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Although soil total nitrogen (STN) and soil total phosphorus (STP) play significant roles in
terrestrial ecosystem function, their storage and driving factors in the alpine wetlands of the
Qinghai-Tibetan Plateau remain unclear. In this study, we estimated STN and STP storage
and their controlling factors, including vegetation, soil, and climate characteristics, using
data collected from 50 sites across the wetlands in the Three Rivers Source Region. STN
and STP storage in the top 30 cm of soil were 62.12 ± 37.55 Tg N and 9.24 ± 2.90 Tg P,
respectively. Although STN density did not differ significantly for different vegetation types
(i.e., alpine meadow and alpine wetland), belowground biomass showed a positive
relationship with STN density. Mean annual precipitation (MAP) showed a significant
positive relationship with STN density, whereas the effects of mean annual temperature on
STN density were minor. Compared with the effects of vegetation and climatic factors, soil
characteristics were found to not only exert a significant effect on STN density, but also
influence the effects of climate and vegetation on STN density. For STP density, soil
characteristics were found to be a significant controlling factor, whereas the effects of
biomass and climatic factors were minor. The studied climate, soil, and vegetation
characteristics jointly explained ~54% of STN variance, whereas soil characteristics
explained only 20% of STP variation. MAP indirectly affected STN density via effects
on vegetation and soil, and its direct effect on STN density was minor. This indicated a
strong relationship between biotic and abiotic effects and STN density. Identification of the
factors influencing STN and STP variance in alpine wetlands contributes to our
understanding of the biogeochemical cycle in high-altitude regions.
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INTRODUCTION

Nitrogen (N) and phosphorus (P) are prominent soil nutrients
(Augusto et al., 2017). Although N was first to be demonstrated as
a significant limiting nutrient (Vitousek and Howarth, 1991),
research has since shown that P limitation or N and P co-
limitation were also common (Harpole et al., 2011; Bracken
et al., 2014). Soil N and P have significant effects on
ecosystem functions through the regulation of soil properties
such as physicochemical characteristics (Hati et al., 2008), soil
microbial activity (Liu E. et al., 2010), and plant growth and
competition in terrestrial ecosystems (Quilchano et al., 2008;
Müller et al., 2015). Therefore, relative to other soil nutrients, N
and P act as important biomacromolecule components in all
organisms, and they are considered to be indispensable nutrients
that have a substantial impact on soil productivity (Giesler et al.,
2002; Vrede et al., 2004). As important references for soil quality
and fertility, soil total nitrogen (STN) and soil total phosphorus
(STP) can be used to determine the overall N and P contents in
soil (Liu et al., 2013). Soil N and P have also been demonstrated to
have a close relationship with organic carbon levels (Todd-Brown
et al., 2014). As a result, soil N and P are linked to global climate
change because of their dynamic influence on greenhouse gas
emissions (Vitousek and Farrington, 1997; Lal, 2004). Therefore,
understanding the characteristics of N and P in soil alongside
their driving factors is of great importance. This not only applies
to evaluating the dynamics of their contributions to nutrient
cycles, but also to their potential effects on ecosystem functions,
climate change, and related terrestrial ecosystem feedbacks
(Jennings et al., 2009; Zhao et al., 2018).

Over the last decade, the mechanisms of N and P storage in soil
and their controlling factors have received less attention
compared with those of soil organic carbon (SOC) (Wang
et al., 2009). As is the case for other soil components, such as
SOC, the distributions of N and P in soil are heterogeneous, and
the extent of their variation is dependent on the study scale
(Wang et al., 2009). This spatial heterogeneity is caused by the
influences of different factors, e.g., land use (Wang et al., 2009),
climate (Patil et al., 2010), geography (Rezaei and Gilkes, 2005),
or parent material (Lin et al., 2009). At a large scale, both mean
annual precipitation (MAP) and mean annual temperature
(MAT) have negative relationships with STN and STP in
China forest (Chen et al., 2016b). However, at a regional scale,
both temperature and precipitation showed positive relationships
with STN and STP in the forest area of the Loess Plateau (Liu
et al., 2013). This inconsistency may be attributed to different
research scales (Fang et al., 2019), which highlights the need for
furthermore exploring the relationships at a regional scale. In
addition to climatic factors, vegetation characteristics (e.g.,
vegetation types and biomass) may also affect soil nutrient
contents (Rodríguez et al., 2009; Zhao et al., 2018). For
example, on the Qinghai-Tibetan Plateau, the STN in alpine
meadow has been found to be 0.77 kg m−2, which is markedly
higher than the values for alpine steppe (0.27 kg m−2) and alpine
desert (0.12 kg m−2) (Zhao et al., 2018). The characteristics of soil,
which control substrate qualities and microenvironments, also
have a substantial effect on STN and STP (Lin et al., 2009; Nie

et al., 2020). There is no doubt that the lack of studies of STN and
STP characteristics and their controlling factors inevitably limits
the prediction of biogeochemical cycles and policy formulation.
Therefore, investigating STN and STP at a regional scale will not
only contribute to soil management, but may also improve
modeling accuracy for spatial data input (Lin et al., 2009).

Despite numerous studies being conducted, our
understanding of the driving factors of STN and STP remain
limited by the following two aspects. First, previous studies have
focused mainly on forests, shrublands, and grasslands,
concluding that vegetation types have substantial effects on
soil nutrient contents (Liu et al., 2013; Chen et al., 2016b;
Tashi et al., 2016; Nie et al., 2020). However, studies of STN
and STP storage and their driving factors in alpine wetlands are
rare. Little is yet known about STN and STP storage in alpine
wetlands across the Three Rivers Source Region, which creates a
major gap in the current understanding of the soil nutrient
biogeochemical cycle in high-altitude regions. Second,
although MAT and MAP are controlling factors, soil physical
and chemical properties and vegetation also affect soil nutrient
cycles (Yang et al., 2007; Chen et al., 2016a; Tashi et al., 2016);
however, information on the total effects of climate, soil
properties, and vegetation on STN and STP in alpine wetlands
is lacking. Furthermore, it remains unclear as to which factor has
the greatest effects on STN and STP.

Here, we aimed to evaluate STN and STP storage and the
driving factors, including climate (MAP and MAT), soil
characteristics (soil pH and SOC), and vegetation
characteristics, i.e., aboveground biomass (AGB), belowground
biomass (BGB), and vegetation types, in the Three Rivers Source
Region wetland.We hypothesized that variations in STN and STP
are related primarily to soil characteristics rather than climate and
vegetation factors.

MATERIALS AND METHODS

Study Area
Sampling sites were in the hinterland of the Qinghai-Tibetan
Plateau (31.65°–37.02° N, 89.40°–102.25° E) (Supplementary
Figure S1), which includes the headwaters of the Yangtze,
Yellow, and Lancang rivers (Luo et al., 2014). The Three
Rivers Source Region is characterized by low MAT and
received ~470 mm of MAP (Liang et al., 2013). Alpine wetland
and meadow are the main vegetation types at the sampling sites.
Alpine meadow areas are dominated by Kobresia. humilis and K.
pygmaea, whereas K. tibetica occurs mainly in alpine wetland
(Chang et al., 2014).

Biomass, Soil, and Climate Data
Field sampling was conducted in the Three Rivers Source Region
of the central Qinghai-Tibetan Plateau during the growing season
from 2019 to 2020. There were 50 sampling sites, including 32
alpine wetland sites and 18 alpine meadow sites. At each site, five
quadrats of 1 m × 1 m were set up, and they were located at each
corner and the center of a 10 m × 10 m plot. The AGB in the five
quadrats was clipped at the ground level, and a total of 250 AGB
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samples (50 sites × 5 replications) were obtained, including 90 (18
sites × 5 replications) from alpine meadow and 160 (32 sites × 5
replications) from alpine wetland. Corresponding BGB samples
were obtained by coring using a 7.5 cm auger at soil depths of
0–10, 10–20, and 20–30 cm in each of the five plots. Separating
live roots from dead roots was difficult in the field, so both dead
and live roots were sampled and washed using a sieve (Mu et al.,
2018). AGB and BGB were dried at 65°C for 48 h and weighted to
a constant value.

A soil pit of 30 m length × 30 m width × 30 m height was dug
at each site, and three samples were collected from different soil
profiles at depths of 0–10, 10–20, and 20–30 cm, respectively. For
each site, three soil samples were blended into a single sample for
each depth interval. Samples for estimating bulk density were
collected in a standard 100 cm3 container with a height of 50 mm
and a diameter of 50.46 mm, then dried in an oven at 105°C for
24 h. Bulk density was determined by dividing the soil dry mass
by volume. Dried soil samples were passed through a 2-mm sieve
before analyses of soil pH and SOC, STN, and STP contents.
Visible stones and roots were removed, and samples were then
ground in a ball mill. Soil pH was determined using a soil water
suspension with a water:soil ratio of 2.5:1 The method of
Walkley-Black wet oxidation was used for the determination
of SOC. STN was determined using an element analyzer (2400
Ⅱ CHNS/O elemental analyzer, Perkin-Elmer, Waltham, MA),
and STP was estimated using the molybdate/ascorbic acid
method after H2SO4-H2O2 digestion.

To explore the effects of climatic factors on STN and STP,
MAT and MAP data for 1950–2000 were calculated from the
WorldClim database (http://www.worldclim.org/) using
geographical coordinates and a spatial resolution was 1 km ×
1 km (Hijmans et al., 2005).

Statistical Analyses
To determine the STN and STP densities and their storage at each
site, the following formulae were used:

STN densityi � Ti × STN contenti × BDi/100 (1)
STP densityi � Ti × STP contenti × BDi/100 (2)
SOC densityi � Ti × SOC contenti × BDi/100 (3)

STN storagei � STN densityi × Area (4)
STP storagei � STP densityi × Area (5)

where STN densityi was soil total nitrogen density (kg m−2), Ti

was soil thickness (cm), STN content was soil total nitrogen
content (g kg−1), BDi was the bulk density (g cm

−3), STP densityi
was the soil total phosphorus density (kg m−2), STP contenti was
the soil total phosphorus content (g kg−1), SOC densityi was the
soil organic carbon density (kg m−2), SOC contenti was the soil
organic carbon content (g kg−1), STN storagei was the soil total
nitrogen storage (Tg N), STP storagei was the soil total
phosphorus storage (Tg P), and area was the vegetation area.

The ordinary least squares method was used to explore the
effects of specific controlling factors such as MAP, AGB, BGB,
soil pH, and SOC on STN and STP densities in alpine wetland
and alpine meadow, except for exploring the effects of BGB on

STN and STP densities, and AGB on STP density in alpine
meadow. Curve fitting of the power function was used for the
latter relationship. Variance analysis was conducted to determine
the difference of STN and STP at different soil depths (p < 0.05)
using statistical software of SPSS 16.0 (SPSS Inc., Chicago, IL).

The controlling factors that had significant effects on the
dependent variables were used in variation partitioning
analysis. Three explained variables were used, including soil,
climate, and plant factors. For STN density, explanatory
variables included soil properties referring to soil pH, SOC
density, climate factor referring to MAP, and vegetation
factors referring to BGB in alpine wetland, and AGB in alpine
meadow, their joints effects, and unexplained variation. In
addition, for STP density, only SOC density and pH were used
in the variation partitioning analysis. This method allows the
estimation of the amount of variation in the responses of specific
variables to certain controlling factors (Legendre, 2007). The
“VEGAN” package was used to perform the method by R
software (R Development Core Team, 2012).

The independent effects of soil, climate, and vegetation factors
on STN and STP were estimated using partial correlation by
controlling other factors. Partial correlation analysis allows the
estimation of the effects of given factors on the relationship
between predictor and response variable (Doetterl et al., 2015).
These analyses were performed using the “GGM” package in R
software (R Development Core Team, 2012).

Structural equation modeling was used to estimate the indirect
and direct pathways for STN density from controlling factors of
climate, soil, and vegetation. A hypothetical conceptual model
was designed using the same factors as those used for the
variation partitioning analysis (Supplementary Figure S2)
before executing the structural equation model. STN density,
MAP, soil pH, AGB, BGB, and SOC were scaled to mean = 0, and
SD = 1. A p value >0.05 for Fisher’s C test is necessary for a good
model fit (Leifeld, 2015). The Akaike information criterion and
standardized path coefficients were shown in the model. The
“PIECEWISE” package was used for structural equation
modeling in the statistical R software (R Development Core
Team, 2012).

Graphs were constructed using SigmaPlot 12.5 (SYSTAT
Software, Inc., Point Richmond, United States).

RESULTS

Storage and Density of Soil Total Nitrogen
and Soil Total Phosphorus
STN density showed a decreasing trend with increasing soil depth
in alpine wetland, with values of 0.39 ± 0.26 and 0.39 ± 0.17,
0.32 ± 0.23 and 0.27 ± 0.13, and 0.26 ± 0.20 and 0.22 ±
0.08 kg m−2 at soil depths of 0–10, 10–20, and 20–30 cm in
alpine wetland and alpine meadow, respectively (Table 1).
STN storage at a soil depth of 0–30 cm was 65.90 ± 41.47 and
59.44 ± 22.70 Tg N in alpine wetland and alpine meadow,
respectively (Table 1). Although the calculated STN density
for alpine wetlands (0.98 ± 0.62 kg m−2) was larger than that
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for alpine meadow (0.88 ± 0.34 kgm−2), and the difference was
not significant (p > 0.05) (Table 1).

STP density remained relatively stable with increasing soil
depth, with values of 0.04 ± 0.02 and 0.05 ± 0.01, 0.05 ± 0.02
and 0.06 ± 0.02, and 0.05 ± 0.01 and 0.06 ± 0.01 kg m−2 at soil

depths of 0–10, 10–20, and 20–30 cm in alpine wetland and
alpine meadow, respectively (Table 2). STP storage at soil
depths of 0–30 cm was 9.24 ± 2.90 Tg P and 11.35 ± 2.45 Tg P
for alpine wetland and alpine meadow, respectively (Table 2).
The STP density for alpine meadow (0.17 ± 0.04 kg m−2) was

TABLE 1 | Soil total nitrogen (STN) density and storage in alpine meadow and alpine wetlands in the Three Rivers Source Region. Different lowercase letters indicate a
significant difference in STN density and STN storage among soil layers in each vegetation type, while different capital letters indicate a significant difference in STN
density and STN storage to 0–30 cm soil depth between two vegetation types.

Vegetation
types

Area
(104 km2)

STN density (kg m−2) STN storage (Tg N)

0–10 cm 10–20 cm 20–30 cm 0–30 cm 0–10 cm 10–20 cm 20–30 cm 0–30 cm

Alpine
meadow

6.73 0.39 ± 0.17a 0.27 ± 0.13ab 0.22 ± 0.08b 0.88 ± 0.34A 26.53 ± 11.53a 18.13 ± 8.43ab 14.79 ± 5.61b 59.44 ± 22.70A

Alpine
wetlands

7.33 0.39 ± 0.26a 0.32 ± 0.23a 0.26 ± 0.20a 0.98 ± 0.62A 26.49 ± 17.31a 21.68 ± 15.76a 17.72 ± 13.77a 65.90 ± 41.47A

Total 14.06 0.39 0.30 0.25 0.94 51.55 38.53 31.49 121.57

Different lowercase letters indicate a significant difference in STN density and STN storage among soil layers in each vegetation type, while different capital letters indicate a significant
difference in STN density and STN storage to 0–30 cm soil depth between two vegetation types.

TABLE 2 | Soil total phosphorus (STP) density and storage in alpine meadow and alpine wetlands in the Three Rivers Source Region. Different lowercase letters indicate a
significant difference in STP density and STP storage among soil layers in each vegetation type, while different capital letters indicate a significant difference in STP density
and STP storage to 0–30 cm soil depth between two vegetation types.

Vegetation types Area (104 km2) STP density (kg m−2) STP storage (Tg P)

0–10 cm 10–20 cm 20–30 cm 0–30 cm 0–10 cm 10–20 cm 20–30 cm 0–30 cm

Alpine meadow 6.73 0.05 ± 0.01a 0.06 ± 0.02a 0.06 ± 0.01a 0.17 ± 0.04A 3.60 ± 0.93a 3.93 ± 1.00a 3.82 ± 0.85a 11.35 ± 2.45A

Alpine wetlands 7.33 0.04 ± 0.02a 0.05 ± 0.02a 0.05 ± 0.01a 0.14 ± 0.04B 2.97 ± 1.17a 3.05 ± 1.26a 3.21 ± 1.10a 9.24 ± 2.90B

Total 14.06 0.05 0.05 0.05 0.15 6.57 6.98 7.03 20.59

Different lowercase letters indicate a significant difference in STN density and STN storage among soil layers in each vegetation type, while different capital letters indicate a significant
difference in STN density and STN storage to 0–30 cm soil depth between two vegetation types.

FIGURE 1 | Relationships of STN density and STP density with soil variables, including soil organic carbon and soil pH. The relationships of STN density in alpine
wetlands (A,B) and alpine meadow (E,F) with soil organic carbon (A,E) and soil pH (B,F). The relationships of STP density in alpine wetlands (C,D) and alpine meadow
(G,H) with soil organic carbon density (C,G) and soil pH (D,H). STN density, soil total nitrogen density; STP density, soil total phosphorus density.
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FIGURE 2 | Relationships of STN density and STP density with plant variables, including AGB and BGB. The relationships of STN density in alpine wetlands (A,B)
and alpine meadow (E,F) with BGB (A,E) and AGB (B,F). The relationships of STP density in alpine wetlands (C,D) and alpine meadow (G,H) with BGB (C,G) and AGB
(D,H). STN density, soil total nitrogen density; STP density, soil total phosphorus density; AGB, aboveground biomass; and BGB, belowground biomass.

FIGURE 3 | Relationships of STN density (A,C) and STP density (B,D)with MAP in alpine wetlands (A,B) and alpine meadow (C,D). STN density, soil total nitrogen
density; STP density, soil total phosphorus density; MAP, mean annual precipitation.
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greater than that for alpine wetland (0.14 ± 0.04 kg m−2)
(p < 0.05) (Table 2).

Drivers of Soil Total Nitrogen and Soil Total
Phosphorus
Soil properties, including pH and SOC density, had significant
effects on STN and STP densities, respectively (p < 0.05)
(Figure 1). In alpine wetland, STN and STP showed
significant increasing trends with increasing SOC density
(Figures 1A,C), whereas STN and STP density exhibited
significant decreasing trends with increasing soil pH in alpine
wetlands (Figures 1B,D). Trends for these edaphic factors were
similar in alpine meadow (Figures 1E–H).

Biomass had a moderate effect on STN and STP densities in the
Three Rivers Source Region. In general, biomass showed a
significantly positive relationship with STN density, but its effects
on STP density were minor (Figure 2). STN density significantly
increased with increasing BGB in alpine wetland (Figure 2A) and
alpine meadow (Figure 2E), and STN density also significantly
increased with increasing AGB in alpine meadow (Figure 2F).
However, the increasing trend was not significant (p > 0.05) in
alpine wetlands (Figure 2B). The effects of biomass on STP density
differed from those observed on STN. In alpine wetland, STP density
exhibited a weak increasing trend with increasing AGB and BGB
(p > 0.05) (Figures 2C,D). In alpine meadow, although the
relationships were significant (p < 0.05), the effects of AGB and
BGBwere relatively weak, with parameters of r2 = 0.06, and r2 = 0.12

in the power functions (Figures 2G,H). The STN was no significant
difference between the alpine meadow and alpine wetland (Table 1).

The effects of MAP on STN and STP densities differed for
alpine wetlands and alpine meadow. In both alpine wetland and
alpine meadow, STN density showed an increasing trend with
increasing MAP, whereas the effects of MAP on STP density were
minor (Figure 3). In contrast to the significant effects of MAP on
STN density in alpine meadow and alpine wetland, the
relationships of MAT with STN and STP densities were not
significant (Supplementary Figure S3).

More than half of the variations in STN density can be
attributed to soil, climate, and vegetation properties. The
variation partitioning analysis results showed that 54 and
56% of the variances in STN density were explained in alpine
wetlands (Figure 4A) and alpine meadow (Figure 4B),
respectively. Furthermore, soil played a significant role in
STN density compared with climate and vegetation factors,
when soil properties were used as a controlled factor, the
effects of vegetation and climate factors on STN density were
minor (p > 0.05). Furthermore, when vegetation or climate
factors were used as controlled factors, soil properties still
showed a significant effect on STN density (p < 0.05)
(Figure 5). STP density was controlled mainly by soil
properties, and 20 and 32% of the variation in STP density
was explained by soil pH and SOC in alpine wetlands and
alpine meadow, respectively (Figure 4).

The structural equation modeling results provided similar
explanations for variances in STN density to those determined

FIGURE 4 | The results of variation partitioning analysis for soil total nitrogen density (A,B) and soil total phosphorus (C,D) in alpine wetlands (A,C) and alpine
meadow (B,D). For soil total nitrogen density, variation partitioning analysis consisted of explained variation, including soil properties refer to soil pH, soil organic carbon
density, climate factor refers to mean annual precipitation, and vegetation includes belowground biomass in alpine wetlands and aboveground biomass in alpine
meadow, their joints effects, and unexplained variation. In addition, for soil total phosphorus, the variation partitioning analysis consisted of SOC and pH. SOC, soil
organic carbon density; pH, soil pH.
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by variation partitioning analysis. In wetlands, MAP, BGB, soil
pH, and SOC explained 60% of the total variance in STN density,
which was similar to the variation partitioning analysis result
(54%) (Figures 4A, 6A). Like alpine meadow, the explained
variances in STN density were 66 and 56% in alpine wetlands
with the method of structural equation mode and variation
partitioning analysis, respectively (Figures 4B, 6B). For alpine
wetlands, MAP indirectly affected STN density via BGB and soil
pH/SOC, which indicated a tight relationship between biotic and
abiotic effects on STN density (Figure 6A).

DISCUSSION

Effects of Climate Factors on Soil Total
Nitrogen and Soil Total Phosphorus
MAPwas found to have a positive relationship with STN in alpine
meadow and alpine wetland across the Three Rivers Source
Region (Figure 3). This positive relationship was similar to

that observed for desert shrublands on the Qinghai-Tibetan
Plateau (Nie et al., 2017), forests and grasslands across the
Loess Plateau (Liu et al., 2013), and the United States Great
Plains (Epstein et al., 2002). However, our results were in contrast
to those previously obtained for China forests, which showed a
negative relationship between STN andMAP (Chen et al., 2016b).
Both C and N are linked primarily to the biological processes,
including photosynthesis, atmospheric N fixation, and
subsequent microbial mineralization (Delgado-Baquerizo et al.,
2013). On the Qinghai-Tibetan Plateau, increasing precipitation
can lead to increased plant productivity (Yang et al., 2009),
i.e., higher organic material input, which to some extent
contribute to N accretion in topsoil (Li and Zhao, 2001; Liu
et al., 2012). However, instead of having a positive effect on
nutrient retention, increased precipitation can also cause greater
nutrient leaching from soils, resulting in nutrient depletion and a
negative relationship (Vitousek et al., 2010; Chen et al., 2016b).
Considering that one of the most obvious characteristics on the
Qinghai-Tibetan Plateau is arid (Yang, 2018), alongside

FIGURE 5 | Partial correlations among soil factors, including pH and SOC, climatic and vegetation factors in alpine wetlands and alpine meadow. The numbers and
color indicated the strength of correlation coefficient. Significant association was estimated at the level of 0.05 and was marked as *. MAP, mean annual precipitation;
AGB, aboveground biomass; BGB, belowground biomass; SOC, soil organic carbon density; pH = soil pH.

FIGURE 6 | Structural equation models for depicting direct and indirect drivers to soil total nitrogen density in alpine wetlands (A) and alpine meadow (B). The
numbers at the arrows indicate standardized path coefficients and arrow width indicates proportion of the relative strength for the relationship. The asterisks beside the
numbers were used to indicate the significance of each path coefficient (*p < 0.05, **p < 0.01, ***p < 0.001). The colors purple and green inferred to positive effects and
negative effects. STN density, soil total nitrogen density; MAP, mean annual precipitation; BGB, belowground biomass, AGB, aboveground biomass; pH, soil pH;
SOC, soil organic carbon density.
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increasing precipitation, accumulation of biomass and N input
may also be more than leaching from soil, resulting in a positive
relationship between STN and MAP observed in this study.

In contrast to the positive relationship between MAP and
STN, the correlation between MAT and STN was not found to be
significant in alpine wetland or alpine meadow. Our results were
inconsistent with the significant negative relationship reported
for forest (Chen et al., 2016b) and alpine shrubland on the
Qinghai-Tibetan Plateau (Nie et al., 2017), and they were also
incompatible with the results for Tibetan alpine grasslands, which
STN showed a significant increasing trend with increasing MAT
(Yang, 2008). On the one hand, increasing temperature
contributes to more biomass and N inputs (Ding et al., 2017;
Nie et al., 2018), thus stimulating STN accumulation. On the
other hand, more intense decomposition tends to occur with
increasing microbial activity as temperature increases (Yang et al.,
2008), thus decreasing STN. In alpine wetland and alpine
meadow, as MAT increases, N accumulation in soil may be
roughly equivalent to N loss, resulting in a minor relationship
between STN and MAT in the Three Rivers Source Region on the
Qinghai-Tibetan Plateau.

Compared with the effects of MAP on STN, the effects of
climatic factors, including MAT and MAP, on STP were found to
be minor. The minor effects of climatic factors on STP in alpine
wetlands was different from the trends reported for China forests,
which STP showed significant decreasing trends with increasing
MAT and MAP (Chen et al., 2016b). Our results also contrasted
with the effects of MAP on STP in the Loess Plateau grasslands,
which demonstrated that STP showed an increasing trend with
MAP (Liu et al., 2013). However, the minor effects of MAT on
STP in alpine wetland and alpine meadow were similar to those in
the Loess Plateau grasslands (Liu et al., 2013). In general, P is
weathered and released from its parent material more readily
under high precipitation conditions (Lin et al., 2009).
Furthermore, high temperatures accelerate the weathering
process and microbial activity, which may result in a greater
accumulation of P released from rocks (Lin et al., 2009). In this
study, the effects of MAT and MAP on STP were minor in alpine
wetland and alpine meadow areas of the Three Rivers Source
Region, which may be due to the climatic characteristics of the
Qinghai-Tibetan Plateau. Low temperatures are common across
the Qinghai-Tibetan Plateau (Yang, 2018), especially at the
sampling sites, as the mean altitude is 4078 m. At such high
altitudes and in these cold conditions, increases in temperature
may be minor to influence STP in both alpine wetland and alpine
meadow areas of the Three Rivers Source Region. Increasing
precipitation can contribute to P accumulation through increased
weathering; however, it may also lead to P loss through leaching
(Zhang et al., 2005; Tian et al., 2010; Chen et al., 2016b). P
accumulation may offset P loss, resulting in the lack of a strong
relation in alpine meadow and alpine wetland.

Effects of Vegetation Properties on Soil
Total Nitrogen and Soil Total Phosphorus
STN was found to show a significant increasing trend with
increasing biomass, whereas the relationship between STP

and biomass was minor (Figure 2). In general, more biomass
tends to cause a greater accumulation of forest litter (Nie
et al., 2019), and this litter and plant residue contribute to
increase in soil N input (Liu X. et al., 2010; Liang et al., 2019).
As a result, increasing biomass triggered a positive
relationship between STN and biomass in alpine wetland
and alpine meadow in the Three Rivers Source Region on
the Qinghai-Tibetan Plateau. BGB, rather than AGB, was
found to have a positive relationship with STN density in
alpine wetland, however, both AGB and BGB showed
significant effects on STN in alpine meadow, highlighting
the different roles of AGB in shaping STN in different
ecosystems. Compared with AGB, BGB was more abundant
in alpine wetland than in alpine meadow, which may be the
cause of the significant relationship between BGB and STN in
alpine wetland.

The correlation between biomass and STP was relatively weak
(Figure 2). Soil properties (i.e., weathering stage and
physicochemical characteristics) are significant pathways for
STP accumulation (Chen et al., 2016b; Augusto et al., 2017),
partly as a result of organic matter decomposition (Delgado-
Baquerizo et al., 2013). Thus, increasing biomass only showed a
relatively weak effect on STP in alpine meadow, even no linear
relationship was observed between the two for alpine wetland.

Effects of Soil Properties on Soil Total
Nitrogen and Soil Total Phosphorus
STN and STP had similar responses to increased soil pH and
SOC, with both increasing in line with SOC and decreasing with
the increase in soil pH in both alpine wetland and alpine meadow
(Figure 1). Similar relationships between STN and soil pH and
SOC have been observed in alpine shrubland on the Qinghai-
Tibetan Plateau (Nie et al., 2020). Organic matter decomposition
in soil is a significant pathway for soil N accumulation (Augusto
et al., 2017; Zhou et al., 2018; Fang et al., 2019), which results in a
positive correlation between STN and SOC. Meanwhile, soil P, to
some extent, can also be affected by organic matter input and loss
(Zhou et al., 2018), causing a positive relationship between STP
and SOC in alpine wetland and alpine meadow of the Three
Rivers Source Region.

Unlike their positive relationship with SOC, both STN and
STP showed a significant negative relationship with soil pH.
Moderately alkaline conditions are generally conducive to the
decomposition of soil organic matter by stimulating
microorganism activity (Whittinghill and Hobbie, 2011),
whereas acidic conditions generally slow soil organic matter
turnover (Kemmitt et al., 2006). Therefore, increasing soil pH
contributed to a decrease in soil organic matter, which, to a
certain extent, is the source of soil N and P. This explains the
negative relationships among STN, STP, and soil pH in alpine
wetland and alpine meadow of the Three Rivers Source Region on
the Qinghai-Tibetan Plateau.

Limitations and Implications
Soil clay content has a significant effect on soil moisture and may
therefore be a controlling factor for STN and STP. Vegetation
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biomass productivity and community compositions are all
directly interrelated (Jorgenson et al., 2001; Wang et al., 2007;
Liu et al., 2012), and the community compositions may also be
potential indicators of STN and STP storage. However, these
factors were not investigated in this study. Although the climate
data extracted from WordClim has been used in numerous
studies (Hijmans et al., 2005; Yang et al., 2014), measured
MAT and MAP data from local climate stations may be more
representative of the local areas, and thus may increase the
accuracy of our study.

To the best of our knowledge, few studies have investigated
STN and STP storage in alpine wetlands across the Three Rivers
Source Region. Our study indicated that a tight relationship
between biotic and abiotic factors and soil nutrient in alpine
wetlands, is necessary to protect the wetlands ecosystem and
reduce human disturbance, especially in global climate change
scenario (Shang et al., 2013). This study not only provided an
underlying database for soil nutrients but may also be applied to
monitor changes in soil nutrient storage (e.g., at 10-year intervals)
in the future. Soil nitrogen deposition has existed across the
Qinghai-Tibetan Plateau (Lü and Tian, 2007), which potentially
reduces soil pH (Yang et al., 2015). It had also been demonstrated
that SOC storage has increased in alpine grasslands on the
Qinghai-Tibetan Plateau owing to the warmer and wetter
climate (Ding et al., 2017). Considering their significant
relationships, both STN and STP may be potentially changed
in the alpine wetlands and alpine meadow. As such, in global
climate change and N deposition scenarios, further monitoring of
dynamic changes in STN and STP is necessary to provide a more
accurate assessment of soil nutrient conditions in alpine wetlands
and alpine meadow in the Three Rivers Source Region on the
Qinghai-Tibetan Plateau.

CONCLUSION

This study provides an estimation of the STN and STP storage
and their controlling factors in the top 30 cm in the Three Rivers
Source Region alpine wetland. The results revealed that the STN
and STP were found to be 62.12 ± 37.55 Tg N and 9.24 ±
2.90 Tg P, respectively, across the study area. Compared with
the effects of vegetation and climatic factors, soil characteristics
performed a stronger effect on STN and STP in alpine wetlands.
Soil pH was negatively correlated with both STN and STP,
whereas SOC was positively correlated with them. This implies
that monitoring soil organic matter and soil pH can provide a
more accurate predication of STN and STP dynamic changes in
alpine wetlands.

The MAP affected STN density indirectly via vegetation and
soil characteristics and has a minor direct effect on STN density.
This indicates a tight relationship between biotic and abiotic

factors and STN density. This identification of the driving factors
of STN and STP variation in alpine wetland contributes to our
understanding of biogeochemical cycles in high-altitude regions.
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