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Heavy metal contamination in lakes caused by the rapid industrialization and urbanization
is a serious problem. In this study, 12 heavy metals were systematically surveyed in aquatic
environment and organisms of Dianchi Lake. Results showed that heavy metals pollutions
in surface water exhibited a decreasing order of Ba > Fe > Zn >Mn >As >Ni >Cr >Cu >Pb
> Cd > Co, equipped a consistency in spatial distribution, seriously contaminating the
northern and southern parts. The average concentration of sedimentary heavy metals
appeared in an order of Fe >Mn > Zn > Ba > Cu > Pb > Cr > As > Ni > Co > Cd > Ag. The
main existing fraction (51.9–75.0%) of Cu, Pb, Cr, As, Fe, Co, Ni, Ag, and Ba in sediments
was residual fraction, whereas the exchangeable fraction (40.9–62.0%) was the dominant
component for Cd, Zn, and Mn. Among the selected aquatic organisms, Cu, Pb, Zn, and
Ag possessed a strong bioaccumulation effect, followed by Mn, Fe, Co, and Ni. Ecological
risk assessment indicated that Cu, Cr, and Zn were the dominant heavy metal
contaminants in surface water; Cd presented the disastrous risk and accounted for
the considerable proportion of ecological risk in sediments. Human health risk evaluation
showed that the selected aquatic products of Dianchi Lake were not absolutely safe, and
As was the major contributor. This study systematically revealed heavy metal distributions
in aquatic environments, which was conductive to environmental safety and human health.
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1 INTRODUCTION

Heavy metal pollution in aquatic ecosystem has become a serious environmental problem in the
world because of its potential toxicity and accumulation in organisms (Peng et al., 2009; Tang et al.,
2010; Fu et al., 2013). These contaminants in aquatic environment not only generate direct toxic
effects on aquatic organisms, but also bring potential threats to human health through the domestic
water and food chain (Järup, 2003; Liu et al., 2018). In addition, heavy metals tend to accumulate in
sediments and become the internal source of water pollution (Bradl, 2004; Zhang et al., 2007). After
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resuspension, heavy metals in sediments can be released into
surface water again, thereby causing secondary pollution
(Kelderman and Osman, 2007; Baran and Tarnawski, 2015).
Therefore, systematically studying the distribution of heavy
metals in surface water, sediments, and organisms is necessary
for contamination control and environmental management.
Moreover, identifying the pollution source will provide an
important reference for ecosystem restoration and remediation
(Wang J.-H. et al., 2019).

The monitoring, risk assessment, and prevention of heavy
metal pollution have been widely concerned for several decades
(Kumar et al., 2019). Long-term heavy metal pollution is regarded
to disrupt the aquatic ecological balance and cause serious
adverse effects on aquatic ecosystem (Jaiswal et al., 2018). In
freshwater ecosystem, numerous natural and anthropogenic
sources contribute to the heavy metal pollution, including
direct atmospheric precipitation, geological process, and
discharge of abundant human activities (Saha and Paul, 2018).
For urban and suburban lakes, these environmental problems
usually become more prominent because of the intensive human
impact when compared with remote lakes (Cheng et al., 2015).
With the rapid development of industrialization and

urbanization in China, suburban and urban lakes have
received considerable pollutants impacted by human activities
and suffered ecological deterioration (Li et al., 2020; Qian et al.,
2020). Previous literature indicated that themajor rivers and lakes
in China had been generally polluted by heavy metals at different
levels, with the sedimentary pollution proportion over 80%
(Wang et al., 2010). Hence, focusing on the pollution level and
bioaccumulation of heavy metals in urban and suburban lakes is
important to compare the contribution of rapid economic
development to heavy metal pollution with remote plain lakes
(Wei and Wen, 2012; Fu et al., 2014). Although heavy metal
investigation and risk assessment in Chinese lakes have been
reported, the comprehensive heavy metal evaluation of surface
water, sediments, and organisms in a typical urban plateau lake is
still limited (Tang et al., 2010; Fu et al., 2013; Cheng et al., 2015).
When a large number of these contaminants are transported into
the aquatic ecosystem, the bioaccumulation of metals and
biomagnification of the food chain may cause a series of
environmental problems, such as ecosystem degradation and
public health risks (Altindag and Yigit, 2005; Xia et al., 2019).
However, few research reports have focused on the
bioaccumulation of heavy metals, their interaction with

FIGURE 1 | Location of Lake Dianchi and sampling sites in the study area: S1–S5 in Caohai of Lake Dianchi, S6–S10 in Northern Waihai, S11–S15 in Central
Waihai, and S16–S19 in Southern Waihai.
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environmental parameters, and the transmission of metals from
edible aquatic organisms to humans (Yi et al., 2011; Fu et al.,
2014).

Dianchi Lake, located in the southwest of China near
Kunming City, is the largest freshwater plateau lake in China
with an altitude of 1886.5 m above sea level (Figure 1). In general,
the lake provides water for agriculture, industry, drinking, and
other activities. However, since the last century, rapid
industrialization and urbanization in the watershed had
contributed a serious eco-environmental problem in and
around the lake (Guo et al., 2017). The lake receives
numerous contaminants from its connected rivers and suffers
from serious anthropogenic pollution, gradually evolving into a
eutrophic lake (Wang B. et al., 2019). Reports indicated that the
eutrophication of Dianchi Lake was closely correlated to human
activities (Cao et al., 2016). In recent years, the heavy metal
evaluation in Dianchi Lake has also been carried out (Li et al.,
2020). However, previous studies have only focused on the
concentrations of heavy metals in sediments, and their
pollution levels in multiple environmental media and source
identifications are lacking, particularly for several trace
elements such as Co, Ag, Ba, and Ni (Kumar et al., 2019; Qian
et al., 2020). These less concerned heavy metals are also closely
related to certain human health diseases (Yi et al., 2011; Li et al.,
2014). Meanwhile, several aquatic species in Dianchi Lake are
generally important food resources, and their human health risks
must be considered. Chinese white prawn, Macrobrachium
nipponense, Hemisalanx prognathus Regan, and Rhinogobius
giurinus are four of the major commercial aquatic products
consumed frequently by local residents. Although several
studies had investigated heavy metals in fish community, only
few of them addressed the transportation of metals in aquatic
environments to the high trophic level and result in potential
health risks through the food chain (Yang et al., 2017; Qian et al.,
2020). Hence, comprehensive investigation of various heavy
metals in Dianchi Lake ecosystem is of great significance for
pollutant control and restoration. Furthermore, human health
and ecological risk assessment of heavy metals in surface water
and sediments, associating with bioaccumulation, will provide
valuable basic information and important management
strategies.

In the present study, distributions, risks, and source
identifications of 12 heavy metals were focused on, including
Cu, Cd, Cr, As, Pb, Zn, Mn, Fe, Co, Ag, Ba, and Ni. In particular,
the species sensitivity distribution (SSD) model was used to
evaluate the risk of heavy metal pollution in surface water; the
geoaccumulation index (Igeo) and potential ecological risk index
(RI) were selected to assess the sedimentary risk, and the
bioaccumulation factor (BAF) was applied to illustrate the
impact of heavy metals on organisms. The main purposes of
this study included four aspects: 1) to systematically investigate
the concentration of heavy metals in surface water, sediments,
and organisms; 2) to identify the pollution source of heavy metals
in Dianchi Lake; 3) to assess the ecological and human health
risks of these contaminants in different media; and 4) to provide
guidance for pollutant management and aquatic production
consumption in Dianchi Lake.

2 MATERIALS AND METHODS

2.1 Study Area and Sample Procedure
The Dianchi Lake (N24°40′-25°02′, E102°02′-102°47′), covering
approximately 298 km2 of water area and 2,920 km2 of watershed
area, is the largest freshwater lake in the Yunnan–Guizhou
Plateau of Southwest China. The lake is separated into two
parts by artificial water conservancy facilities (Figure 1). The
northern part (Caohai) is adjacent to Kunming City, having only
3% of the total lake area and an average depth of 2.5 m. The
southern part (Waihai) accounts for the most part of the lake
area, having an average depth of 4.4 m. The climate of the Dianchi
Lake is characterized by subtropical southwest monsoon, with an
annual mean temperature of 14.4°C and an average precipitation
of 1,000 mm (Wang et al., 2018). The hydraulic retention time of
surface water in the Dianchi Lake is approximately 2.7 years,
which limits the self-purification capacity of the lake (Li et al.,
2020). Since the last century, rapid population and economic
growth in this area have resulted in a serious eco-environmental
problem, such as eutrophication and heavy metal pollution (Ma
and Wang, 2015).

The locations of sampling samples in the lake were presented
in Figure 1 and Supplementary Table S1. All samples were
collected from the Dianchi Lake in July 2014. Organism samples,
including shrimps and fishes, were stochastically obtained
according to the actual situation (Supplementary Table S8).
Specifically, shrimps include C. Prawn (CWP) and M.
Nipponense (MBN), and fish includes h. Prognathus Regan
(HPR) and R. Giurinus (RGG). Mixed water samples from
three depths (~0.5, ~1.5, and ~2.5 m above the bottom) were
collected. Surface sediment samples (0–10 cm) were obtained
using a Peterson dredge. Organism samples were obtained by
a trawl. The above-mentioned collected samples were stored in a
−4°C freezer until laboratory analysis.

2.2 Laboratory Analysis
Twelve heavy metals, including Cu, Cd, Cr, As, Pb, Zn, Mn, Fe,
Co, Ag, Ba, and Ni, were measured in surface water, sediments,
and organism samples. Four different forms of heavy metals in
sediments were extracted, which were classified into residual,
oxidizable, reducible, and exchangeable. The detailed
sedimentary fractionation procedure was presented in
Supplementary Table S2. Before heavy metal analysis,
sediment and organism samples were pretreated according to
previous reports (Fu et al., 2013; Xing et al., 2013). All samples
were treated using microwave digestion and analyzed by
inductively coupled plasma mass spectrometry.

Electrical conductivity (EC), dissolved oxygen (DO), water
temperature (WT), pH, suspended solid (SS), total dissolved solid
(TDS), oxidation–reduction potential (ORP), and chlorophyll a
(Chla) were determined in situ using EXO2 detector (YSI,
United States). Other environmental parameters, including
total nitrogen (TN), nitrate nitrogen (NO3

−-N), nitrite
nitrogen (NO2

−-N), ammonium nitrogen (NH4
+-N), activated

phosphorous (PO4
3−-P), total phosphorus (TP), and chemical

oxygen demand (CODMn), were measured according to the
standard methods in the laboratory (APHA, 1998). The
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moisture content of sediments was measured by drying at 105°C,
and sedimentary organic matter (SOM) was determined by
calcination at 550°C.

2.3 Data Analysis
2.3.1 Multivariate Statistical and Geostatistical
Analysis
Pearson correlation analysis was performed to study the
relationship among heavy metals. Principal component
analysis (PCA) was used to identify the significant clusters and
potential sources of heavy metals. A geostatistical approach called
inverse distance weighting was applied to evaluate the
distribution of heavy metals in unsampled areas and generate
the spatial map. These statistical procedures for heavy metals in
surface water and sediments were similar to our previous works
(Wang et al., 2017a; Liu et al., 2020). All data in this study were
analyzed by SPSS 19.0, Origin 8.0, and ArcGIS 10.4.

2.3.2 Bioaccumulation Factor
The bioaccumulation factor (BAF) has been widely applied to
quantify the bioaccumulation of environmental pollutants in
previous studies (Hao et al., 2019). In this study, the BAF
illustrated the impact of heavy metal concentrations in surface
water on aquatic organisms (Ahmed et al., 2019). In general, BAF
is the radio between heavy metal concentrations in the organisms
and those in their main living environment (Qiu, 2015; Zhang
et al., 2015a). Therefore, BAFs for each freshwater organism
sample and selected heavy metals were calculated with the
following formula Eq. 1:

BAF � Corganism/Cfreshwater (1)
where Corganism is the heavy metal concentration in freshwater
organisms (mg/Kg), and Cfreshwater is the concentration of heavy
metals in a freshwater (μg/L) or sediment (mg/Kg) medium. BAF-
freshwater can be categorized according to the following ranges:
BAF <1 indicates low probability of accumulation; 1 < BAF < 5
indicates moderate, and BAF >5 indicates highly bio-accumulative
(Arnot and Gobas, 2006). As for BAF-sediment, the calculated
value >1 indicates a potential accumulation of heavy metals, and
the accumulative effect makes a significant difference when the
BAF-sediment exceeds 100 (Zhang et al., 2015b).

2.3.3 Species Sensitivity Distribution Model
The ecological risks of selected heavy metals in surface water were
evaluated using SSD, which were introduced in detail in our
previous study (Liu et al., 2018). In recent years, the SSD method
has been widely used in risk assessment because of its simplicity
and specific ecological significance (Xu et al., 2015). This risk
assessment model has two important indicators: the potentially
affected fraction (PAF) and concentration with 5% cumulative
probability (HC5). The fundamental principle is illustrated in
Supplementary Figure S1.

2.3.4 Sedimentary Risk Evaluation Model
The RI, initially proposed by a Swedish scientist in 1980, has been
proven to be an effective method and widely used to evaluate

sedimentary pollution (Hakanson, 1980; Zhao et al., 2018). In this
evaluation model, the toxicity characteristic, contaminant level,
and background value of heavy metals were considered. The RI
value was calculated using the following Eq. 2:

RI � ∑n

i�1E
i
r � ∑n

i�1T
i
r ×

Ci

Ci
0

(2)

where Ei
r is the individual potential risk factor; Ti

r is the toxicity
factor for a selected metal (i.e., 30 for Cd, 5 for Ni, 5 for Cu, 5 for
Pb, 2 for Cr, 1 for Zn, and 10 for As) (Hakanson, 1980). C0 is the
regional metal background value in the soil, and Ci represents the
heavy metal concentration in sediments. In general, the potential
ecological risk was classified into the following five levels
(Hakanson, 1980; Wang et al., 2011): low risk (Ei

r < 30; RI <
100), moderate risk (30 < Ei

r < 50; 100 < RI < 150), considerable
risk (50 < Ei

r < 100; 150 < RI < 200), very high risk (100 < Ei
r <

150; 200 < RI < 300), and disastrous risk (Ei
r > 150; RI > 300).

According to previous literature, the high heavy metal
background value in this study area might overestimate the
adverse effect of metals when using the RI and hazard
quotient (HQ) models (Qian et al., 2020). Therefore, the Igeo
was selected to assess the risks of heavy metals in sediments,
whose calculation formula Eq. 3 was as follows:

Igeo � log2( Cn

1.5Bn
) (3)

where Cn is the measured concentration of each heavy metal in
sediment samples; Bn is the geochemical background
concentration of the corresponding metal in this study area.
The soil evolvement and its influence on the eco-environment
were important, representing the various geochemical processes
in this area (Yuan et al., 2014). Therefore, the mean concentration
of heavy metals in local soils was used as the background value
(Bn) for sediments. According to the soil element background
value investigation performed by China National Environmental
Monitoring Center, the Bn values were identified as 46.3 mg/kg
for Cu, 0.218 mg/kg for Cd, 65.2 mg/kg for Cr, 18.4 mg/kg for As,
40.6 mg/kg for Pb, 89.7 mg/kg for Zn, 626 mg/kg for Mn,
52,200 mg/kg for Fe, 17.5 mg/kg for Co, 0.152 mg/kg for Ag,
346 mg/kg for Ba, and 42.5 mg/kg for Ni. Constant term 1.5 was
the background matrix correction factor originated by
lithospheric effects (Reddy et al., 2004). Based on the Igeo, the
degree of risk is divided into seven levels: Igeo ≤0 (practically
unpolluted), 0 < Igeo <1 (unpolluted to moderately polluted), 1 <
Igeo <2 (moderately polluted), 2 < Igeo <3 (moderately to heavily
polluted), 3 < Igeo <4 (heavily polluted), 4 < Igeo <5 (heavily to
extremely polluted), and Igeo >5 (extremely polluted; Bhuiyan
et al., 2010).

2.3.5 Human Health Risk Assessment
Human health risk assessment is the approach of estimating
contaminant adverse effects on humans through aquatic
products, and target hazard quotients (THQ) is regarded as an
effective evaluation model (USEPA, 2014; Qian et al., 2020).
Fishery and shrimp resources are important food resources for
local residents around Dianchi Lake; therefore, evaluating the
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potential health risk related to their long-term consumptions is
important (Guo et al., 2017; Wang et al., 2019). In general, no
significant health risk is found if THQ is less than 1, but a
potential health risk will occur if the index is greater than 1. The
THQ value was obtained by the following formula Eq. 4 (Yi et al.,
2011; Qian et al., 2020):

THQ � EFr × EDt × FIR × Cfactor × C

RfDo × BWa × ATn
× 10−3 (4)

where THQ is the target hazard quotient; EFr is the exposure
frequency (365 days/year); EDt is the exposure duration (70 years,
average lifetime); FIR is the food ingestion rate (134 g/day, wet
weight); Cfactor is the conversion factor (0.085) that is used to
convert fresh weight into dry weight; C is the heavy metal
concentration in fish (mg/Kg); RfDo is the oral reference dose
(mg/kg/day, Supplementary Table S11); BWa is the average
adult body weight (60 kg); and ATn is the average exposure
time for non-carcinogens (assuming 70 years). Total THQ
(TTHQ) was calculated to estimate the additive effects of
exposure to all the metals accumulated in fish using Eq. 5:

Total THQ � THQ (toxicant 1) + THQ (toxicant 2)
+ . . . + THQ (toxicant n) (5)

3 RESULTS AND DISCUSSION

3.1 Descriptive Statistics for
Physicochemical Parameters in Surface
Water and Sediment
The surface waters were weakly alkaline, with mean pH of 9.3
(ranging from 7.9 to 10.0). During the sampling period, the
average WT and DO were 23.9°C and 9.77 mg/L, respectively.
The EC, TDS, SS, and CODMn values ranged from 503 to 647 μS/
cm (average 540 μS/cm), 331.5–435.5 mg/L (average 358.9 mg/L),
29–176 mg/L (average 84 mg/L), and 6.0–27.3 mg/L (average
15.8 mg/L), respectively. The mean concentrations of TN and
TP were 4.62 and 0.21 mg/L, with the maximum of 9.56 and
0.56 mg/L, respectively. These typical water quality parameters
suggested that the lake has suffered serious eutrophic pollution
and algae bloom (Supplementary Table S3; Qian et al., 2020). As
shown in Supplementary Table S4, the sediments in Dianchi
Lake were reductive, with the mean pH and ORP values of 6.9 and
−209.5 mV, respectively. The average SOM was 16.0%, ranging
from 10.0 to 41.1%. Given the long-term eutrophication and
weakly hydrodynamic processes of Dianchi Lake, a large number
of nutrients had been enriched in sediments (Zhu et al., 2010).
The mean concentration of sedimentary TN and TP was 5,626
and 3,584 mg/kg, respectively. According to the U.S.
Environmental Protection Agency, sediment was regarded as
heavily polluted when sedimentary TN > 2000 mg/kg and TP
> 650 mg/kg (USEPA, 2014). Important phosphorus industrial
bases were found in China around Dianchi Lake, which might
indicate the high phosphorus content in sediments (Zhu et al.,
2010). However, the mean concentration of TN and TP in

sediments of Taihu Lake (a eutrophic lake in China) was only
1,110 and 930 mg/kg, respectively (Fang et al., 2019). Therefore,
based on the water and sediment quality characteristics of
Dianchi Lake and previous literature, Dianchi Lake was
generally regarded as a typical hyper-eutrophic lake, which
was suffering from the deterioration of the ecological
environment (Huang et al., 2014; Cao et al., 2016).

3.2 Heavy Metal Distribution
3.2.1 Surface Water
The pollution level of heavy metals in surface water exhibited a
wide range, and the average concentration was arranged in a
decreasing order: Ba (average 171.73 μg/L) > Fe (average
146.70 μg/L) > Zn (average 20.64 μg/L) > Mn (average 4.32 μg/
L) > As (average 2.78 μg/L) > Ni (average 2.05 μg/L) > Cr
(average 1.54 μg/L) > Cu (average 1.36 μg/L) > Pb (average
0.54 μg/L) > Cd (average 0.22 μg/L) > Co (average 0.13 μg/L,
Figure 2 and S3). Nearly all heavy metals equipped a great
consistency in spatial distribution, seriously contaminated in
the north and south part but less polluted in the middle part
(Figure 2). This differential spatial distribution might be due to
the following reasons: the northern part was connected with
Kunming City, and the southern part was densely distributed
with residential communities. In general, the city and high-
density population could remarkably contribute to the heavy
metal pollution (Islam et al., 2015). By contrast, for example, the
average Cu concentration in Dianchi Lake (1.4 μg/L) was lower
than that in Poyang Lake (5.4 μg/L), Taihu Lake (2.9 μg/L), and
Chaohu Lake (3.4 μg/L) but slightly higher than that in Liangzi
Lake (1.1 μg/L). The Pb pollution level in this lake was lower than
that in Poyang Lake, Taihu Lake, Chaohu Lake, and Liangzi Lake,
whose average concentrations were 4.4, 3.8, 6.3, and 10.1 μg/L,
respectively (Liu et al., 2018). The different metal pollution levels
in various lakes of China were probably due to the different
physical geography backgrounds and human activity impacts,
thereby suggesting that the systematic investigation of metal
pollution levels in different lakes was important.

3.2.2 Sediment
The average concentration of sedimentary heavy metals appeared
in a decreasing order: Fe (average 50,720.35 mg/kg) > Mn
(average 813.03 mg/kg) > Zn (average 496.80 mg/kg) > Ba
(average 273.35 mg/kg) > Cu (average 146.19 mg/kg) > Pb
(average 108.83 mg/kg) > Cr (average 74.78 mg/kg) > As
(average 61.95 mg/kg) > Ni (average 45.81 mg/kg) > Co
(average 15.24 mg/kg) > Cd (average 13.20 mg/kg) > Ag
(average 2.06 mg/kg). Concentrations of Cu, Cd, Pb, Zn, As,
Ni, and Ag in sediments had a similar spatial distribution.
Remarkably, a decreasing trend was found from the northern
(S1–S4) to the southern (S5–S12) part of Dianchi Lake (p < 0.05;
Figure 3). As for concentrations of Cr, Mn, Fe, Co, and Ba in
sediments, their spatial distributions were basically consistent,
varying within a limited range (Figure 3). Fe was the most
abundant metal in the sediment, exceeding the pollution level
of other metals. According to previous literature and available
data, several heavy metals were selected for comparison with
published metal levels in Chinese lake sediments
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(Supplementary Table S14). In this study, the mean
concentration of heavy metals was consistent with the earlier
report in Dianchi Lake (Yuan et al., 2014). Interestingly, contrary
to that of surface water, the heavy metal concentration in
sediments of Dianchi Lake was significantly higher than that
of Chaohu Lake and Taihu Lake. For example, the concentrations
of Cu and Pb in sediments of Dianchi Lake were about 8.5 times

and 73.3 times higher than that of Chaohu Lake, respectively.
This phenomenon was probably due to the following reasons.
First, Dianchi Lake had higher density and biomass of algae
compared with the other lakes, and the algae biomass could easily
uptake or adsorb metals from water (De Philippis et al., 2011;
Wang et al., 2019). Second, the average depth of Dianchi Lake
(approximately 5.0 m) was deeper than that of Taihu Lake

FIGURE 2 | Spatial variations of heavy metal concentration in surface water, including Cu, Cd, Pb, Zn, Cr, As, Mn, Fe, Co, Ni, and Ba. Ag was not presented
because of its low concentration in surface water.
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(approximately 1.8 m) and Chaohu Lake (approximately 3.0 m)
(Shang and Shang, 2007; Xu et al., 2010; Zhang et al., 2019). The
deeper water depth in Dianchi Lake could resist sediment re-
suspension by wind wave, which could reduce the metal release
from sediments (Gao et al., 2005; Bai et al., 2012).

The characteristic of heavy metal fractions was important to
reveal their potential mobility and toxicity (Maiz et al., 2000). The
main existing fraction of Cu, Pb, Cr, As, Fe, Co, Ni, Ag, and Ba in
sediments was residual fraction, with values of 60.95, 57.06, 66.56,
61.98, 75.03, 39.36, 51.90, 91.94, and 63.41%, respectively
(Figure 3 and Supplementary Figure S2). For Cd, Zn, and
Mn, the exchangeable fraction was the dominant component,
accounting for 62.05, 49.08, and 40.94%, respectively (Figure 3
and Supplementary Figure S2). Based on the bioavailability of
heavy metals, a decreasing order was found: exchangeable >
oxidizable > reducible > residual (Li et al., 2000; Prasad et al.,
2006). The exchangeable fraction was generally regarded as the
most unstable sedimentary part, which exhibited a strong
relationship with water environments (Alves et al., 2007).
Therefore, the environmental mobility and risk of heavy
metals showed a positive correlation with this fraction
proportion. In this study, the exchangeable fraction of heavy
metals was arranged in the following order: Cd (62.5%) > Zn
(49.08%) > Mn (40.94%) > CO (21.82%) > Ni (20.52%) >
Ba (5.35%) > Cr (4.27%) > Cu (3.51%) > As (3.40%) > Fe

(3.30%) > Pb (2.05%) > Ag (0.09%), indicating their different
interactions with environments. This result suggested that Cd,
Zn, Mn, Co, and Ni had the strongest association with the aquatic
ecosystem in Dianchi Lake and likely reflected highly
potential risks.

3.2.3 Bioaccumulation of Heavy Metals
CWP, MBN, HPR, and RGG were selected to evaluate metal
bioaccumulation because they were usually consumed by the local
residents. Heavy metal levels in selected organisms showed great
differences (Supplementary Table S9), and the concentration of
heavy metals in selected fish (HPR and RGG) was significantly
lower (p < 0.05) than that in surveyed shrimp (CWP and MBN).
These results indicated that the ability of benthic shrimp to
accumulate heavy metals was stronger than that of fish, which
was consistent with previous studies (De Mora et al., 2004; Yang
et al., 2010). Firstly, benthic shrimps mainly live in the sediment-
water interface, which probably straightly affected by the heavy
metals in the sediment (2-3 orders of magnitude higher than that
in the water body). Secondly, metal concentrations in organisms
were also adjusted by their biological metabolisms (Markert,
1987).

In the present study, the BAF of organisms to heavy metal in
surface water (BAF-water) was further explored (Figure 4 and
Supplementary Table S10). Different organisms exhibited

FIGURE 3 | Heavy metal concentrations in sediment samples. Blue: residual fraction; Green: oxidizable fraction; Red: reducible fraction; Black: exchangeable
fraction.
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distinct bio-accumulative capacities in response to various heavy
metals. In our study, a high accumulative possibility of Ag in
HPR; Cu and Ag in CWP; Cu, Pb, Zn, and Ag in MBN; and Pb,
Zn, and Ag in RGG was found. Notably, Cd, Cr, As, and Ba
presented a low accumulative probability for all selected
organisms. Moreover, Mn, Fe, Co, and Ni showed a moderate
accumulative probability for at least one species. Hence, based on
the probability heatmap between organisms and heavy metals
(Figure 4), we found that Cu, Pb, Zn, and Ag possessed a strong
bioaccumulation effect, followed by Mn, Fe, Co, and Ni. In
general, Cu and Zn were regarded as a crucial biological trace
element and demanded for abundant enzymatic
oxidation–reduction activities; however, excessive levels of
these two metals could also cause high toxicity (Bonanno and
Giudice, 2010; Wang et al., 2017b; Wei et al., 2020). Pb and Ag
were immobile in aquatic environment, and they showed toxicity.
When Pb and Ag were absorbed by organisms through the food

chain, they would exist for a long period (Samecka and Kempers,
2001).

3.3 Principal Component and Correlation
Analysis (CA)
PCA and CA were applied to identify and explain the pollution
source of heavy metals (Figure 5 and Supplementary Figure S4).
In surface water, two principal components were extracted, which
accounted for 62% of the total variance in the data matrix. The
first principal component (PCA1) in surface water generated 37%
of the total variance, which was primarily characterized by heavy
metals. Among the heavy metals, Ag, Zn, Co, Fe, Mn, Cr, Cu, Cd,
and Pb were the most important, followed by Ni and As, and Ba
was relatively small. The second principal component (PCA2)
accounted for 25.36% of the total variance, which was heavily
weighted by conventional water quality parameters. Our results

FIGURE 4 | Bioaccumulation factor of organisms to heavy metals in surface water (BAF-water). Green: low probability; Blue: moderate probability; Red: high
probability.

FIGURE 5 | Principal component analysis (PCA) of aquatic environmental parameters and heavy metals.
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indicated that the pollution sources of heavymetals and eutrophic
elements in surface water were probably inconsistent because of
three reasons. First, heavy metals were strictly controlled in the
effluent of sewage treatment plant when compared with organic
contaminants (Ignatowicz, 2017). Second, heavy metals induced
by non-point source pollution tended to be precipitated under the
long-distance water transport, whereas nutrients were gradually
accumulated (Ouyang et al., 2016; Jeong et al., 2020). Lastly,
heavy metals cannot be easily degraded, and the sedimentary
resuspension would lead to their release, whereas the
conventional pollutants were biodegradable (Baran and
Tarnawski, 2015). In sediments, two principal components
were extracted, which accounted for 69% of the total variance
in the data matrix. The first principal component (PCA1),
including Ag, Zn, Cd, Pb, Cu, As, and Ni, was primarily
characterized by most heavy metals. However, the second
principal component (PCA2) was completely dominated by
Fe, Mn, and Ba, whereas Cr and Co remarkably contributed to
both axes. In particular, PCA1 and PCA2 accounted for 47 and
22%, respectively. PCA1 probably originated from anthropogenic
activities, as Cu and Pb were strongly associated with human
activities (Audry et al., 2004). However, PCA2 was heavily
weighted by Fe and Mn, which might be closely related to the
surrounding mining areas (Zhao et al., 2018).

3.4 Ecological and Human Health Risk
Assessment
3.4.1 Potential Ecological Risk
In our previous study on the SSD model, five heavy metals were
selected to evaluate their ecological risks in Dianchi Lake because
of their occurrence and toxicity. These metals with HC5 values of
7.76 (Cd), 2.29 (Cr), 2.09 (Cu), 12.59 (Pb), and 31.62 (Zn) posed
great toxicity to aquatic environments (Supplementary Table S7;

Liu et al., 2018). In general, these metals were considered to be at
risks only when their concentrations exceeded individual HC5
values (Hose and Van den Brink, 2004). The maximum
concentration of Cu, Cr, Cd, Pb, and Zn in Dianchi Lake was
4.06, 3.17, 0.71, 2.25, and 74.49 μg/L, respectively. Therefore, Cu,
Cr, and Zn exhibited ecological risks with the maximum PAF of
14, 8, and 13%, respectively (Supplementary Table S7).
Therefore, about 14% of species in Dianchi Lake were
probably adversely impacted by Cu, whereas 8% by Cr and
13% by Zn. Therefore, based on the SSD model, Cu, Cr, and
Zn were the dominant heavy metal contaminants in surface water
of Dianchi Lake. These heavy metals should be strictly controlled
to ensure the health of aquatic organisms in Dianchi Lake.

The Igeo was applied to evaluate sedimentary metal
contamination in Dianchi Lake, and the calculated result was
presented in Figure 6B. The mean values of Igeo for Cr, Mn, Fe,
Co, Ni, and Ba were lower than 0, suggesting that no pollution
was caused by these metals. However, the average of Cu, Pb, and
As ranged from 0 to 1, indicating unpolluted to moderately
polluted. Cd, Zn, and Ag showed heavily polluted (average
Igeo 3.24), moderately polluted (average Igeo 1.08), and
moderately to heavily polluted (average Igeo 2.81),
respectively. Regarding the individual Igeo value, the pollution
status in sediments followed the order of Cd >Ag > Zn >As > Cu
> Pb > Mn > Cr > Ni > Fe > Co > Ba (Figure 6B). The result of
this methodology indicated that Cd, Zn, and Ag were the most
polluted metals, which was consistent with previous literature in
this area (Qian et al., 2020). Hence, the anthropogenic inputs of
heavy metals in this area were Cd, Zn, and Ag, with Igeo >1.

In addition, the calculated RI values of sedimentary metals
were summarized in Figure 6A and Supplementary Table S13.
The RI values from S1 to S4 (Caohai, closely related to Kunming
city) were more than 900, indicating that these sediments in
Caohai were heavily polluted, which showed more disastrous

FIGURE 6 | Risk assessment for selected heavy metals in sediments: (A) RI of selected heavy metals in sediments. As: brownness; Cr: pink; Zn: green; Pb: blue;
Cd: red; Cu: black. (B) Igeo of selected heavy metals in sediments. The box plots display the values from surface. water samples (median, 25 and 75% quartiles [boxes],
10 and 90% percentiles [whiskers]).
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risks than other areas. In general, the RI value was clearly related
to the degree of anthropogenic disturbance (Yi et al., 2011).
About 45% of sediment samples (S1, S2, S3, S4, S6, S7, S8, S15,
and S17) were disastrous risks (RI > 300), and the remaining 55%
(S5, S9, S10, S11, S12, S13, S14, S16, S18, and S19) showed very
high risks (200 < RI < 300). In particular, the contributions for
individual metals were in the order of Cd (94.6%) > Cr (1.8%) =
As (1.8%) > Cu (0.8%) > Pb (0.7%) > Zn (0.3%). Remarkably, Cd
presented disastrous risks and accounted for the considerable
proportion of ecological risks in sediments, whereas other metals
(As, Zn, Cr, Cu, and Pb) showed low-to-moderate risks.
Sediments in Dianchi Lake, particularly Northern Caohai,
suffered from potential ecological risks caused by heavy
metals, and Cd was the most important contaminant element.
Based on the RI and Igeo, heavy metals in sediments of Dianchi
Lake exhibited high ecological risks.

3.4.2 Human Health Threat From Edible
Organisms
Based on the bioaccumulation of heavy metals (Figure 4), the
investigated organisms in Dianchi Lake exhibited different
accumulation effects on these contaminants. Long-term
consumption of these polluted aquatic productions might
cause human health risks (Kumar et al., 2019). Therefore, the
human health threat from four common edible organisms was
evaluated for residents around the lake. Given the absence of Fe
and Co human chronic ingestion data, the remaining 10 heavy
metals were used in human health risk assessment. The
calculated THQ and total THQ (TTHQ) values were
presented in Supplementary Table S12 and Figure 7.
Human health risks of selected aquatic products decreased in
the order of MBN (1.998) > CWP (1.450) > RGG (1.213) >HPR
(0.355), and THQ of As was the major contributor to TTHQ.
This study was consistent with previous reports in Dianchi Lake,
in which As in aquatic products showed the most significant

health risk (Qian et al., 2020). Except for the THQ of As in CWP
(1.119) and MBN (1.187), the THQ of other metals to each
aquatic consumption was generally less than 1, indicating that
residents would not experience significant health risks from the
intake of individual metal through selected organisms
(Supplementary Table S12). Therefore, human health risks
induced by As were found in the consumption of CWP,
MBN, and RGG. Considering the impact of heavy metal
pollution on human health, this study revealed that HPR was
a priority of healthy food resource in Dianchi Lake. The heavy
metals in the environment had various chemical forms that
exhibited different toxicity to human health, and the THQ >1
might not suggest people who were experiencing direct adverse
health effects (Yi et al., 2011; Jia et al., 2018). In our future work,
evaluating human health risks of metals by considering
chemical speciation was necessary.

4 CONCLUSION

The distribution, ecological risk, and source identification of
heavy metals in surface water, sediments, and organisms of
Dianchi Lake had been systematically investigated. The
pollution level of heavy metals exhibited a wide range in
surface water, with a decreasing order of Ba > Fe > Zn > Mn
> As > Ni > Cr > Cu > Pb > Cd > Co. Nearly all heavy metals in
surface water equipped a great consistency in spatial distribution,
seriously contaminating the northern and southern parts. We
found that the residual and exchangeable fractions of heavy
metals were primarily presented in sediments. The primary
existing fraction of Cu, Pb, Cr, As, Fe, Co, Ni, Ag, and Ba was
residual fraction, whereas the exchangeable fraction was the
dominant component for Cd, Zn, and Mn, which suggested
that Cd, Zn, Mn, Co, and Ni had the strongest association
with the aquatic ecosystem in Dianchi Lake. Furthermore, the
average concentration of sedimentary heavy metals appeared in a

FIGURE 7 | Contributions of THQ to TTHQ for the 10 selected heavy metals via consumption of four aquatic species collected from Dianchi Lake. Red dash line
indicated the acceptable total THQ threshold value (<1).
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decreasing order: Fe >Mn > Zn > Ba > Cu > Pb > Cr > As >Ni >
Co > Cd > Ag. We found that Cu, Pb, Zn, and Ag possessed a
strong bioaccumulation effect, followed by Mn, Fe, Co, and Ni.
Ecological risk assessment indicated that Cu, Cr, and Zn were
the dominant heavy metal contaminants in surface water,
whereas Cd and Ag were the most polluted metals in
sediments. As in selected aquatic products had the most
significant health risk, and HPR was a priority of healthy
food resource for residents. In addition, this study was based
on one sampling. Thus, the heavy metal pollution may be
influenced by seasons. However, given the relatively stable
nature of heavy metals and the period of exchange water
cycle (4 years) of this lake, the spatial distribution of the
heavy metals of sediment shows no significant change with
the seasons. In conclusion, this research was of great significant
to reveal the migration, transformation and enrichment of
heavy metals in a typical urban plateau lake, and provided
effective information for rational management and control of
heavy metal pollution.
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