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Ecological water replenishment (EWR) via interbasin water transfer projects has been
regarded as a critical solution to reducing the risk of lake shrinkage and wetland
degradation. The hydrological conditions of EWR water sources do not change
synchronously, which may have an impact on the transferable water. Based on the
GAMLSS model and the multivariate Copula model, this work presents a research
approach for EWR via interbasin water transfer projects that can capture the non-
stationarity of the runoff series and the frequency of dryness–wetness encounters, as
well as speculates on various scenarios throughout the project operation phase. We
present a case study on the Baiyangdian Lake, acting as the largest freshwater wetland in
North China, which has suffered from severe degradation during the past decades and
deserves thorough ecological restoration. The GAMLSS model was used to examine the
non-stationarity characteristics of EWRwater sources including the Danjiangkou Reservoir
(DJK), the Huayuankou reach of the Yellow River (HYK), and upstream reservoirs (UR). The
multivariate Copula model was implemented to evaluate the synchronous–asynchronous
characteristics for hydrological probabilities for the multiple water sources. Results show
that 1) significant non-stationarity has been detected for all water sources. Particularly, a
significant decreasing trend has been found in UR and HYK. 2) The non-stationary model
with time as the explanatory variable is more suitable for the runoff series of DJK, HYK, and
UR. Under the non-stationary framework, the wet–dry classification of runoff series is
completely changed. 3) Whether the bivariate or trivariate combination types, the
asynchronous probability among the three water resources is over 0.6 except DJK-
HYK, which indicates the complementary relationship. Multiple water resources are
necessary for EWR. What is more, during a dry year of UR, the conditional probability
that both DJK and HYK are in a dry year is 0.234. To alleviate the problem of not having
enough water, some additional water resources and an acceptable EWR plan are required.
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INTRODUCTION

With the rapid increase in the human population and social
progress, development has generated significant economic and
social benefits, but these benefits often come at high costs. The
overexploitation of freshwater resources threatens the ecological
environment and the overall well-being of humankind in many
parts of the world (Kummu et al., 2016). At present, there are a
large number of lakes shrinking and wetlands degrading around
the world (Acreman et al., 2007; Chen et al., 2013; Mei et al., 2015;
Liu et al., 2019; Ussenaliyeva and Aizhan, 2020; Jones and Fleck,
2020; Stone, 2021). In China, for example, 60.0% of lakes and
28.0% of marshes were threatened by the overuse of water
resources, while 43.3% of lakes were threatened by sediments
(Wang et al., 2012). Several wetland restoration measures, such as
ecological water replenishment, restoring natural waterways,
recreating the natural river, establishing habitats, and
returning cropland to wetland, are recognized (Xin, 2014; Wu
et al., 2020). Among these measures, the ecological water
replenishment (EWR) has been widely applied in restoring
ecology and hydrological conditions across various climatic
and geophysical regions (Onuoha, 2008; Weigang et al., 2018),
such as the Baiyangdian wetland (Ding et al., 2019), the Boluo
Lake (Huang et al., 2021), and the Chagan Lake (Zhang et al.,
2017). Understanding the hydrological synchronization of
numerous water sources is critical for the EWR, as the EWR
measures are heavily reliant on the hydrological conditions of
water sources. The water source area and intake area are usually
geographically far apart, which leads to the temporal variation of
runoff in the water source area and the intake area being not
always synchronous. The asynchrony of the hydrological
conditions bears directly on the transferable water quantity
and the elapsed time for the water replenishment project.
Furthermore, when water sources for EWR become diverse,
the hydrological conditions of the water sources can hardly
have a consistent change and made the EWR more
complicated. Hence, a comprehensive analysis on the
hydrological conditions of multiple water sources is suggested
in aiding the formation of water diversion schemes (Zhang et al.,
2017; Yan et al., 2018).

The basic assumption of traditional hydrological frequency
analysis is the assumption of stationarity (Du et al., 2015).
However, hydrological series might become non-stationary due
to changing climate and underlying surfaces, which leads to the
invalidity of the results of hydrological frequency analysis (Lu
et al., 2013; Jiang et al., 2015). Therefore, the frequency analysis of
non-stationary hydrological series becomes a research focus in
the past 20 years. The non-stationarity correction method (Ping
et al., 2009) and the time-varying moment method (Strupczewski
et al., 2001; Strupczewski and Kaczmarek, 2001) are widely used
methods of non-stationary hydrological frequency analysis. The
non-stationarity correction method attempted to accurately
detect and decompose the abrupt and trend changes in
hydrological time series and then compose these components
(Xie et al., 2018a; 2018b). The time-varying moment method
assumes that hydrologic variables follow some distributions,
including GEV and GAMLSS, in which one or more

parameters are allowed to vary in time to reflect the non-
stationarities of the hydrological series. One of the commonly
used tools to examine the hydrological non-stationarity is the
GAMLSS model (Jiang et al., 2015; Ahn and Palmer, 2016; Li
et al., 2018). GAMLSS was proposed for fitting regression type
models, where the distribution of the response variable does not
have to belong to the exponential family, and includes highly
skew, kurtotic continuous and discrete distribution (Rigby and
Stasinopoulos, 2005). GAMLSS allows all the parameters of the
distribution of the response variable to be modeled as linear/non-
linear or smooth functions of the explanatory variables
(Stasinopoulos and Rigby, 2007). Because of these advantages,
GAMLSS is widely used in the non-stationary hydrological
frequency analysis (Villarini et al., 2009b; Yin et al., 2018;
Zheng et al., 2018; Rashid and Beecham, 2019).

Univariate hydrological frequency analysis often fails to
accurately characterize the hydrological conditions of multiple
water sources. Therefore, copula functions were proposed (Sklar,
1959), which could quantify the dependence structure among
correlated variables (Genest and Favre, 2007; Ariff et al., 2012), to
determine the multivariate probability distribution. A copula is
described as a function that links a multidimensional probability
distribution function to its one-dimensional margins. Copula
function is widely used in hydrology, including the joint
frequency analysis of precipitation, drought, flood, and other
extreme events (Grimaldi and Serinaldi, 2006; Shiau and
Modarres, 2009; Xu et al., 2015). The studies mentioned above
did not consider non-stationarity in the multivariate frequency
analysis. In recent years, the non-stationarity in multivariate
hydrological series has just begun to attract some attention
only recently (Xiong et al., 2015). Some studies have
introduced the non-stationarity of marginal distribution into
the joint frequency analysis based on the copula function
(Kwon and Lall, 2016; Wu et al., 2020). Based on these, Jiang
et al. believe that the changing environments have altered not
only the statistical characteristics of some single random variables
but also the dependence (i.e., statistical correlation) structure
between different individual random variables. They employed a
time-varying copula to analyze the effect of the time variation in
the joint distribution on joint return periods of low flows (Jiang
et al., 2015). Some studies followed a similar method (Ahn and
Palmer, 2016; Li et al., 2018; Vinnarasi and Dhanya, 2019; Wen
et al., 2019).

However, the above studies about the non-stationarity in
multivariate hydrological series focused on the joint
probability distribution and return period of hydrological
extreme events. Current studies mainly analyzed the
dryness–wetness encounter probabilities of flow series under
stationary conditions (Feng et al., 2010; Liu et al., 2015; Wang
et al., 2017). The non-stationarity in multivariate series has not
been fully considered when analyzing the dryness–wetness
coupling of multiple water sources, particularly in formulating
EWR schemes. Therefore, we recognize the necessity of a coupled
analysis on the hydrological non-stationarity for multiple water
sources in practice. The analysis of the encounter probability
between water resources of water transfer projects enables
decision-makers to make a reasonable lake water
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replenishment plan. It motivates this study. In this study, we
present a case study on the Baiyangdian Lake, acting as the largest
freshwater wetland in North China, which has suffered from
severe degradation during the past decades and deserves
thorough ecological restoration. The GAMLSS model was
employed to examine the hydrological non-stationarity of
discharge for multiple water sources. Discharges considered in
this study include those in the source regions of the South-to-
North Water Diversion Project (SNWDP), the discharge at the
Huayuankou section of the Yellow River, which represents the
water diversion for ecological water replenishment in the
Baiyangdian Lake from the Yellow River and the incoming
discharge of the upstream reservoirs, that is, the Wangkuai
Reservoir, the Xidayang Reservoir, and the Angezhuang
Reservoir. After that, the copula function was employed to
analyze the joint probability of the three water sources. Hence,
the dryness–wetness encounter probabilities of the three water
sources were calculated.

The rest of this article is organized as follows. Section 2 introduces
the main methods used in the present study briefly, including
GAMLSS and copula. Details of the study area and data are
presented in Section 3. Section 4 presents the parameter
estimation and selection of marginal distribution and copula
function along with the dryness–wetness encounter probabilities of
the three water sources. Section 5 gives the conclusions of this study.

METHODS

Trend and Change Points Analysis Methods
The trend component identification method used in this article is the
Mann–Kendall trend test (Mccuen, 1994; Libiseller and Grimvall,
2010) and Sen’s slope test (Mccuen, 1994; Gocic and Trajkovic, 2013).
The two testmethods are non-parametric tests, whichmake onlymild
assumptions about the data, and are appropriate when the distribution
of the data is non-normal. Pettitt’s test (Pettitt, 1979), the standard
normal homogeneity test (SNHT) (Alexandersson, 1986), and
Lanzante’s test (Pettitt, 1979) are employed to identify change
points of annual runoff time series. These methods are widely
used, so the principles and calculation processes will not be
reiterated here. The analyses were finished in R (package = “trend”).

Marginal Distribution Using GAMLSS
To construct the dependence structure of hydrological variables
by copulas, the marginal distribution of each variable should be
determined first. Under the changing environments, the annual
runoff series of many watersheds have been found to exhibit the
so-called non-stationarity due to the effects of both climate
change and human activates. As a result, the traditional
method for runoff frequency analysis, which is based on the
stationary assumption that the hydrological series should be
independently and identically distributed, maybe no longer
valid. Hence, we employed the time-varying moment model
that expresses the distribution parameters as functions of time
explanatory variable to capture the non-stationary characteristics
of univariate runoff series by GAMLSS packages in R.

GAMLSS are univariate distributional regression models,
where all the parameters of the assumed distribution for the
response can be modeled as additive functions of the explanatory
variables. GAMLSS provides over 100 continuous, discrete, and
mixed distributions for modeling the response variable.

A GAMLSS model assumes independent observations yi for
i � 1, 2, . . . , n with probability (density) function f(yi|θi)
conditional on θi, where θi � (θ1i, θ2i, θ3i, θ4i) � (μi, σ i, ]i, τi) is
a vector of 4 parameters, each of which is related to the
explanatory variables. The first two population parameters μ
and σ are usually characterized as location and scale
parameters, respectively, while the remaining parameter(s), if
any, are characterized as shape parameters, although the model
may be applied more generally to the parameters of any
population distribution.

gk(θk) � ηk � Xkβk +∑Jk
j�1

Zjkγjk;Xk �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 t . . . tIk−1

1 t . . . tIk−1

1 . . . . . . . . .
1 t . . . tIk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(1)

where gk(·) is the known monotonic link function relating the
distribution parameters to explanatory variables by semi-
parametric additive models. θk and ηk are vectors of length n.
βTk � {β1k, β2k, . . . , βJkk} is the parameter vector with sample size
of Jk; Xk is the matrix of the explanatory variable with length of
n × Jk;Zjk is the fixed design matrix of n × qjk; γjk is the variable
following the standard normal distribution. Without considering
the impact of random effects on the distribution parameters,
gk(θk) � ηk � Xkβk. For the location and scale parameters μ and
σ, one or more frequently used variables need to be selected as the
explanatory variables, including time (Villarini et al., 2009a,
2009b; Sun et al., 2018; Ting et al., 2018); climatic factors such
as temperature, precipitation, and North Atlantic Oscillation
(Villarini et al., 2012; Feng et al., 2020); factors relating to the
underlying surface; and hydraulic engineering (Su and Chen,
2019; Wen et al., 2019). Previous research (Chen et al., 2007;
Cong et al., 2009; Wang et al., 2021; Wang and Sun, 2021) has
established that the runoff series of three study areas in this article
exhibit significant non-stationarities with time, such as
decreasing trends and change points, especially in the Yellow
River Basin and the Haihe River Basin. Climate change and
human activities have been identified as the two main reasons
for the decrease in runoff. In the largest tributary of the Yellow
River, the contributions of climate change and human activities to
runoff decrease are 22–29% and 71–78%, respectively (Zhan et al.,
2014). While in the Haihe River Basin, the contributions are
20–40% and 60–80% (Jia et al., 2012; Xu et al., 2014). The human
activities here include land use, vegetation, and other land surface
conditions, while climate change and climate variability are
reflected in precipitation and temperature. It demonstrates
that the decrease in runoff is the result of a mix of factors.
Unfortunately, it is difficult to find appropriate indicators to fully
characterize these factors in the absence of some key observation
data, such as artificial water consumption. Hence, we take time T
as the explanatory variable, which is effective and the most
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frequently used explanatory variable. A full-parameter model
with time as the explanatory variable and without considering
the impact of random effects is proposed as

g1(μ) � η1 � X1β1 � β11 + β21t + ... + βI1t
I1−1,

g2(σ) � η2 � X2β2 � β12 + β22t + ... + βI2t
I2−1,

(2)

where μ and σ are vectors of length n, which indicate that the
statistical parameters of non-stationary series change with time.

Copulas
Copula (Sklar, 1959) is described as a function that links a
multidimensional probability distribution function to its one-
dimensional margins. The copula models are tools for studying
the dependence structure of multivariate distributions. The usual
joint distribution function comprises information on the
marginal behavior of individual random variables as well as
the dependency structure between the variables. The
relationship between the correlated variables Xi for i �
1, 2, . . . , n is described by the following:

F(x1, x2, . . . , xn) � C(u1, u2, . . . un), (3)
where C is the distribution function and ui is the cumulative
distribution of the Xi variable and ui ∈ [0, 1].

A copula permits its marginal distributions to be evaluated by
using different distributions. Among many families of copulas,
the Archimedean copula has been most commonly applied in
hydrology (Ahn and Palmer, 2016). Let function
ϕ: [0, 1] → [0,∞) be a strict Archimedean copula generator
function and suppose its inverse ϕ−1 is completely monotonic
on [0,∞). A strict generator is a decreasing function
ϕ: [0, 1] → [0,∞) that satisfies ϕ(0) � ∞ and ϕ(1) � 0. A
decreasing function f(t): [a, b] → (−∞, ∞) is completely
monotonic if it satisfies

(−1)k d
k

dtk
f(t)≥ 0, k ∈ N, t ∈ (a, b). (4)

An Archimedean copula is defined as follows:

C(u1, u2, . . . un) � ϕ−1(ϕ(u1) + ϕ(u2) + . . . + ϕ(un)). (5)
The Archimedean copulas commonly applied are the Clayton

copula, the Frank copula, and the Gumbel copula, as shown in
Table 1.

Joint Probability Analysis Based on Copulas
A d-dimensional joint distribution probability can be defined as
follows (Song, 2012):

FX1X2 ...Xd(x1, x2, . . . , xd) � P(X1 ≤ x1, X2 ≤x2, . . . , Xd ≤xd)

� ∫
x1

−∞
∫
x2

−∞
. . . ∫

xd

−∞
fX1X2 ...Xd(w1 ,w2 ,..,wd)dw1dw2..dwd, (6)

where fX1X2...Xd(w1 ,w2 ,..,wd) is the density function of X1, X2, . . . ,
Xd. The marginal probability distributions of X1, X2, . . . , Xd are
denoted by FX1(x1) � P(X1 ≤x1), FX2(x2) � P(X2 ≤x2),. . .,
FXd(xd) � P(Xd ≤xd).

Similar to the classification of wet–dry season, it is a common
practice to classify runoff as wet, median, and dry periods
according to the result of the frequency analysis in China to
facilitate the management of watershed management. The
common classification criterion is the cumulative probability
distribution method.

P(X<Xi)<Pd : dry year,
Pd <P(X<Xi)<Pw : median water year, and
P(X<Xi)>Pw : wet year.

(7)

where Pd and Pw are the thresholds of classification. P(X<Xi) is
the cumulative probability distribution of runoff value X.
Combined with the copula function, the dryness–wetness
encounter probabilities of water replenishment resources are
transformed into the multivariate joint probability.

For the bivariate joint probability, let Xd and Xw, Yd, and Yw

be the thresholds of wet–dry classification of two runoff series,
respectively. According to the probability inclusion–exclusion
principle, the combination type can be calculated as follows:

Synchronization probability is given as follows:

Dry − dry P(X<Xd, Y<Yd) � c(Xd , Yw),
Median −medianP(Xd <X<Xw, Yd <Y<Yw)

� c(Xw , Yw) − c(Xd , Yw) − c(Xw , Yd) + c(Xd , Yd),
Wet − wetP(X>Xw, Y>Yw) � 1 − Pw − Pw + c(Xw , Yw).

Asynchronous probability is

Dry −medianP(X<Xd, Yd <Y<Yw)
� c(Xd , Yw) − c(Xd , Yd),

Dry − wetP(X<Xd, Y>Yw) � Pd − c(Xd , Yw),
Median − dry P(Xd <X<Xw, Y<Yd)

� c(Xw , Yd) − c(Xd , Yd),
Median − wetP(Xd <X<Xw, Y>Yw)

� Pw − Pd − c(Xw , Yw) + c(Xd , Yw),
Wet − dry P(X>Xw, Y<Yd) � Pd − c(Xw , Yd), and
Wet −medianP(X>Xw, Yd <Y<Yw)� Pw − Pd − c(Xw , Yw) + c(Xw , Yd).

For the trivariate joint probability, there are 33 = 27
combination types based on the probability
inclusion–exclusion principle. No more details are provided
here, except the diagrammatic sketch (Figure 1B), due to
limited space.

Conditional probability is also employed in the analysis of the
dryness–wetness encounter probability. Conditional probability
is defined as the likelihood of an event or outcome occurring,
based on the occurrence of a previous event.

TABLE 1 | List of common Archimedean copula function.

Copula ϕ(u) θ C(u1 , . . . , un)

Gumbel–Hougaard (−In u)θ θ >0 exp{−[∑n
j�1(−Inuj)θ]}

Clayton 1
θ (uθ − 1) θ >0 [(∑n

j�1u−θj ) − n + 1] 1
−θ

Frank −In e−θu−1
e−θ−1 θ >0 1

θ In[1 + ∏n

j�1[e
−θuj −1]

(e−θ−1)n−1 ]
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P(A|B) � P(AB)/P(B), (8)
where P(A|B) is the probability of event A occurring given that
event B has already occurred. P(AB) is the joint probability of
events A and B. P(B) is the probability of event B.

STUDY AREA AND DATA

The BaiYangDian Lake (the BYD Lake) is located in the Haihe
River Basin, which is the largest shallow lake/wetland in the
North China plain. In the past 50 years, climate changes and
human impacts have led to a sharp decrease in the amount of
water entering the lake, and the water level in the lake has
dropped significantly (Hu et al., 2012). According to the
measured data of the Zaolinzhuang station at the outlet of the
BYD Lake, the average water level was 7.67 m in 1950, and by
2018, it was only 6.88 m. The maximumwater depth is 5~6m, and
the average water depth is only 1~2 m. The decline of water level
led to frequent drying up of the BYD Lake. In the 1970s, the lake
dried up for 647 days in 1970–1973 and 1976. In the 1980s, the
lake dried up for 6 years in a row from 1983 to 1988, for a total of
1845 days. In the 2000s, the lake dried up for a total of 1,488 days
between 2000 and 2008. Low water-level events that occurred
frequently and for a long time wreaked havoc on the lake’s
ecological health (Xu et al., 2011; Yang et al., 2016). The
ecological restoration of the BYD Lake is nearing completion,
and water replenishment via water transfer projects is one of the
most efficient ways to meet the ecological water demand while
also addressing the local water shortage.

Three water sources of EWR are available. The upstream
reservoirs (the Wangkuai Reservoir, the Xidayang Reservoir,
and the Angezhuang Reservoir) are important water sources as
local water resources. The total annual runoff of the three
reservoirs is less than 0.1 billion m3. The targets are urban,

agricultural, and ecological water consumption downstream of
the BYD Basin. The locations of the three reservoirs and the BYD
Lake are shown in Figures 2B. Except for the upstream reservoirs,
two water transfer projects have been in operation for the EWR of
the BYD Lake.

1) Danjiangkou Reservoir (DJK) in the Hanjiang River Basin.
The SNWDP is a large-scale water diversion project led by the
Chinese government, which transfers water from DJK to
northern China. The project was completed and put into
operation in December 2014, and the BYD Lake received its
first ecological water replenishment via the SNWDP in 2018.
The average annual inflow of the DJK reservoir is over 35
billion m3, and the average annual water diversion of the
SNWDP is 8.54 billion m3. The main targets are 14 cities in
northern China, including Beijing and Tianjin, that are
suffering from water resources’ shortage. It is worth
mentioning that the SNWDP targets have substantial water
use competition. The amount of water that can be used for
ecological water replenishment is only 0.1–0.3 billion m3.

2) The mainstream of the Yellow River. The Yellow River
Diversion Project is also a comprehensive large-scale water
transfer project, which transfers water from the lower Yellow
River to the BYD Lake. The targets of the project are the BYD
Lake and five cities along the way. The project was completed
and put into operation in November 2017. The annual average
runoff at the Huayuankou section of the Yellow River (HYK)
is 34.9 billion m3. HYK is a large hydrological station nearest
to the water intake position of the project. The annual average
water diversion of the project is 0.62 billion m3 and the
amount of water that can flow in the BYD Lake is about
0.1 billion m3.

In general, the annual average runoff is large, but the amount
for the water transfer project is small and the amount flowing into

FIGURE 1 | Sketch of the dryness–wetness encounter probabilities: (A) bivariate joint probability and (B) trivariate joint probability.
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the BYD Lake is tiny. The transferable water quantity of the water
sources is limited during a dry year, and it is difficult to guarantee
the water demand of the BYD Lake using a single water source.
Therefore, EWR of the BYD Lake from multiple water sources
and the consequent analyses of dryness–wetness encounter
probabilities among multiple water sources are necessary and
meaningful.

The data used in this article include 1) the annual inflow of
Danjiangkou Reservoir (DJK), 2) the annual runoff measuring at
Huayuankou section of the Yellow River (HYK), and 3) the total
annual inflow of the upstream three reservoirs, including the
Wangkuai Reservoir, the Xidayang Reservoir, and the
Angezhuang Reservoir (UR). The dataset with strict quality
control covers 1961–2018 and is acquired from “Annual
Hydrological Report P.R China” released by the Chinese
government. It is worth noting that the EWR of the BYD Lake
has only been operational since 2017. Long-term observation data
after the EWR operation cannot be able to obtained. The non-
stationarity of the dataset will be given full consideration in this
study. What is more, the hydrometric stations observing this
dataset are located upstream of the diversion ports (as shown in
Figure 2), effectively avoiding the impact of water diversion
projects’ construction on data observation. Given the reasons,
it is believed that the long-term datasets were of a good quality,
which could fit the requirement of the dryness–wetness
encounter probability analysis in this study.

RESULTS AND DISCUSSION

Trend and Change Points Analysis
Hydrological series are generally composed of deterministic
aperiodic components, deterministic periodic components, and
stochastic components (Xinan and Ping, 2012). The deterministic
aperiodic components include transient components such as
trend and change point, which are often superimposed on
other components. When the hydrological time series has a
significant trend and change point, it is no longer consistent.
The traditional frequency analysis is based on the consistency of
hydrological series, so the trend and mutation point should be
tested before fitting the marginal distribution.

The trend test results are shown in Table 2. The annual runoff
series of DJK, HYK, and UR have decreasing trends. The annual
changing rates in HYK and UR are −5.4042 and −0.1877 billion
m3/10a, respectively. HYK’s annual runoff was approximately
34.9 billion m3 in 1961–2018 and 28 billion m3 in 2009–2018,
while that of UR was 0.959 and 0.590 billion m3, respectively. The
result indicates that the decreasing trends in HYK and UR are
significant (p value < 0.01). For DJK, the significance of the
decreasing trend does not reach up to 0.05 level.

Pettitt, SNHT, and Mann–Kendall tests were employed to
analyze the change point of the annual runoff series in DJK, HYK,
and UR (Table 3). The change point is 1990 in DJK. Some studies
(Dongfei et al., 2016) suggested that the runoff decreased sharply

FIGURE 2 | Location of the research area.
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because of the great climate change around 1990, such as the
decrease of precipitation and the increase of temperature. The
change points are 1985 and 1990 in HYK. Some studies (Jun et al.,
2014) found that the atmospheric circulation in this area was
abnormal from 1985 to 1990. The Mongolian low pressure
significantly weakened and the summer monsoon was weak,
resulting in a decrease in the precipitation and then in the
runoff. The change point is 1996 in UR. Some studies (Ling-
ling and Si-rui, 2016) believed that the abnormal decrease of
runoff was caused by the change of the runoff generation
mechanism. Linear regression curve and mean values before/
after change points are shown in Figure 3.

From the results of trend and change point analysis, it is clear
that the runoff in the regions of the three water sources showed
significant non-stationarity in the past decades, which is in
accordance with the previous studies. The annual runoff
(2009–2018) of three hydrological stations in the middle
reaches of the Yellow River decreased by 14.33%, 32.16%,
40.79%, and 44.32% compared with the maximum annual
runoff (1959–1968) at each station (Wang and Sun, 2021).
The results of the other two water sources with decreased
trends are also supported by previous studies (Chen et al.,

2007; Wang et al., 2021). In short, before conducting a
hydrological frequency analysis, the non-stationarity of the
runoff series must be considered in the planning and
construction of water infrastructures including interbasin
water transfer projects, reservoirs, and groundwater projects
(Dong and Zhang, 2014; Isensee et al., 2021).

Marginal Distribution Fitting Based on the
GAMLSS Model
Annual runoff series were non-stationary, according to the above
results, due to change points and trends. Based on the result of the
consistency test in Section 4.1, the GAMLSS model was
employed to fit the marginal distributions of annual runoff in
DJK, HY, and UR. Gumbel (GU), Weibull (WEI), gamma (GA),
logistic (LO), log normal (LOGNO), and normal distribution
(NO) were the candidate distributions. There were two types of
fitting: (A) stationarymarginal distributions and (B) time-varying
marginal distributions with time as the explanatory variable. The
position parameter μ and scale parameter σ were regarded as
time-varying parameters to avoid overly complex regression
equation, while shape parameter ν was assumed as a constant;
that is, 1) both μ and σ are constants; 2) μ is a polynomial function
of time t, while σ is a constant; 3) σ is a polynomial function of
time t, while μ is a constant; and 4) both μ and σ are polynomial
functions of time t. Only the linear and quadratic polynomial
functions are included. The Akaike information criterion (AIC)
was used to evaluate the goodness of fit of the distribution models
and functions. The worm plot was used for visualizing the fitting
performance of candidate models.

TABLE 2 | Results of MK and Sen’s slope trend tests from 1961 to 2018.

Name MK trend estimates Sen’s slope p-value

DJK −287 −1.819 0.055
HYK −783 −4.563 <0.01
UR −559 −0.133 <0.01

TABLE 3 | Results of Pettitt, SNHT, and Lanzante tests for change point from 1961 to 2018.

Name Pettitt’s test SNHT test Lanzante’s test

Change point p-value Change point p-value Change point p-value

DJK 1990 0.054 1985 0.084 1990 <0.01
HYK 1990 <0.01 1985 <0.01 1990 <0.01
UR 1996 <0.01 1996 <0.01 1996 <0.01

FIGURE 3 | Linear regression curve and mean values before and after change points from 1961 to 2018: (A) DJK, (B) HYK, and (C) UR.
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The complete results of marginal distribution fitting are given
in Appendix Table A1. Table 4 shows the distribution name,
distribution parameters, and AIC of the selected optimal
marginal distribution. The marginal distribution fitting results
of stationary type, namely, both μ and σ are constants, are also
listed in the table for comparison. As shown in Table 4, for the
annual runoff series with significant change points (like HJK and
UR), non-stationary and stationary models had distinctly
different AIC values. However, for the modeling of annual
runoff series with the narrow changing range before and after
their change points, non-stationary and stationary models had
similar AIC values, which indicates that time-varying marginal
distributions are suitable to capture the non-stationary
characteristics. According to the AIC values, non-stationary
models perform better than stationary models. The position
parameter of the log-normal distribution for describing runoff
series at DJK, HYK, and UR relates to the time (explanatory
variable) negatively, whereas the scale parameter is constant.
Therefore, the log-normal distribution with time-varying
parameters is the selected optimal marginal distribution for
the annual runoff series of DJK, HYK, and UR.

Analysis of residuals is necessary to evaluate the performance
of the selected models. Figure 4 demonstrates the worm plots of
the residuals by GAMLSS for the selected optimal marginal
distributions in Table 4. It can be observed from the figure
that the sample points of the annual runoff series follow the

red solid curves fluctuating between two dashed curves, implying
that the selected models have a quite good fitting quality at the
95% confidence level.

Figure 5 shows the comparison of the cumulative probability
distribution of the selected models. CDF_s and CDF_n mean the
cumulative probability distribution function of the stationary
model and the non-stationary model, respectively. The bars
are the difference between the two (CDF_s—CDF_n). The
green vertical lines are change points of the annual runoff
series. The CDF of the selected non-stationary model is
different from that of the stationary model. Before the change
point, the CDF is greater than that of the stationary model
(CDF_s > CDF_n), while it is reversed after the change point
(CDF_s < CDF_n). Considering the decreasing trend of annual
runoff in DJK, HYK, and UR, it is easy to be understood.

In China, it is a common practice to classify runoff as wet,
median, or dry periods based on the results of frequency analysis
to facilitate water resource management. Typically, Pd and Pw are
37.5% and 62.5%, respectively. According to the above, the choice
of the stationary or non-stationary model will change the CDF of
the annual runoff, which in turn changes classification results
(Figure 6). The transfer matrix from the stationary to non-
stationary model in DJK indicated shows that 8 out of
58 years in the classification result changed. For HYK and UR,
the amount of change years is 29 and 19, respectively. This also
indicates that the traditional runoff classification without

TABLE 4 | Results of marginal distributions fitting using the GAMLSS model.

Name Candidate distribution Distribution parameters AIC

Position parameter, µ Scale parameter

1) Stationary DJK LOGNO μ = 5.81 Inσ = −1.04 721
HYK LOGNO μ = 5.78 Inσ = −0.96 728
UR LOGNO μ = 2.05 Inσ = −0.44 355

2) T as the explanatory variable DJK LOGNO μ = −0.006 t + 17.13 Inσ = −1.08 718
HYK LOGNO μ = −1.31 t + 3.26 × 10–4 t2 + 13,240 Inσ = −1.27 695
UR LOGNO μ = −0.02 t + 41.13 Inσ = −0.59 340

Bold text means the selected model in this study.

FIGURE 4 | Worm plot of the residuals by GAMLSS for annual runoff series at (A) DJK, (B) HYK, and (C) UR.
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considering non-stationary is not accurate enough. Based on this
fact, we further calculated the dryness–wetness encounter
probability of annual runoff in DJK, HYK, and UR, using the
non-stationary model.

The Dryness–Wetness Encounter
Probability Based on the Copula Function
Clayton copula, Gumbel–Hougaard copula, and Frank copula
were selected as candidate distributions to construct bivariate and
trivariate joint distribution functions. The maximum likelihood
method is used to estimate the parameters of the copula function.
The Akaike information criterion (AIC) and the Cramér-von
Mises test (Genest et al., 2009) were used to evaluate the goodness
of fit of the copula function. Table 5 summarizes the results of
parameter estimation and goodness-of-fit testing for three
candidate copulas. Bold text means the selected copulas in this
study. Since the correlation between DJK and UR is negative, the

Gumbel–Hougaard copula that allows only for positive
dependence variables was excluded from the candidate
distributions. As shown in Table 5, the selected optimal
copulas for DJK-HYK, DJK-UR, and HYK-UR were Gumbel
copula, Frank copula, and Clayton copula respectively. And
Clayton copula was the optimal copula for DJK-HYK-UR.

According to the selected optimal copula and the parameter
estimated by the maximum likelihood method, the bivariate and
trivariate joint distributions are the probability of the annual
runoff series. As mentioned earlier, Pd and Pw are 37.5% and
62.5%, respectively, in the runoff classification analysis. We
classified runoff as wet, median, and dry periods according to
Eq. 7, and then the encounter probability of bivariate
combination types was calculated using the probability
inclusion–exclusion principle (Table 6).

For the encounter probability of bivariate combination types,
the asynchronous probabilities of DJK-UR and HYK-UR are over
0.6. It seems reasonable as HYK is to the south of UR and DJK is

FIGURE 5 | Comparison of the cumulative probability distribution for annual runoff series at (A) DJK, (B) HYK, and (C) UR.

FIGURE 6 | Classification results and transfer matrices of runoff series based on the stationary model against the non-stationary model in DJK, HYK, and UR (red:
dry year; yellow; median water year; and green: wet year).
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more south geographically (Figure 2). Different geographical
locations lead to differences in factors such as climate and
vegetation, and further lead to a higher asynchronous
probability of runoff series. The result also indicates that the
interbasin water transfer project is a reasonable way for EWR of
the BYD Lake.

For the encounter probability of trivariate combination types, the
result of 27 types is presented inTable 7. The synchronous probability
of runoff series of three water sources, namely, the synchronous case
(PS � P(D&D&D) + P(M&M&M) + P(W&W&W)) is only
0.180. The asynchronous probability is higher than the bivariate

combination types. But it is also noted that the asynchronous
probability of DJK and HYK is 0.602, which indicates that there is
no substitution between the twowater sources. DJK andHYKare both
important and necessary sources of EWP for the BYD Lake. A single
water source is difficult to guarantee the ecological water demand of
the BYD Lake. We suggest that the designed annual replenishment
water amount of the BYD Lake should be adjusted to adapt to the
wetness–dryness situation of DJK and HYK.

Because the BYD Lake and the three upstream reservoirs
(UR) are in the same watershed, the dryness–wetness situation
of UR represents, to some extent, the ecological water
replenishment demand of the BYD Lake. Table 8 shows the
result of conditional encounter probability. During a dry year of
UR, the conditional probability that neither DJK nor HYK is in a
dry year is 0.465. In this scenario, water from other watersheds
partially meets BYR’s water demand. But the conditional
probability that both DJK and HYK are in a dry year is
0.234. Thus, to solve the problem of not having enough
water, some additional water resources and a reasonable
EWR plan are required.

The grim situation could be avoided by reservoir regulation,
activating emergency water source and diversifying water sources
(such as recycled water).

TABLE 5 | Parameter estimation and goodness-of-fit testing of copulas.

Name Probability distribution Parameters AIC Cramér-von mises test

Statistic p-value

DJK-HYK Clayton 0.74 −10.83 0.050 0.012
Gumbel 1.49 −17.42 0.015 0.716
Frank 3.3 −13.55 0.024 0.210

DJK-UR Clayton 0.02 1.98 0.018 0.476
Gumbel — — — —

Frank −0.26 1.88 0.015 0.776

HYK-UR Clayton 0.35 −1.02 0.024 0.329
Gumbel 1.07 1.52 0.034 0.127
Frank 1.15 −0.37 0.024 0.290

DJK-HYK-UR Clayton 0.29 −5.31 0.053 0.066
Gumbel 1.1 −1.75 0.061 0.028
Frank 1.04 −3.19 0.059 0.035

Bold text means the selected model in this study.

TABLE 6 | Encounter probability of bivariate combination types.

— DJK-HYK DJK-UR HYK-UR

Synchronous Probability D-D 0.214 0.134 0.173
M-M 0.076 0.063 0.064
W-E 0.228 0.134 0.162
Sum 0.517 0.330 0.399

Asynchronous Probability 0.483 0.670 0.601 —

Dry year: D, median water year: M, wet year: W.

TABLE 7 | Encounter probability of trivariate combination types.

UR HYK DJK Probability UR HYK DJK Probability UR HYK DJK Probability

D D D 0.088 M D D 0.037 W D D 0.045
M 0.037 M 0.021 M 0.029
W 0.045 W 0.029 W 0.042

M D 0.037 M D 0.021 M D 0.029
M 0.021 M 0.017 M 0.026
W 0.029 W 0.026 W 0.043

W D 0.045 W D 0.029 W D 0.042
M 0.029 M 0.026 M 0.043
W 0.042 W 0.043 W 0.075

Notes: Dry year: D, median water year: M, wet year: W.
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It is worth noting that 1) the probability that the water supply
situation is tough is only calculated by the runoff series
classification of each water source, not a direct comparison of
water quantity. Perhaps when DJK or HYK is in a dry year, the
amount of water that can be transferred into the BYD Lake is
enough tomeet the ecological water replenishment demand. In this
case, the available amount of ecological water replenishment is only
limited by the design amount of the water diversion projects. In
other words, we only examined the water supply situation from the
perspective of the water source, without considering the quantity of
water diversion and water supply available from the water transfer
projects. 2) DJK and UR are the reservoirs with regulating water
storage capacity. The data used in this article are the inflow runoff
series of reservoirs. The available water quantity of the water
transfer projects is ultimately determined by the water level in
the downstream area of the reservoirs.

Despite the limitationsmentioned earlier, the results of encounter
probability analysis could assist EWR project decision-makers in
fully understanding potential challenges and devising appropriate
countermeasures, and thus ensure the effectiveness of ecological
replenishment projects. We believe that this article provides a
research approach for EWR via interbasin water transfer projects
that can capture the non-stationarity of runoff series and speculate
on possible scenarios during the project operation phase. Current
studies about EWR focus on targets’ water demand and give simple
constraints for water diversion and supplementation amount in their
water replenishment optimization model (Huang et al., 2021). If
more attention was paid to analyzing the non-stationarity and the
dryness–wetness encounter probability, the optimization model
would be more reasonable. Indeed, a large number of interbasin
water transfer projects have been or are being built for the purpose of
overcoming water scarcity and alleviating environmental problems
(Guo et al., 2012; Akron et al., 2017; Roozbahani et al., 2020; Lei et al.,
2021; Sun et al., 2021), which provides opportunities for the
approach’s application.

CONCLUSION

This article aimed to investigate the dryness–wetness encounter
probability of runoff series between the lake replenishment water

sources. The dryness–wetness bivariate and trivariate encounter
probability analyses under non-stationary conditions is
investigated in this study. Non-stationary frequency analysis is
modeled with time as the explanatory variable using GAMLSS.
The joint probability of runoff series using copula is calculated to
assess the dryness–wetness encounter probability. The main
results of this study are as follows:

• Significant non-stationarity has been detected for DJK,
HYK, and UR. Using MK and Sen’s slope trend tests,
there was a gradual fall in the runoff series of DJK and
sharp drops in HYR and UR. Using Pettitt, SNHT, and
Mann–Kendall tests, 1990, 1985, and 1990, and 1996 are
considered as the change points of runoff in DJK, HYR, and
UR, respectively.

• The non-stationary model with time as the explanatory
variable is more suitable for the runoff series of DJK,
HYK, and UR. Under the non-stationary framework, the
wet–dry classification of runoff series is completely
changed. The transfer matrix from the stationary to
non-stationary model in DJK indicated shows that
eight out of 58 years in the classification result
changed. For HYK and UR, the amount of change
years is 29 and 19, respectively.

• For the encounter probability of bivariate combination
types, the asynchronous probabilities of DJK-UR and
HYK-UR are over 0.6, which indicates that the interbasin
water transfer project is a reasonable and scientific way for
the BYD Lake ecological water replenishment.

• For the encounter probability of trivariate combination
types, the asynchronous probability of runoff series of
three water sources (PA) is 0.82, and the asynchronous
probability of DJK and HYK is 0.602, which indicates
that there is no substitution between DJK and HYK. A
single water source is difficult to guarantee the ecological
water demand of the BYD Lake.

• During a dry year of UR, the conditional probability
that both DJK and HYK are in a dry year is 0.234. Thus,
some additional water resources and a reasonable EWR
plan are required to solve the case when no water is
available.

TABLE 8 | Conditional encounter probability.

UR DJK HYK Probability Sum Notes

D D D 0.234 0.234 Tough situation

D M 0.098 0.465 Local water is in shortage and external water is in abundance. Acceptable situation
M D 0.098
W W 0.112
W M 0.078
M W 0.078

W M M 0.069 0.497 Relaxed situation
M W 0.114
W M 0.114
W W 0.201
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APPENDIX TABLE A1RESULTS OF
MARGINAL DISTRIBUTIONS FITTING
USING THE GAMLSS MODEL.

Candidate
distribution

Water
sources

DJK HYK UR

AIC value σ~1 σ~ I (t) σ~ I (t) +I (t2) σ~ 1 σ~ I (t) σ~ I (t) +I (t2) σ~ 1 σ~ I (t) σ~ I (t) +I (t2)

GU μ~ 1 760 753 755 773 752 750 419 410 410
μ~ I (t) 754 751 752 740 738 731 401 396 393

μ~ I (t)+ I (t2) 756 752 754 729 722 723 403 397 394

WEI μ~ 1 730 730 732 739 736 736 365 367 369
μ~ I (t) 726 728 730 710 711 710 350 352 351

μ~ I (t)+ I (t2) 728 730 731 705 707 709 352 354 353

GA μ~ 1 722 724 726 731 731 732 361 363 365
μ~ I (t) 719 721 723 700 702 703 344 346 346

μ~ I (t)+ I (t2) 721 723 725 697 699 701 346 348 348

LO μ~ 1 729 730 732 741 732 731 384 376 378
μ~ I (t) 727 728 730 714 711 712 373 366 367

μ~ I (t)+ I (t2) 729 730 732 711 706 706 374 366 367

LOGNO μ ~ 1 721 723 724 728 727 728 355 357 359
μ~ I (t) 718 720 722 698 700 701 340 342 342

μ~ I (t)+ I (t2) 720 722 724 695 697 699 342 343 343

NO μ~ 1 732 731 733 744 731 729 389 380 380
μ~ I (t) 729 729 731 716 714 712 376 369 369

μ~ I (t)+ I (t2) 731 730 732 712 706 705 378 370 369

μ/σ~ 1 represents that the parameter is a constant; μ/σ~ I (t) represents that the parameter is a linear function of time t; μ/σ~ I (t)+ I (t2) represents that the parameter is a quadratic polynomial
function of time t.
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