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Tropical forests, although covering only 7% of the world’s land area, have great forest
carbon sequestration capacity, accounting for 20% of the world’s forest carbon sink.
However, the growth dynamics and forest carbon sink potential of tropical forests remain
unclear. Hainan Island is going to be China’s forest carbon trading center. Therefore,
accurately assessing the future forest carbon sink potential of Hainan Island’s tropical
forest is crucial. In this study, 393 forest permanent sample plots in Hainan Island in 2003,
2008, 2013, and 2018 were selected as the research objects. The dynamic model of
tropical forest growth with the geospatial environmental indicators was established based
on the measured and most accurate annual diameter at breast height (DBH) growth
factors. The DBH growth prediction’s bias ranged from 0.46 to 0.07 cm, RMSE ranged
from 1.50 to 5.29 cm, bias% ranged from -2.96 to 0.55%, and RRMSE ranged from 12.18
to 34.30%. In addition, the geospatial environmental indicators of forest growth provide
scientific guidance for future ecological protection and land evolution of Hainan Island.
Based on DBH–tree height–volume, volume–biomass, and biomass–forest carbon
storage relationships, forest carbon sequestration potential could be accurately
evaluated by DBH growth. The results show that within the next 30 years, the forest
carbon sequestration in Hainan Island will account for 1.8% of the total forest carbon
sequestration in China, while the forest area will only account for 0.88% of the total forest
area in China. It is roughly estimated that in the next 30 years, the total carbon sink of the
tropical forest in Hainan Island will be 83.59 TgC. This study further proves that the annual
increase in DBH can accurately assess the forest carbon sink potential of the forest. The
forest carbon sink prediction based on the annual increase in DBH can provide data
support and theoretical basis for forest carbon sink trading between forest farms and
enterprises.
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1 INTRODUCTION

In recent years, the excessive burning of fossil fuels and increasing
carbon emissions have not only increased surface temperatures
but also aggravated the occurrence of natural disasters (Dong
et al., 2018; Hao et al., 2021). The forest carbon sequestration
capacity of forests has become a topic of scientific interest due to
the role of carbon dioxide in climate change (Wen and He, 2016;
He et al., 2018; Rajashekar et al., 2018; Rawat et al., 2019; Sheikh
et al., 2020). Tropical forests are hot spots in the study of forest
carbon sequestration capacity. They only cover 7%–10% of the
earth’s land surface but store 25% of the world’s forest carbon
above and below the ground (Bonan, 2008) and account for 34%
of the primary productivity of the land (Beer et al., 2010). There
are approximately 45,000 tree species globally, 96% of which are
found in tropical forests (Poorter et al., 2015). Consequently,
tropical forests have a rich diversity of tree species (Navarrete-
Segueda et al., 2017), providing various economic and ecological
benefits for human well-being (Mitchard, 2018). Forests
primarily absorb carbon dioxide from the atmosphere via
photosynthesis and respiration fixing in the trees and soil,
which can be observed in their growth changes. Consequently,
tropical forest growth change determines the forest carbon
sequestration potential. Therefore, accurately describing the
tropical forest carbon sequestration potential is of great
significance for understanding the global carbon cycle (Aguilos
et al., 2018; Fang et al., 2018).

The most typical tropical forest in China is on Hainan Island.
Due to the dense and complex canopy structure of the tropical
forest on Hainan Island, it is difficult for human eyes to
distinguish the height of a single tree. There are often large
deviations in tree height measurement using traditional
methods. Therefore, the traditional method of investigating the
forest biomass carbon storage of tropical forest is not accurate. In
addition, a traditional large-scale permanent sample plot survey is
difficult to conduct because the traditional large-scale sample plot
survey needs a lot of human and material resources. For example,
China’s National Forest Continuous Inventory is carried out
every 5 years, with a large time span, which is generally
organized by the government. There are relatively few studies
on the forest carbon dynamic model and the forest carbon
sequestration potential. The forest carbon sequestration
potential of forest ecosystems is one of the greatest
uncertainties in the global carbon budget (Zapfack et al.,
2020). The main reason for this is that the environmental
determinants affecting the changes in forest carbon storage in
tropical forests are still unclear and not well quantified (Malhi
et al., 2006). The quality, quantity, and decomposition rate of
organic matter in forest vegetation are affected by environmental
conditions (Jaenicke et al., 2008), and this helps in determining
the carbon balance of forest vegetation and the storage of CH4

and CO2 (Boothroyd et al., 2015). On 22 September 2020, China
proposed to be “carbon neutral,” which implies offsetting the
carbon dioxide emissions produced by enterprises or individuals
through afforestation, energy conservation, and emission
reduction to achieve “zero carbon dioxide emissions” (Tang
et al., 2021). In August 2016, Saihanba, Hebei Province,

reached China’s first forestry afforestation forest carbon
sequestration transaction. However, there are still differences
in the methods of accurately calculating carbon emissions.
Due to the different data sources, assumptions, and methods
of each province, the estimated values vary greatly, which is
difficult to compare. In addition, the dynamic change of land
cover after deforestation in each province has different effects on
the energy flux of newly built forests in the future. Previously,
only a few studies have described the relative importance of forest
growth attributes and environmental drivers on the forest carbon
sequestration capacity, particularly in tropical areas (Poorter
et al., 2015; Johnson et al., 2017). Therefore, it is critical to
accurately quantify the complex environmental driving factors
and clearly reveal the scientific and quantitative relationship
between tropical forest growth and geospatial environmental
indicators to achieve an accurate prediction of tropical forest
carbon storage.

The tropical forest canopy is more complex, and the canopy
occlusion is serious. It is difficult to accurately measure the tree
height with traditional methods. However, the measurement of
the diameter at breast height (DBH) is not affected by this
problem. Therefore, measuring DBH is easier than measuring
the tree height, making it more suitable for further modeling to
estimate the forest carbon sink. In this study, according to the
data of China’s National Forest Continuous Inventory (2003,
2008, 2013, and 2018), the tropical forest in Hainan Island is
divided into 13 main tree species groups. We used the data of
surface meteorological observation stations and the forest
ecosystem biomass in the last 20 years. This study discussed
the quantitative scientific relationship between the DBH
growth of main tree species and the local climate
environment, such as terrain, soil thickness, annual average
rainfall, annual average minimum temperature, and annual
average maximum temperature. Therefore, we propose a
geospatial environmental index for tropical forest growth,
which can accurately predict future DBH changes. Moreover,
the relationships among the DBH, tree height, volume, above
ground biomass, and forest carbon storage were established.
Furthermore, a forest carbon storage measurement system for
the tropical forest in Hainan Island was constructed. The forest
carbon storage from 2003 to 2050 was then estimated for the
island’s forests. This study accurately predicted tropical forest
carbon storage in Hainan Island from 2003 to 2050 and explored
the influence mechanism of tropical forest carbon sequestration
potential (Figure 1). The results will help in improving the
scientific and technological level of decision-making and
management of tropical forest resources, serving China’s goal
of achieving carbon neutrality by 2060, and providing a
theoretical basis for forest carbon storage calculations.

2 MATERIALS AND METHODS

2.1 Data Sources
The Hainan Province has a total land area (primarily including
Hainan Island, Xisha Islands, Zhongsha Islands, and Nansha
Islands) of 35,400 km2, with a sea area of approximately
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2,000,000 km2. Hainan Island is China’s special economic zone
and pilot free trade zone, covering approximately 34,000 km2. It is
the southernmost provincial administrative region in China. In
Hainan Island, the terrain around the edge is low and flat, but in
the middle, it rises high to form dome mountains. Wuzhishan
and Yinggeling are located in the center of the uplift. Hainan
Island has a tropical oceanic monsoon climate, indicating that it is
warm and hot throughout the year with abundant rainfall. From
2003 to 2018, the forestland of Hainan Island was primarily
concentrated in the south, and the eastern and northern areas,
such as Haikou City, Chengmai County, and Danzhou City. The
coastal areas of Hainan Island were mostly non-forest land and
construction land (Figure 2).

In this study, 393 forest permanent sample plots were selected
from China’s National Forest Continuous Inventory data in 2003,
2008, 2013, and 2018 (Figure 3). Forest permanent sample plots
are square, with an area of 666.67 m2 and a length and width of
25.82 m. China’s National Forest Continuous Inventory database
comprises sub-populations, sample plots number, dominant tree
species groups code, average age, latitude, longitude, altitude,
slope direction, slope position, slope gradient, the thickness of the
overburden soil layer, tree species groups name, DBH of each
period, and tree volume of each period (Zeng et al., 2015). The

monthly climate datasets of Hainan Island from 2003 to 2018 are
provided by the basic ground, and automatic weather stations of
19 national weather stations and meteorological networks in
Hainan Island. The daily observational data of 19 national
meteorological stations in Hainan Island from 2003 to 2013
comprised of average atmospheric pressure, average maximum
temperature, average minimum temperature, sunshine hours,
monthly sunshine percentage, average water pressure, average
relative humidity, maximum daily precipitation, maximum wind
speed, and wind direction of maximum wind speed.

2.2 Tropical Forest Growth Model Based on
Geospatial Environmental Influence
Indicators
There are approximately 4,800–5,800 species of vascular plants
on Hainan Island, among which 397 are endemic. Endemic
species are primarily distributed in the southwest region of
Hainan Island, followed by the southeast (Zhu et al., 2021).
The 393 forest permanent sample plots of China’s National
Forest Continuous Inventory in Hainan Island were primarily
distributed in the southwest and southeast of Hainan Island. In
combination with “Hainan Flora,” 11 major tree species groups

FIGURE 1 | Technology road map.
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were screened out. The remaining trees were divided into other
hard broadleaf trees and other soft broadleaf trees (Table 1).
Moreover, combined with the meteorological data of the past
20 years, complex information such as the site environment and
geographical position, is divided into growth geospatial
environmental indicators (e.g., longitude, latitude, altitude, and
temperature) and local and regional environmental indicators
(e.g., slope gradient, slope direction, slope position, and soil
thickness). For the cluster analysis, the DBH growth model of
the tropical forest in Hainan Island tree species groups is as
follows:

ΔY(j)t+Δt � Aj · (Y(j)t )2

· e−Bj ·Y(j)t · eλ(m)
GEI

·X(m)
GEI · eλ(n)LEI ·X(n)

LEI . (1)

In Model 1, j is 13th major tree species groups; Y(j)
t is DBH

(mm); ΔY(j)
t+Δt is the 5-year growth of DBH (mm);Aj is the growth

rate of the major tree species groups; Bj is the growth acceleration
rate of the major tree species groups; and λ(m)

GEI is the growth
geospatial environment influence indicator, consisting of λL, λB,

λH, λTMIN, λTMAX, and λR. λ
(n)
LEI is the environmental index of the

growing local area, comprising λα, λβ, λγ and λh. The 10
environmental influence indicators are shown in Table 2.

When different feature vectors come together, data with small
absolute values, such as the annual average minimum
temperature, are vulnerable to data with large absolute values,
such as rainfall. We then need to normalize the extracted feature
vectors so that the normalized value of the feature vector is
between 0–1 to ensure that each feature vector is treated equally
by the classifier. The normalization of a feature vector is shown in
Table 2: 1) from north to south, Hainan Island stretches from
Mulan Bay (northern latitude: 20°9 “32”) to Jinmu Corner
(northern latitude: 18°9 “21”); 2) from west to east, it stretches
from Beibu Gulf (eastern latitude: 108°37 “15”) to Tonggu Corner
(eastern latitude: 111°3 “6”); 3) Wuzhishan is the highest
mountain on Hainan Island, with a peak altitude of 1,867.1 m,
and the lowest altitude of Hainan Island is 0 m; 4) over
approximately 20 years, the lowest annual average rainfall was
in Southwest Hainan Island (Changjiang Li Autonomous County,

FIGURE 2 | Distribution of forest types in Hainan Island in 2003, 2008, 2013, and 2018 (Forest land refers to natural forests and plantations with a canopy density
>30%, including timber forests, economic forests, shelter forests, and other woodlands. Shrub land refers to the low woodland and shrub woodland with a canopy
density >40% and height below 2 m. Open woodland refers to the woodland with a canopy density of 10–30%. Other woodlands refer to unforested woodlands,
slashes, nurseries, and all kinds of gardens, such as orchards, mulberry gardens, tea gardens, and hot forest gardens).
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Dongfang City, Ledong Li Autonomous County, Sanya City)
from 2009 to 2013 and was 1,045.34 mm. The maximum annual
average rainfall was in Central Hainan Island (Baoting Li Miao
Autonomous County, Qiongzhong Li Miao Autonomous

County, Tunchang County, Wuzhishan City) from 2009 to
2013 and was 2,552.08 mm; 5) the lowest annual average
minimum temperature was in Central Hainan Island from
2004 to 2008 and was 19.873°C. The highest annual average

FIGURE 3 | Distribution of the forest permanent sample plots in Hainan Island.

TABLE 1 | Thirteen major tree species groups of Hainan Island’s tropical forest.

Name of tree species
groups

Major tree species

Melia Melia azedarach, Melia toosendan
Casuarina Casuarina equisetifolia, Casuarina cunninghamiana, Casuarina glauca
Acacia Acacia confusa, Acacia auriculiformis, Acacia catechu, Acacia concinna, Acacia farnesiana, Acacia mangium, Acacia

pennata
Cunninghamia Cunninghamia lanceolata
Schima Schima superba, Schima crenata, Schimaremotiserrata
Phoebe Phoebe bournei, Phoebe hungmoensis, Phoebe tavoyana
Quercus Quercus acuminata, Quercus bawanglingensis
Eucalyptus Eucalyptus tereticornis, Eucalyptus robusta, Eucalyptustorelliana, Eucalyptus exserta, Eucalyptus camaldulensis,

Eucalyptus citriodora
Cinnamomum Cinnamomum camphora, Cinnamomum burmanni, Cinnamomum cassia, Cinnamomum bejolghota, Cinnamomum

porrectum, Cinnamomum liangii, Cinnamomum tsangii, Cinnamomum micranthum
Other pine (1) Pinus massoniana
Other pine (2) Pinus armandii, Pinus elliottii, Pinus fenzeliana, Pinus kesiya, Pinus kwangtungensis, Pinus latteri, Pinus massoniana, Pinus

thunbergia
Other hard broadleaf trees Dacrydium, Engelhardia, Carpinus, Castanopsis, Cyclobalanopsis, Lithocarpus, Helicia, Alseodaphne, Beilschmiedia,

Endiandra, Lindera, Altingia, Eriobotrya, Albizia, Adenanthera, Sindora, Ormosia, Dalbergia, Chukrasia, Aglaia, Aphanamixis,
Xanthophyllum, Glochidion, Drypetes, Bischofia, Daphniphyllum, Pentaphylax, Ilex, Acer, Amesiodendron, Dimocarpus,
Litchi, Mischocarpus, Nephelium, Sapindus, Meliosma, Elaeocarpus, Sloanea, Colona, Heritiera, Dillenia, Anneslea, Cleyera,
Gordonia, Ternstroemia, Tutcheria, Calophyllum, Garcinia, Hopea, Vatica, Casearia, Carallia, Rhodamnia, Syzygium,
Terminalia, Madhuca, Gmelina, Diospyros, Symplocos, Linociera, Winchia, Gmelina, Dolichandrone, Radermachera,
Canthium, Tarenna, Wendlandia

Other soft broadleaf trees Podocarpus, Gironniera, Artocarpus, Ficus, Magnolia, Michelia, Litsea, Machilus, Neolitsea, Ixonanthes, Acronychia,
Canarium, Endospermum, Lannea, Spondias, Bombax, Pterospermum, Reevesia, Sterculia, Alangium, Schefflera,
Alniphyllum, Ehretia, Tectona, Vitex
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minimum temperature was in Southwest Hainan Island from
2014 to 2018 and was 23.360°C; 6) the lowest annual average
maximum temperature was in Northeast Hainan Island
(Chengmai County, Dingan County, Haikou City,
Wenchang City) from 2009 to 2013 and was 28.027°C.
The highest annual average maximum temperature was in
Northwest Hainan Island (Baisha Li Autonomous County,
Danzhou City, Lingao County) from 2014 to 2018 and was
29.432°C; 7) the slope gradient was between 0° and 60°; 8) the
slope direction was divided into 0°, 45°, 90°,..., 345°; 9) the
slope position was divided into the upper slope position (1),
middle slope position (0.625), and lower slope position (0);
and 10) according to the forest permanent sample plot data
used in this study, the thickness of the overburden soil layer
was between 30 and 300 cm (Qiu et al., 2020).

2.3 Accuracy Validation of DBH Growth
Models for Major Tree Species Groups in
Tropical Forest
The data of more than 45,000 trees from 393 forest
permanent sample plots were randomly divided into five
groups to ensure that each group contained all of the tree
species information. Four groups of data were fitted with a
DBH growth model for the major tree species groups in
Hainan Island’s tropical forest. The other group was used
for accuracy verification. To verify the accuracy of the model
in predicting the DBH growth of the major tree species
groups over 5 years, a set of reserved data was used. Bias,
relative bias (bias%), root mean square error (RMSE), and
relative root mean square error (RRMSE) were calculated
(Qiu et al., 2018a; Qiu et al., 2018b), and the prediction of
DBH growth was evaluated comprehensively.

Bias � 1
n
∑n

i�1ei �
1
n
∑n

i�1(yi − yri), (2)

Bias% � Bias

yr
× 100%, (3)

RMSE �
�����������∑(yr − yri)2

n

√
, (4)

RRMSE � RMSE

yr
× 100%. (5)

In these models, yi is the i
th estimation, yri is the ith reference,

yr is the mean of the reference values, and n is the number of
estimations.

2.4 Tropical Forest Carbon Storage
Measurement
Tropical forest carbon storage measurement primarily includes
height curve model, forest volume model, forest biomass
conversion model, and forest carbon content. The parameters
of the models are summarized according to our previous results
on the forest ecosystem carbon storage in China (Qiu et al., 2020).

DBH measurements are typically fast, convenient, and
accurate; however, tree height measurements are time-
consuming and laborious. Therefore, in the forest survey, tree
height was only measured for some dominant trees. It is typically
predicted using the tree height curve model (Sharma and Parton,
2007) for different tree species groups, as follows:

H � ajd
bj . (6)

InModel 6,H is the tree height (m); d is the DBH (cm); and aj
and bj are the tree height curve model parameters (Qiu et al.,
2020), as shown in Supplementary Appendix Table SA1.

The estimates of increasing forest volume can also serve as a
basis for the estimates of aboveground forest biomass and carbon
storage. This forest biomass and carbon storage data have
gradually become the basis of international treaties as forest
volume can be considered as the accumulation of tree volume
(McRoberts et al., 2013). Therefore, volume calculation for tree
species groups is the key to this investigation. Currently, most
countries in the world use two variable volume equation tables as
the basic tree volume tables. In recent years, the two variable

TABLE 2 | Normalization formulas of the 10 environmental information variables.

Environmental information Environment influence indicator Normalization formula

Latitude (° ’ ‘‘) λL Latitude influence coefficient XB � B−Bmin
Bmax−Bmin

Longitude (° ’ ‘‘) λB Longitude influence coefficient XL � L−Lmin
Lmax−Lmin

Altitude (m) λH Altitude influence coefficient XH � H−Hmin
Hmax−Hmin

Annual average rainfall (mm) λR Rainfall influence coefficient XR � R−Rmin
Rmax−Rmin

Annual average minimum
temperature (°C)

λTMIN Minimum temperature influence
coefficient

XTMIN � TMIN−TMINmin
TMINmax−TMINmin

Annual average maximum
temperature (°C)

λTMAX Maximum temperature influence
coefficient

XTMAX � TMAX−TMAXmin
TMAXmax−TMAXmin

Slope gradient (°) λα Slope gradient influence
coefficient

Xα � sinα

Slope direction (°) λβ Slope direction influence
coefficient

Xβ � cosβ+1
2

Slope position λγ Slope position influence
coefficient

The upper slope position represents 1, middle slope position represents 0.625, and lower
slope position represents 0

Soil thickness (cm) λh Soil thickness influence coefficient Xh � h−hmin
hmax−hmin
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volume equation table is widely used in China as a tree volume
model for 56 major tree species (35 needles and 21 broad leaves),
as compiled by the Chinese Agriculture and Forestry
Department. The details are summed into tropical forest tree

volume model parameters, as shown in Supplementary
Appendix Table SA2. The forest volume M (m3/ha) and
forest volume growth ΔM (m3/ha·5 years) of the tropical forest
are shown as follows:

FIGURE 4 |Reference value and predicted value distribution ofDBHgrowth of 13major tree species groups (A)Melia; (B)Casuarina; (C)Acacia; (D)Cunninghamia; (E)
Schima; (F) Phoebe; (G) Quercus; (H) Eucalyptus; (I) Cinnamomum (J) other Pine (1) (K) other Pine (2) (L) other hard broadleaf trees (M) other soft broadleaf trees.
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M � ∑j

1
cj · �dgj

j · �Hfj

j ·N · kj, (7)

ΔM ≈ M · (gj · Δ
�dj

�dj

+ fj · Δ
�Hj

�Hj
). (8)

In Model 7 and Model 8, j represents tree species groups; cj,
gj, and fj are accumulation parameters (Qiu et al., 2020); �dj is
the average chest diameter of tree species groups j (cm); �Hj is
average tree height of tree species j (m); N is a forest permanent
sample plot forest density (plant/ha); kj is the proportion of tree
group j to tree species groups; Δ�dj is the DBH growth of an tree
group j (cm); and Δ �Hj is the height of an tree group j (m).

Biomass expansion factor (BEF) can be defined as a fixed ratio
of forest biomass and forest volume, and multiple reaction
monitoring (MRM) is used to estimate the forest carbon
storage in different areas. If forest biomass is calculated based
on forest inventory data, BEF between forest biomass and volume
must be established (Fang et al., 2001). Therefore, the forest
biomass (Mg/ha) and forest biomass growth (Mg/ha·5 years) of
the tropical forests are shown as follows:

B � pjM + qj, (9)
ΔB � pjΔM. (10)

In Model 9 and Model 10, pj and qj are the forest biomass
conversion parameters between the forest biomass and volume
(Qiu et al., 2020), as shown in Supplementary Appendix Table
SA3. Furthermore, the average carbon content of each type of tree
forest is 51.09%, which is between 46.75%–54.89% (Liang et al.,
2010). In this study, the average carbon content was used to
calculate forest carbon storage.

3 RESULTS

3.1 Fitting Results of theMajor Tropical Tree
Species Groups’ Growth
The model-fitting R2 values of Other Pine (1), Casuarina, and
Eucalyptus were 0.482, 0.431, and 0.603; the model-fitting R2

of other tree species groups was between 0.844 and 0.957
(Figure 4). The model-fitting results are shown in Table 3.

TABLE 3 | Fitting results of the major tree species groups’ DBH growth predictions.

Parameter Estimate value Standard deviation 95% confidence interval

Lower limit Superior limit

A1 0.028 0.004 0.020 0.036
A2 0.004 0.001 0.003 0.005
A3 0.003 0.001 0.001 0.004
A4 0.054 0.011 0.033 0.075
A5 0.005 0.001 0.003 0.008
A6 0.003 0.001 0.002 0.005
A7 0.022 0.007 0.009 0.035
A8 0.004 0.001 0.003 0.005
A9 0.007 0.001 0.005 0.009
A10 0.004 0.000 0.003 0.005
A11 0.006 0.001 0.003 0.009
A12 0.024 0.003 0.017 0.031
A13 0.004 0.001 0.002 0.006
B1 0.030 0.001 0.027 0.032
B2 0.015 0.001 0.014 0.017
B3 0.010 0.001 0.007 0.013
B4 0.035 0.002 0.030 0.040
B5 0.011 0.001 0.009 0.013
B6 0.012 0.001 0.009 0.014
B7 0.027 0.003 0.021 0.033
B8 0.014 0.001 0.013 0.015
B9 0.013 0.001 0.012 0.015
B10 0.016 0.000 0.016 0.017
B11 0.014 0.002 0.011 0.017
B12 0.023 0.001 0.021 0.025
B13 0.012 0.002 0.009 0.016
λL 0.790 0.081 0.631 0.949
λB 0.098 0.074 −0.047 0.242
λH 0.165 0.096 −0.023 0.352
λTMIN −0.276 0.058 −0.389 −0.163
λTMAX 0.373 0.052 0.271 0.474
λR 0.103 0.060 −0.014 0.219
λα −0.043 0.086 −0.211 0.125
λβ 0.057 0.036 −0.014 0.128
λγ 0.013 0.049 −0.083 0.108
λh −0.083 0.055 −0.191 0.025

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8071058

Lin et al. Tropical Forest Carbon Sequestration

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


The growth rate parameters of the major tree species groups
ranged from 0.003 to 0.054, and the growth acceleration
parameters ranged from 0.010 to 0.035. The growth rate
and acceleration parameters for the different tree species
groups had significant differences. The influence parameter
of the latitude was 0.098, which indicates that from Jinmu
Corner in the southernmost part of Hainan Island to Mulan
Bay in the northernmost part, the higher the latitude, the
better the trees grow. The influence coefficient of the longitude
was 0.790, which indicates that the longitude can promote tree
growth from Western Beibu Gulf to Eastern Tonggu Corner.
The annual average minimum temperature was −0.276, which
can inhibit tree growth. The annual average maximum
temperature was 0.373, which can promote tree growth. The
influence parameter of the annual average rainfall was 0.103,
which indicates that the annual average rainfall can promote
tree growth. The influence parameter of the slope gradient was
−0.043, indicating that the slope has an inhibitory effect on tree
growth. A parameter value of 0.057 for slope direction
indicated that trees on the north slope grew better than
those on the south slope. The influence parameter of the
slope position was 0.013, which indicates that tree growth
on the upper slope is better than that on the lower slope. The
influence parameter of soil thickness is −0.083, which indicates
that the soil thickness in the range of 15–100 mm can promote
tree growth.

The results (Figure 4) showed that the DBH growth
prediction’s bias ranged from -0.46 to 0.07 cm, RMSE ranged
from 1.50 to 5.29 cm, the bias% ranged from −2.96% to 0.55%,
and RRMSE ranged from 12.18% to 34.30%. The predicted values
were evenly distributed on both sides of the reference values,
indicating that the DBH growth prediction accuracy of major tree
species groups was good.

3.2 Geospatial Environmental Influence
Indicators of Tropical Forest Growth
In this study, the “interpolation” function of the “spatial analyst tool”
in ArcMap 10.2 was selected, and the “inverse distance weight
method” was used to deal with the geospatial environmental
influence indicators’ change of the tropical forest in Hainan Island.
The geospatial environmental influence indicators for tropical forest
growth of Hainan Islandwere subdivided into a 0.05° × 0.05° grid. The
growth pattern of the tropical forest in Hainan Island is shown in
Figure 5. From the west to the east of Hainan Island, the growth of
geospatial environmental influence indicators of the tropical forest
increased gradually. The southwestern part of Hainan Island, such as
Dongfang City, Ledong Li Autonomous County, Sanya City, and
Changjiang Li Autonomous County had lower geospatial
environmental indexes, ranging from 1.0014 to 1.6708. The
geospatial environmental index of Baisha Li Autonomous County,
Wuzhishan City, Baoting Li, Miao Autonomous County, and
Danzhou City ranged from 1.6708 to 1.9433. The geospatial
environmental index of Lingshui Li Autonomous County,
Qiongzhong Li and Miao Autonomous County, and Lingao
County ranged between 1.774 and 1.9433. The cities in the eastern
part of Hainan Island, such as Wenchang, Qionghai, Wanning, and
Tunchang counties, had higher geospatial environmental indexes,
ranging from 1.9433 to 2.5120. Northern cities such as Chengmai
County, Ding’an County, and Haikou City had a low to high
geospatial environmental index ranging from 1.3272 to 2.0381.

3.3 Trends in Tropical Forest Carbon
Storage
In this study, without considering the total consumption of forest
stands, the carbon storage of tropical forests in Hainan Island was
statistically predicted according to the National Forest

FIGURE 5 | Geospatial environmental influence indicators of tropical forest growth.
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Management Plan (2016–2050) (Figure 6). From 2003 to 2008,
tropical forest area decreased slightly, while from 2008 to 2013 it
increased slightly. From 2013 to 2018, the tropical forest area
significantly increased by 7.66 × 104 ha and is expected to increase
by 6.45 × 104 ha in the next 30 years. From 2003 to 2018, the
volume of the forest increased slowly, and the forest carbon
storage increased slowly after a slight decrease from 2003 to 2008.
The tropical forest volume increased by 2,403.11 × 104 m3, and
the forest carbon storage increased by 13.07 TgC in these 15 years.
It is estimated that in the next 30 years, the tropical forest volume
will increase by 23,188.33 × 104 m3, and the forest carbon storage
will increase by 106.68 TgC; the forest volume per unit area and
forest carbon density increased slowly before 2018, and then
increased rapidly after a slight decrease in 2018. It is estimated
that in next 30 years, the tropical forest volume per unit area will
increase by 119.26 m3/ha changing to an increase by 392.34 m3/
ha; the forest carbon density will increase by 69.60 Mg/ha
changing to an increase by 194.08 Mg/ha. The annual forest
carbon sink was −0.06 TgC/yr from 2003 to 2008. Due to
large-scale afforestation, there was a slight increase to
1.78 TgC/yr from 2008 to 2013 and slightly increased to
0.89 TgC/yr from 2013 to 2018. In the next 30 years, the forest
carbon sink is expected to grow annually and then will tend to be
stable.

4 DISCUSSION

4.1 Analysis of Tropical Forest Growth
Longitudes and latitudes are used as the impact indicators of the
regional microclimate in each plot. Hainan Island is located in the
Northern hemisphere. Thus, the higher the latitude in the
Northern hemisphere, the shorter the day. In areas with
higher latitudes, photosynthesis slows down, and tree growth
cycles increase, resulting in more organic matter accumulation.
Therefore, tropical forest trees grow best in high latitudes. Due to
the longitudinal zonality of Hainan Island, the water content in
the east to west direction was significantly different. Therefore,
the higher the longitude, the better the tropical forest grows. From
the perspective of topography, the smaller the slope, the more
aboveground biomass (De Castilho et al., 2010), the better the
plant root system (Stokes et al., 2009), and consequently, the
better the tree growth. The north slope was shady with less
evaporation, and the soil moisture content was better there
than on the south slope. Hainan Island is located in the
tropics; it has a diverse mountain terrain, a large number of
microclimates (Jiang et al., 2016), and uneven precipitation, and
these important factors limit tree growth. Therefore, the tree
growth status on the north slope was better than that on the south
slope. The tropical forest in the downhill area was heavily

FIGURE 6 | Trends in the tropical forest growth in Hainan Island from 2003 to 2050.
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deforested and replaced with economically important tree crops
such as rubber; however, the Areca and Cassava will remove the
nutrients from the area for tree growth (Wang et al., 2007).
Therefore, the growth status of the tree in the uphill area was
better than that in the downhill area. From a meteorological and
climatic point of view, rainfall through the canopy layer could
increase the elements in the water and soil nutrients (Chen et al.,
2020). Therefore, the greater the annual average rainfall, the better the
tropical forest growth status. Tree growth requires specific
temperature conditions, and they generally grow in areas where
the average monthly temperatures exceed 6°C (Körner, 1998). In
the Hainan tropical forest, the annual average minimum temperature
(19.873°C), and the annual averagemaximum temperature (29.432°C)
over the past 20 years were not found to limit tree growth. On the
contrary, large temperature differences could improve the
photosynthetic efficiency of the tree. Therefore, the trees in the
tropical forest could grow better with lower annual average
minimum air temperatures and higher annual average maximum
air temperatures. The overburden soil layer inHainan Islandwas thin,
and the differences between the soil layer thicknesses were small,
which could explain why the relationship between the tree growth
status and soil layer thickness was not evident.

Notably, the higher the altitude on Hainan Island, the better the
growth of the tropical forest, as this was different fromprevious studies
(Yuliya et al., 2006; David and Robert, 2007). In general, the vertical
growth of the mountain tree was hump curved, and a combination of
water and heat was the best at themiddle altitudes. This phenomenon
can be explained by the water–energy balance hypothesis (O’Brien,
2006). However, most of the altitudes of Hainan Island were below
1,200m, which did not reach the middle altitude for the mid-domain
effect (Syfert et al., 2018). In addition, in the tropical and subtropical
mountainous areas, tree lines only appeared in the places where the
summer isotherm was as low as 3–6°C (Körner, 1998). In the tropical
forest of Hainan Island without tree lines, the vertical zonality of the
tree growth was not obvious. On the contrary, the species diversity at
higher altitudes of the tropical forest was abundant. Therefore, the tree
growth status of the tropical forest in the higher altitude areas of
Hainan Island was better.

4.2 Feasibility and Deviation Analysis of the
Tropical Forest Carbon Storage Prediction
Method
According to the Ninth Inventory of Forest Resources in Hainan
(2003–2018), this study used the annual increase in DBH to
accurately estimate the forest carbon sink potential and follow
two assumptions. First, this study assumes that the forest area
data of the Ninth Inventory of Forest Resources in Hainan
represent the distribution of the tropical forest area in Hainan
in 2003, 2008, 2013, and 2018. Moreover, there will be no large-
scale deforestation and death in the next 30 years. Secondly, this
study assumes that the area proportion of existing man-made
forests can approximately reflect the area proportion of newly
built forests in the future. According to the proportion of existing
man-made forests among various forest types of the Hainan
tropical forest in the Ninth Inventory of Forest Resources, the
total area of new man-made forests in the future will be allocated

to various forest types of the Hainan tropical forest in proportion.
After deducting the total deforestation of forest stands, total
mortality of forest stands and total consumption of forest
stands, we calculate the total area of tropical forests in Hainan
Island in the next 30 years. The total consumption of forest stands
deducted is shown in Table 4. These data include the impact of
manual management measures on forest biomass. Therefore, the
prediction results given in this study consider the impact of
human factors and historical processes on the forest biomass
carbon pool in Hainan Island to a certain extent. The prediction
results can truly reflect the forest carbon pool and its change.

In addition, the factors affecting the accuracy of the prediction
results in this study mainly include the following aspects: First, in the
next 30 years, it is assumed that there will be no large-scale
deforestation and tropical forest death. According to the model,
tropical forest biomass will increase naturally. However, some
forests are still dead or cut down in the process of growth. Young
growth forests with low biomass density replace mature forests with
high biomass density, whichwill make the estimation of tropical forest
carbon storage too large. Assuming that the current mortality ratio of
forest stands, and the deforestation of forest stands are maintained for
the next 30 years (Table 4), according to the relationship between the
current tropical forest volume and carbon storage, the tropical forest in
Hainan Islandwill lose about 24.63TgC in the next 30 years. Then, the
forest carbon storage in 2050 will be reduced from 169.96 TgC to
145.33 TgC. Second, various influencing factors in the future may also
reduce the accuracy of newly increased man-made forest estimation.
With the change of policies on Hainan Island, human activities, trade,
and other factors may also affect the area proportion of newly built
forests. Third, factors such as climate and environmental change,
natural disasters and CO2 concentration may also affect the
accumulation process of forest biomass density in the future.
Fourth, whether China’s forestry sustainable development strategic
objectives can be achieved will directly affect the prediction results of
this study. Fifth, the method of calculating the tropical forest carbon
storage using the Chinese forest average carbon content will cause
deviations. Therefore, it is urgent to establish tropical forest carbon
content models of different tree species.

Based on the existing defects of the prediction results’
accuracy, we will improve the research from the following two
aspects in the future. First, our forest DBH growth prediction
model only introduces the relationship between DBH and
environmental information. In the future, we want to
introduce the relationship between DBH, tree age, and
environmental information into the models to predict the
DBH change more accurately. Then, we can estimate the
forest carbon sequestration potential generated by tree growth
more accurately. Second, our existing models have limitations.
Our models put forward the aforementioned assumptions under
the condition that there will be no extreme climate in the future.
However, the future climate is unpredictable. Extreme climate
may occur in the future. Therefore, we intend to introduce
CMIP6 into the future models. CMIP6 refers to the monthly
values of minimum temperature, maximum temperature, and
precipitation that were processed for nine global climate models
(GCMs): BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1,
CanESM5, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L,
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MIROC6, MRI-ESM2-0, and for four Shared Socio-economic
Pathways (SSPs): 126, 245, 370, and 585. In this way, we can
assess the relationship between climate, man-made, trade
openness, and forest carbon sequestration potential in different
future scenarios more clearly.

4.3 Analysis of Tropical Forest Carbon
Sequestration Potential
The growth process of the tropical forest trees is primarily
through respiration and photosynthesis to fix carbon dioxide,
which is linked to tree growth. Therefore, accurately predicting
the growth process of tropical forests to predict their forest carbon
sequestration potential is of huge importance. The forest carbon
sequestration potential was different for different forest ecosystems.
Compared with temperate forests, the forest carbon sequestration
potential of tropical forests was more effective (Terakunpisut et al.,
2007). In the case of considering the total consumption of forest
stands, the change trend of the tropical forest carbon sequestration
potential in Hainan Island from 2003 to 2050 is shown in Figure 7. In
2020, the area of China’s forest was 1.75 × 108 ha, and the forest
carbon sink generated by the growth of China’s forest in the next
30 years is estimated to be 4,667.87 TgC (Qiu et al., 2020). The tropical
forest area inHainan Island only accounted for 0.88%ofChina’s forest
area. However, in the next 30 years, the forest carbon sink generated
by tree growth in Hainan Island’s tropical forest will account for 1.8%
of China’s forest carbon sink. Therefore, Hainan Island’s tropical
forest has huge forest carbon sequestration potential in the next
30 years. From 2020 to 2050, the CO2 emissions from fossil fuel
combustion in China are conservatively estimated to be 91.43 PgC,
and China’s forest vegetation (tree, economic, shrub, and bamboo
forests) will absorb 22.14% of the CO2 emission from fossil fuel
combustion (Qiu et al., 2020). The growth of tropical forests inHainan
Island will absorb 0.34% of China’s CO2 emissions. Therefore,
although Hainan Island’s tropical forest area is small, its
contribution to the absorption of CO2 emissions is huge. It is

roughly estimated that in the next 30 years, the total carbon sink
of the tropical forest in Hainan Island will be 83.59 TgC.

5 CONCLUSION

By establishing the relationship between tropical forest growth
and the changes in the geospatial environment, we could assess
the geospatial environment influence mechanisms and predict
the carbon sequestration potential generated by forest growth.
This has huge significance for tropical forest growth and carbon
sink predictions and is a breakthrough in the theoretical research
of tropical forest response mechanisms to climate change.
Through the forest growth geospatial environment indicators,
the impact mechanisms of forest growth and forest carbon
sequestration potential were effectively analyzed, which can
significantly guide the formulation of future forest
management plans and forest protection policies. Notably, in
the next 30 years, China will increase its area of afforestation by
2.25 × 107 ha. Among them, the tropical forest in Hainan Island
will increase by 6.45 × 104 ha. It is almost impossible to increase
the afforestation area in Hainan Island tropical forest due to
insufficient land area, economic development, residents’ life, and
other limiting reasons, which is also a common problem faced by
tropical forests worldwide. Although tropical forests cannot
augment their forest carbon sequestration capacity by
expanding their area, they can increase it as they grow older.
Therefore, protecting the existing tropical forest ecosystems is
critical.
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TABLE 4 | Trends in the total consumption of tropical forest stands in Hainan Island from 2003 to 2050.

2003 2008 2013 2018 2025 2030 2035 2040 2045 2050

Total deforestation of forest stands (TgC/yr) 0.37 0.44 0.30 0.30 0.29 0.28 0.27 0.26 0.26 0.26
Total mortality of forest stands (TgC/yr) 0.13 0.13 0.15 0.25 0.32 0.38 0.46 0.54 0.64 0.74
Total consumption of forest stands (TgC/yr) 0.50 0.57 0.45 0.55 0.60 0.66 0.72 0.81 0.90 1.00

FIGURE 7 | Trends in the potential of tropical forest carbon sink in Hainan Island from 2003 to 2050.
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