream Midstream Downstream

W3 W4 W3 W4 W3 W4 W3 W4

lnPGDP 0.3276*** 0.3349*** 0.1461** 0.0732** 0.4111*** 0.4082*** 0.5579*** 0.5630***
(9.49) (9.75) (2.92) (2.44) (8.55) (8.88) (7.17) (7.61)

lnO 0.0007* 0.0004* 0.0322** 0.0207* 0.0073* 0.0090* 0.1019*** 0.0890***
(2.08) (2.04) (1.99) (1.28) (1.54) (1.07) (4.55) (3.94)

IS −0.0149*** −0.0147*** −0.0047* −0.0014* 0.0018* 0.0002* −0.0132*** −0.0122***
(−10.13) (−10.17) (−1.07) (−1.29) (0.84) (1.10) (−3.63) (−3.31)

lnF 0.2146*** 0.2287*** −0.1766** −0.0766* 0.1431*** 0.1561*** 0.0651* 0.0482*
(8.59) (9.57) (−2.52) (−1.03) (3.56) (3.94) (1.21) (0.90)

UR −0.0032*** −0.0035*** −0.0087** −0.0122** −0.0003* −0.0010* −0.0115*** −0.0108***
(−4.56) (−5.04) (−2.54) (−3.11) (−1.47) (−1.45) (−6.79) (−6.71)

lnTP 0.0961*** 0.1088*** 0.1064*** 0.1009** 0.0810** 0.0596** 0.1445*** 0.1183***
(4.20) (4.77) (2.85) (2.66) (2.16) (1.56) (3.43) (2.70)

ES −0.0013*** −0.0012*** −0.0009* −0.0009* −0.0011*** −0.0010*** −0.0001*** −0.0001***
(−5.85) (−5.38) (−0.57) (−0.57) (−5.02) (−4.48) (−3.12) (−3.09)

ER 0.0024 0.0027 0.0094* 0.0081* −0.0006 −0.0001 0.0031 0.0037
(0.64) (0.44) (1.13) (1.11) (−0.78) (−0.19) (0.81) (0.61)

W*lnPGDP 0.1540* 0.0996** −0.3159* -0.4468* −0.5174*** −0.7220*** −0.7574*** −0.7682***
(1.51) (2.01) (−1.94) (−1.75) (−3.61) (−4.77) (−4.78) (−4.48)

W*lnO 0.0139 0.0075 −0.0479 −0.0125 0.0135 0.0265 −0.0001 −0.0475
(0.70) (0.36) (−1.39) (−0.27) (0.39) (0.84) (0.00) (−1.05)

W*IS −0.0137*** −0.0118*** 0.0321*** 0.0492** −0.0034 −0.0086* −0.0243*** −0.0143*
(−4.10) (−3.35) (2.95) (2.46) (−0.56) (−1.45) (−3.02) (−1.75)

W*lnF 0.0792* 0.0414* 0.0227* 0.3457* −0.1321* −0.1321* 0.3226** −0.2606**
(1.72) (1.61) (1.14) (1.63) (−1.13) (−1.12) (2.53) (−1.99)

W*UR −0.0037* −0.0054** −0.0083* −0.0297** −0.0025* −0.0035* −0.0126*** −0.0149***
(−1.93) (−2.88) (−1.30) (−1.99) (−1.06) (−1.28) (−4.22) (−4.59)

W*lnTP 0.0475 0.0367 0.0772 0.0060 −0.2058** −0.2523*** 0.2347*** 0.2359***
(1.01) (0.75) (0.18) (0.05) (−2.19) (−2.67) (3.05) (2.77)

W*ES −0.0003*** −0.0007* 0.0048* 0.0031** −0.0010* −0.0023*** 0.0037** 0.0010*
(−4.77) (−1.54) (1.93) (2.75) (−1.62) (−4.02) (2.44) (1.65)

W*ER 0.0028** 0.0001* −0.0045* −0.0048** 0.0014** 0.0016* 0.0080*** 0.0072***
(2.58) (1.11) (−1.56) (−2.12) (2.83) (1.05) (3.69) (2.83)

rho 0.2197*** 0.2010*** 0.2359** 0.4726*** 0.0730*** 0.2366** 0.0297*** 0.0488***
(5.82) (3.45) (2.14) (3.20) (3.70) (2.47) (3.45) (3.73)

sigma2_e 0.1017*** 0.1008*** 0.0544*** 0.0548*** 0.0717*** 0.0680*** 0.0695*** 0.0717***
(20.73) (20.74) (9.11) (8.95) (12.95) (12.85) (13.49) (13.48)

Log−L 243.6618 239.3051 204.6698 202.4208 234.3189 226.9601 231.1837 236.8941
R-sq 0.3873 0.4047 0.8493 0.8454 0.5721 0.6083 0.5854 0.5313

Note: the values in parentheses are z values; ***, **, * respectively, indicate significance at the level of 1%, 5%, and 10%.
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downstream sections, indicating that scientific and
technological strength not only improves the level of
ecological efficiency in the region but also has a
significant positive spillover effect. The coefficient in the
upstream is not significant, indicating that the spillover
effect is not strong.

(7) The coefficients of ES on the ecological efficiency of the
Yellow River Basin are not significant, and spillover effects
are not obvious.

(8) The indirect effect coefficients of ER in the overall system
and upstream, middle, and downstream areas are not
significant, indicating that the spillover effect is not
strong.

4 DISCUSSION

Based on the literature on ecological efficiency evaluation,
convergence, and influencing factors, we use the super
efficiency SBM model to calculate the ecological efficiency
of 62 prefecture-level cities in the Yellow River Basin of
China from 2005 to 2018. We analyze the spatial
distribution evolution trends and convergence of the
ecological efficiency of the overall Yellow River Basin and
separately for the upper, middle, and lower reaches. Then,
the spatial Dubin model was used to study the influencing
factors of ecological efficiency and its spatial spillover effects.
The conclusions of this study are as follows.

(1) The ecological efficiency of 62 cities in the Yellow River Basin
has fluctuated but has improved in the past 14 years. The
ecological efficiency of downstream cities is the highest and
the midstream is the lowest.

(2) The overall ecological efficiency of the Yellow River Basin
shows a trend of overall divergence and local convergence, so
σ convergence does not exist. There is no obvious σ
convergence in the upper, middle, and lower reaches, but

there are stages of σ convergence. The absolute β convergence
and conditional β convergence are found for the ecological
efficiency in the overall Basin, upper, middle, and lower
reaches.

(3) Economic development level, opening to the outside
world, financial development, and technological
innovation have significant promoting effects on
ecological efficiency. The industrial structure,
urbanization rate, and energy consumption structure
harm ecological efficiency. The effect of environmental
regulation on the ecological efficiency of the Yellow River
Basin is not obvious.

(4) The level of economic development, financial development,
and technological innovation have noticeable spatial
spillover effects. The indirect effect coefficient of lnO is
small and not significant, indicating that there is no obvious
spatial spillover effect. Industrial structure and urbanization
rate have significant negative spillover effects. The spillover
effect of energy consumption structure and environmental
regulation on ecological efficiency is negative and not
strong.

Based on the findings, we put forward the following
suggestions. First, allow a core city to promote the overall
coordinated development of a region and thus minimize great
regional differences in ecological efficiency. Second, vigorously
promote technological innovation and improvements in
pollution management. This will involve reducing the
consumption of energy resources at the source. In the
production process, the government can encourage
enterprises to develop anti-pollution technologies by giving
them tax incentives and subsidies. Green consumption and
production models need to be developed, which will help
enhance technological innovation, optimize resource
allocation, and achieve energy conservation and emission
reduction. The government should increase the

TABLE 7 | Decomposition results of the spatial spillover effect of the spatial Dubin model.

Variable Overall Upstream Midstream Downstream

Direct effect Indirect effect Direct effect Indirect effect Direct effect Indirect effect Direct effect Indirect effect

lnPGDP 0.3378*** 0.1872** 0.3731** 0.2880* 0.6223*** 0.6154*** 0.7534*** 0.7527***
(9.51) (2.18) (2.11) (1.00) (8.12) (3.42) (7.00) (4.86)

lnO 0.0008** 0.0120 0.0367** −0.0500 0.0083** 0.0166 0.1011*** −0.0043
(3.10) (0.69) (2.36) (−0.69) (2.61) (0.42) (4.67) (−0.10)

IS −0.0155*** −0.0143*** −0.0068* −0.0291*** 0.0017** 0.0045* −0.0127*** −0.0242***
(−10.56) (−5.05) (−1.49) (−3.03) (2.81) (1.67) (−3.53) (−2.94)

lnF 0.2197*** 0.1090* −0.1799*** 0.0573* 0.1392*** −0.1369* 0.0701* 0.3406**
(8.97) (1.94) (−2.72) (1.43) (3.41) (−1.04) (1.27) (2.54)

UR −0.0030*** −0.0027* −0.0084*** −0.0064* −0.0003* −0.0026* −0.0115*** −0.0123***
(−4.72) (−1.72) (−2.63) (−1.14) (−1.42) (−0.96) (−7.11) (−4.07)

lnTP 0.0996*** 0.0602* 0.1152*** 0.0866 0.0784** 0.2188** 0.1456*** 0.2483***
(4.37) (1.46) (3.03) (0.46) (2.13) (2.15) (3.46) (3.04)

ES −0.0013 −0.0005 0.0012 0.0048 0.0011 −0.0009 0.0001 0.0037
(−0.80) (−1.49) (0.73) (0.14) (0.88) (−0.39) (0.05) (0.32)

ER 0.0025 −0.0028 0.0093 −0.0019 −0.0005 0.0013 0.0030 0.0080
(0.25) (−0.03) (0.95) (−0.86) (−0.77) (0.71) (0.93) (0.51)

Note: the values in parentheses are z values; ***, **, * respectively, indicate significance at the level of 1%, 5%, and 10%.
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environmental threshold for industrial transfer and avoid
“race-to-bottom competition” between regions (Dong et al.,
2020). Third, stakeholders need to upgrade the industrial
structure and develop strategic emerging industries. Cities
should make more pronounced efforts to promote industrial
informatization and high-tech development, and reduce the
most damaging activities in high pollution sectors.
Finally, spatial spillovers need to be more fully utilized to
strengthen inter-regional relationships. Governments at all
levels in the Yellow River Basin should deepen cooperation,
transcend restrictions of administrative divisions, establish a
system of provincial consultation, strengthen the
coordination of relevant policies and planning projects, and
work together to promote the implementation of major
projects. Further, the government should continue to
promote the construction of transportation and information
infrastructure to achieve interconnections among regions
(Xing et al., 2018).

There are many research approaches to study ecological
efficiency, so it is necessary to further explore the various
methodological options. Because it is difficult to obtain
energy consumption data of research samples, the research
results of ecological efficiency and influencing factors are
somewhat limited—these constraints need to be explored and
alternatives provided. The Yellow River basin flows through a
large area, and the economic development levels and ecological
situations of each province are different. Therefore, it is
necessary to further refine policy mechanisms and to
construct specific ecological efficiency improvement policies
in the Yellow River Basin and other regions.
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