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Some information contained in historical topographic maps has yet to be captured digitally,
which limits the ability to automatically query such data. For example, U.S. Geological
Survey’s historical topographic map collection (HTMC) displays millions of spot elevations
at locations that were carefully chosen to best represent the terrain at the time. Although
research has attempted to reproduce these data points, it has proven inadequate to
automatically detect and recognize spot elevations in the HTMC. We propose a deep
learning workflow pretrained using large benchmark text datasets. To these datasets we
addmanually crafted training image/label pairs, and test howmany are required to improve
prediction accuracy. We find that the initial model, pretrained solely with benchmark data,
fails to predict any HTMC spot elevations correctly, whereas the addition of just 50 custom
image/label pairs increases the predictive ability by ~50%, and the inclusion of 350 data
pairs increased performance by ~80%. Data augmentation in the form of rotation, scaling,
and translation (offset) expanded the size and diversity of the training dataset and vastly
improved recognition accuracy up to ~95%. Visualization methods, such as heat map
generation and salient feature detection, can be used to better understand why some
predictions fail.

Keywords: deep learning, optical character recognition, spot elevations, topographic mapping, geospatial training
data

INTRODUCTION

Spot elevations were depicted on historical maps to improve the reader’s interpretation of the terrain,
assist the terrain representation shown by contours, indicate points of interest, and, in the case of
those at summits and passes, assist aviators when navigating, and are not depicted on modern
(digital) vectorized topographic maps in the United States today (Arundel and Sinha 2020). To
remedy this absence, research on spot elevations/heights has concentrated on automating techniques
to choose appropriate features from the myriad of elevational peaks for cartographic display on
topographic maps because their manual selection and generalization is both expensive and time
consuming (Baella et al., 2007; Palomar-Vázquez and Pardo-Pascual 2008). However, this research
has, in general, been neglected relative to other automated terrain mapping issues such as those in
geomorphometry and hydrology (Guilbert et al., 2014).

Methods that extract spot heights from any digital elevation models include simple peak
extraction methods devised by Peucker and Douglas (1975), which unconditionally identify all
points on a surface with a minimal or maximal extreme. Wood (2004) developed the relative drop
method to reduce the maximal points for automated spot height labelling by identifying significant

Edited by:
Yao-Yi Chiang,

University of Southern California,
United States

Reviewed by:
Zekun Li,

University of Minnesota Twin Cities,
United States

Jonas Luft,
HafenCity University Hamburg,

Germany

*Correspondence:
Samantha T. Arundel
sarundel@usgs.gov

Specialty section:
This article was submitted to

Environmental Informatics and Remote
Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 28 October 2021
Accepted: 02 February 2022
Published: 18 February 2022

Citation:
Arundel ST, Morgan TP and Thiem PT
(2022) Deep Learning Detection and

Recognition of Spot Elevations on
Historical Topographic Maps.

Front. Environ. Sci. 10:804155.
doi: 10.3389/fenvs.2022.804155

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8041551

ORIGINAL RESEARCH
published: 18 February 2022

doi: 10.3389/fenvs.2022.804155

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.804155&domain=pdf&date_stamp=2022-02-18
https://www.frontiersin.org/articles/10.3389/fenvs.2022.804155/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.804155/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.804155/full
http://creativecommons.org/licenses/by/4.0/
mailto:sarundel@usgs.gov
https://doi.org/10.3389/fenvs.2022.804155
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.804155


eminences (peaks). Further work by Baella et al. (2007), Palomar-
Vázquez and Pardo-Pascual (2008), Chaudhry and Mackaness
(2008), Deng and Wilson (2008), Jaara and Lecordix (2011), and
Rocca et al. (2017) continued the effort to select salient - or
significant - features for spot height display.

Working under the assumption that salient features are those
that people name, Arundel and Sinha (2020) chose Geographic
Names Information System (GNIS) summit features to address
this problem, improving automated spot height calculation for
the United States. In conducting this work, they discovered that
the best ground-truth source for determining the accuracy of spot
height elevations was that depicted in text on the HTMC. This
finding prompted the research reported here to detect and
recognize spot elevations and recognize their elevation values.

BACKGROUND

Historical topographic maps contain a plethora of information
about the world, some of which is difficult to capture digitally.
One complex task is capturing the knowledge contained mainly
in text labels, such as natural feature extents and their spatial
relationships to other features, and spot elevation values, their
representative features, and those features’ locations. The U.S.
Geological Survey’s (USGS) historical topographic map collection
(HTMC) is no exception. Some themes, such as elevation,
hydrography, and geographic names were captured as digital
spatial vector databases during the digital revolution and
displayed over national imagery to create the USGS’s US Topo
product (https://www.usgs.gov/core-science-systems/national-
geospatial-program/us-topo). The remainder of the non-
digitized embedded data, including spot elevations, is available
only collectively as scanned raster images and is not available in
machine-readable form (Arundel et al., 2020). Because manual
digitization today can be labour and cost prohibitive, automated
methods are needed to capture additional features. Extracting
specific features from topographic maps not captured as theme
geodatabases is a challenging, enduring effort (Pezeshk 2011;
Ganpatrao and Ghosh 2014; Arundel et al., 2020; Li et al., 2020;
Shbita et al., 2020).

Although most spot elevations were collected at regular
intervals in the field for contour construction on historical
topographic maps, some were selected to represent distinct
map features such as saddles and summits, improving the
general perception of the terrain (Thompson 1979). To
automate topographic map production in the United States,
the digital vector datasets derived from the HTMC are
displayed over national imagery to create the USGS US Topo
product (https://www.usgs.gov/core-science-systems/national-
geospatial-program/us-topo). Non-digitized data are missing
from the US Topo, including spot elevations (Arundel and
Sinha 2020). The development of a national database of
accurate elevations for mountain summits, for example, is
important to national mapping, the aviation and recreation
industries, geomorphologists, geologists, and other scientists
interested in terrain processes and mapping. To address this
need, automated workflows that can detect and interpret map text

were explored. Automatic classification of text within
cartographic contexts can be extended beyond just spot
elevation values. A sufficiently trained model could be capable
of identifying and cataloguing arbitrary categories of map text,
such as geographic feature names, coordinate markings, and
other topographic symbology. Generalized interpretation
techniques may be used on collections of historical maps other
than the HTMC, and have the potential to enable fast, reliable,
and thorough data collection from an abundance of historical
cartographic sources.

This paper reports progress toward using deep learning optical
character recognition (OCR) to detect and recognize spot
elevations on USGS historical topographic map images and
discusses how this technology can be further applied to extract
other information from map content. We describe the
implementation and use of the state-of-the-art deep learning
OCR architecture called Mask TextSpotter to detect and
recognize text on HTMC images. As a proof of concept, our
solution focuses on recognition of only single-feature spot
elevations, with the future goal of expanding interpretation
capability to multi-feature examples of a wide variety of
content. Important driving motivations of this research are to
ascertain the benefits of utilizing various custom training datasets
and parameter configurations in spot elevation text recognition,
and to assess the practicality of a generalized technique for text
interpretation in historical map contexts.

Optical character recognition, as a field of research in
information science, pattern recognition, artificial intelligence
(AI), and computer vision, is the translation of digital (raster)
images of text into computer-readable text characters. OCR is
founded on early technological advances during the first World
War, such as image scanners and text-to-speech machines to
interpret braille and quickly encode and decode telegraphs
(Andersson 1969). OCR technology developed alongside
computers, and major systems were operational and available
by the 1970s (Stevens 1970; Andersson 1971). Research to
improve OCR, particularly in its application across languages,
exploded in the 1980s, leading to the release of tools for common
use on the web in the early 2000s (Asif et al., 2014). By this time,
image processing and pattern recognition techniques had been
effectively combined with AI to develop complex OCR algorithms
(Chaudhuri et al., 2017). These algorithms, when using ‘big’ input
data, require considerable computing capacity. Modern
methodologies such as artificial neural networks, deep
learning, hidden Markov models, fuzzy set reasoning, and
natural language processing have improved recognition to new
levels of accuracy (Chaudhuri et al., 2017).

The general steps to accomplish character detection and
recognition can be summarized as isolating or locating the text
within the image (segmentation), extracting the boundaries of the
text itself based on specific patterns (feature extraction), and
determining what the extracted text says (classification) (Chen
et al., 2021). Challenges when implementing this approach
include resolution of touching characters while linking those
that are disjointed, distinguishing characters against noisy
backgrounds, and distinguishing text from overlapping non-
text graphics (Long et al., 2021).
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The use of deep learning has recently improved OCR results,
particularly in natural scene text recognition, where natural
scenes reference images often are available through social
media obtained at random places and locations, with differing
structures and various backgrounds (Gupta et al., 2016; Gómez
and Karatzas 2017). These images are created ‘in the wild,’ and
the systems that translate them are generally termed PhotoOCR
(Chen et al., 2021; Long et al., 2021). PhotoOCR appears to have
the most potential for topographic map text translation due to the
size and variability of the available training data. However, text
recognition in scanned maps has unique challenges relative to
that of photographic images, including scan quality, font
differences, feature overlap, and text orientation (Chiang and
Knoblock 2010). Current methods focus on solving these
obstacles (Chiang et al., 2020; Li et al., 2020; Uhl et al., 2020).

Code bases have traditionally approached the two problems of
text detection and recognition separately. For example, single-
shot detectors (Wang et al., 2019) or models based on semantic
connections within text (Jiang et al., 2021) have been shown to
produce good results with specific text types. However, end-to-
end code repositories such as TextFuseNet (Ye et al., 2020), which
uses a multi-path feature fusion architecture, and Mask
TextSpotter (MTS), which is an end-to-end PyTorch code
repository, have recently emerged that tie the two tasks
together. For this study, we used MTS, which implements a
trainable neural network for spotting text with arbitrary
shapes (Lyu et al., 2018; Liao et al., 2020). MTS is based on
Mask R-CNN, which extends Faster R-CNN by adding a branch
that computes the object mask prediction in parallel with the
existing branch for bounding box recognition (He et al., 2020).
Although most arbitrary-shape scene text spotters use region
proposal networks (RPN), which require manually derived
anchors to propose text regions, MTS implements a
segmentation proposal network (SPN), which functions
without anchors.

A practice of the AI community is to develop benchmark
datasets against which others may test models and model
improvements. Our experiments included the use of five
benchmark OCR datasets: Synthtext (Gupta et al., 2016), the
challenge datasets from the International Conference on
Document Analysis and Recognition (ICDAR) 2013 (https://
iapr.org/archives/icdar2013/index.html) and 2015 (https://iapr.
org/archives/icdar2015/index.html), TotalText (Ch’Ng and Chan
2017), and SCUT-CTW1500 (SCUT) (Liu et al., 2017).

METHODOLOGY

The most current PyTorch implementation of MTS was cloned
from GitHub (https://github.com/MhLiao/MaskTextSpotterV3)
into a dedicated Anaconda development environment, as
suggested by the developer. Our environment setup was
originally based on Version 2 of MTS but upgraded upon the
release of V3. Customization required modification of the code
base to run on a Linux Ubuntu 7.5 server with 128 GB ram, 64
CPUs, 1 NVDIA Tesla P40 GPU with 3840 cores, and with our
custom training dataset.

The backbone of Mask TextSpotter V3 is ResNet-50 (He et al.,
2016). Proposals are generated by an SPN (Table 1) (Liao et al.,
2020), as opposed to the Mask TextSpotter V2 RPN). The SPN
provides polygonal (rather than rectangular) representations for
the proposals, meaning that the curving or other unaligned
features are better detected. A region of interest (ROI) is used
instead of RPN to better locate features of interest, and then the
SPN proposals are refined by a Fast R-CNN module (Girshick
2015). More accurate detection is realized through the text
instance segmentation module (delineating words), and then a
character segmentation module (separating individual
characters). Finally, text recognition is provided through a
spatial attentional module (Figure 1).

The MTS repository includes a link to a serialized benchmark
PyTorch model (.pth file), pretrained with the Synthtext dataset.
This pre-trained model can be used to initialize the learnable
parameters of new models, which can then be further finetune
trained with some set of benchmark or custom data, or a mix of
both. Utilizing pre-trained weights reduces the training time
needed to achieve high performance and allows finetuning
parameters with relatively small datasets. This method was
used in all experiments.

The learning workflow begins with acquisition of the base
data, from which training image/label pairs are created. All
training data (including benchmark datasets) are randomly
subdivided into training and testing) sets, which are then
input to the MTS workflow. The downloaded pretrained (on
Synthtext) model is finetuned using the training set, and then
used to predict the labels of the testing set. Inferences are
evaluated against the ground truth labels and statistics are
generated using common machine learning metrics (Figure 2).

During the custom training data preparation phase, GNIS
summits were randomly selected across the coterminous
United States (Figure 3). Bounding boxes for each selected
point’s spot elevation were heads-up digitized in a geographic
information system (GIS) as a vector shapefile using an HTMC
service for reference (https://services.arcgisonline.com/ArcGIS/
rest/services/USA_Topo_Maps/MapServer). Boxes were placed
around the full text of the elevation values displayed on the
HTMC, as well as each individual numeric character within that
bounding box (Figure 4). The bounding coordinates and
elevation values themselves were added to the shapefile for
later use.

TABLE 1 | SPN segmentation prediction module details. “Conv”: convolution
operator; “BN”: batch normalization; “DeConv”: de-convolution operator; “k”:
kernel size; “s”: stride; “p": padding (recreated following).

Type Configuration Input/output channels

Conv k: 3; s: 1; p: 1 256/64
BN momentum: 0.1 64/64
ReLU — 64/64
DeConv k: 2; s: 2; p: 0 64/64
BN momentum: 0.1 64/64
ReLU — 64/64
DeConv k: 2; s: 2; p: 0 64/1
Sigmoid — 1/1

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8041553

Arundel et al. Deep Learning OCR Spot Elevations

https://iapr.org/archives/icdar2013/index.html
https://iapr.org/archives/icdar2013/index.html
https://iapr.org/archives/icdar2015/index.html
https://iapr.org/archives/icdar2015/index.html
https://github.com/MhLiao/MaskTextSpotterV3
https://services.arcgisonline.com/ArcGIS/rest/services/USA_Topo_Maps/MapServer
https://services.arcgisonline.com/ArcGIS/rest/services/USA_Topo_Maps/MapServer
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


To obtain images of each spot elevation in the historical maps,
we developed code to automatically calculate the geographical
extent of an area surrounding each manually digitized spot
elevation, then request and download the corresponding image
from the HTMC service. To determine the image extent to
request, the geographic bounding coordinates of each feature
are retrieved from the previously prepared shapefile, then a scalar
is applied to the coordinates in every cardinal direction to form an
extent that included a small area around the elevation text. Each

image is downloaded at a map scale of 1:4,000 with image
dimensions of 400 × 400 pixels and centered on the bounding
box of its spot elevation marking. Additionally, each image
contains only a single spot elevation so that we may isolate
these features in experimentation.

Creation of label files from digitized bounding boxes is
automated to extract, format, and record bounding box
coordinates for each spot elevation. The bounds of the text
features are gathered from the shapefile, stretched to be

FIGURE 1 |Mask TextSpotter V3 workflow starting with input image, which is convolved through multiple layers to produce feature maps. Feature maps are fused,
segmented, masked, and the text characters recognized.

FIGURE 2 | A step-by-step overview of the spot elevation detection and recognition learning workflow.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8041554

Arundel et al. Deep Learning OCR Spot Elevations

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


perfectly rectangular, and converted from geographical to
pixel coordinates. Pixel coordinates are relative to the origin
(0,0), which is located at the upper left corner of the image.
The pixel coordinates and their corresponding elevation
value are then written to a text file in the transcription
format required by MTS to create the image label
(Figure 5). This is the same format used by benchmark
datasets. The label creation process was completed for each
of the selected spot elevations through code. The resulting
HTMC spot elevations dataset (referred to as the custom
USGS dataset) contained 353 image/label pairs, which was
reduced to 350 by randomly removing 3 examples. This was
done to create a round, divisible number for training/testing
split, and for incremental additions to training sets. Elevation
values chosen to display are in integer feet and range from 2 to
5 digits in length. Corresponding values range from 26
(meters) to 12,632, with a mean of 4328 and standard
deviation of 2585.

Advanced experiments used augmented datasets along with
the original custom image/label pairs used in initial tests. Data
augmentation is the process of increasing the volume of custom
data by creating slightly modified copies of existing data (Shorten

FIGURE 3 | Distribution of spot elevations analyzed in the study.

FIGURE 4 | A training image of the HTMC showing bounding boxes for
the spot elevation 9773. The blue box is the outer bounding area, and each
red box delimits a single digit. Bounding boxes are represented to themachine
via text labels rather than displayed on the image as seen here.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8041555

Arundel et al. Deep Learning OCR Spot Elevations

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


and Khoshgoftaar 2019). This allows for the creation of
substantially larger and more diverse datasets, which in turn
leads to more robust predictive models.

Augmentation includes various manipulations that can be
applied one at a time, or several can be combined in a single
example. For each individual or combined augmentation that is
applied, the number of custom examples can be increased by a
factor of up to 2, excluding images in which the example
becomes invalid. For the USGS custom dataset, invalid
images included those where the spot elevation text is
unrecognizable or cut off by an edge of the image, or where
multiple spot elevation features are present in the same image.
Augmentation types in the USGS set include feature frame offset
(translation), varying image scale, and varying image rotation.
Using a method similar to that of the original set, spot elevation
images and labels are automatically retrieved and formatted,
with the added options to apply any of the listed augmentation
types (Figure 6). As it is not clear yet as to how the operational
testing data will be exposed to the trained model, various
potential augmentations were chosen.

Frame offset is applied before an image is downloaded by
adding a small positive or negative change in both the latitude and
longitude of the requested image extent. The offset values are
randomly generated within a range that is calculated based on the
original extent of the feature such that no offset will result in spot
elevation values that are cut off beyond the bounds of the 400 ×
400 pixel image.

Variable scales are created in a similar manner. The HTMC
request endpoint includes a parameter to adjust the scale of a

downloaded image—the user need only pass in a value to retrieve
the image at that scale. Scale values are randomly generated
between 20,00 and 16,000. These values were chosen in
consideration of feature truncation at low scales and
conversely, feature readability at high scales. This
augmentation type also has the added complexity of handling
multi-feature images. Our study uses only single-feature
examples for precise experimentation but applying a high scale
to a feature sometimes leads to the inclusion of other spot
elevations in the same image. We manually sorted through
every scale-augmented example and removed those with
multiple visible spot elevations.

In contrast to frame offset and scale augmentations, which are
both pre-download processes, rotation is implemented post-
download. After the original image extent is retrieved and its
corresponding label is formatted, a rotation function is applied to
the image and label separately. This function modifies the image
and label based on a random counterclockwise rotation angle
between 0 and 90°, including 0 but not 90. This range was chosen
to reflect the same range for rotation augmentations in the MTS
V3 paper (Liao et al., 2020).

Augmentations of every type were generated for each of the
original spot elevations and included in a single dataset along with
the original, centered data, giving us access to a much larger and
more diverse volume of custom data with which to experiment
(Table 2). After removing the few invalid images, each single
augmentation set was split at a 70/30 ratio into training and test
subsets, respectively. The larger mixed set was created by adding
the images and labels from all other training and test sets into

FIGURE 5 | Transcription format of the label text file spotElev_Num201. txt, which corresponds to the image shown in Figure 4. The first set (yellow) represents the
outer bounding box (xmin, ymin; xmax, ymin; xmax, ymax; xmin, ymax) and the full elevation value (9773). Subsequent sets (green, pink, blue, gray) denote the bounding
boxes and content of each character, in the same format.

FIGURE 6 | Examples of each augmentation type for spotElev_Num84: (A) original centred, (B) offset 0.001° NE in latitude and longitude, (C) rotated 48°

counterclockwise, and (D) scaled at 1:12,000.
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respective mixed training and test sets. That way, the mixed test
subset is mutually exclusive with the mixed training subset and
both subsets also maintain mutual exclusivity across other sets so

that no test images from, for example, the scaled set, would be
present in the mixed training set. This also ensures that no images
from other training sets are present in the mixed test set.

TABLE 2 | Example counts for each dataset used in the set of augmentation experiments.

Dataset/Augmentation type Total examples Training examples Test examples

Centred 350 245 105
Offset 348 244 104
Rotated 350 245 105
Scaled 285 200 85
Mixed 1,333 934 399

TABLE 3 | Metrics/terms used in evaluating the results.

Term Definition

Precision True Positives/(True Positives + False Positives)
Recall True Positives/(True Positives + False Negatives)
Intersection over Union (IoU) The overlap between ground-truth and predicted rectangles (prediction is true if IoU ≥0.5)
Average Precision (AP) The area under the precision-recall curve
Harmonic Mean (Hmean, F-score, Accuracy) 2 * Precision * Recall/(Precision + Recall)

TABLE 4 | Metrics describing classification results of detection/recognition workflow by incrementally increasing the number of custom training images by 35, and by
decreasing the number of total training iterations by 50 k intervals. Bold text indicates the best performance in the set of tests with that model.

USGS training images Precision Recall Harmonic mean Average precision

300 k Iterations

0 0 0 0 0
35 67.0 60.0 63.3 44.5
70 78.6 73.3 75.9 63.7
105 75.5 73.3 74.4 60.8
140 72.0 68.6 70.2 46.0
175 79.0 75.2 77.1 59.7
210 80.2 77.1 78.6 68.2
245 79.8 75.2 77.5 69.6

250 k Iterations

0 0 0 0 0
35 64.0 61.0 62.4 42.4
70 75.8 71.4 73.5 59.6
105 78.0 74.3 76.1 63.7
140 73.0 69.5 71.2 55.5
175 77.9 70.5 74.0 57.8
210 82.7 77.1 79.8 63.0
245 82.3 75.2 78.6 65.8

200 k Iterations

0 0 0 0 0
35 64.0 61.0 62.4 48.4
70 73.3 70.5 71.8 52.3
105 79.0 75.2 77.1 67.4
140 74.7 70.5 72.5 60.2
175 73.8 72.4 73.1 54.2
210 79.0 75.2 77.1 57.4
245 84.8 80.0 82.4 70.7
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EXPERIMENTS

Several metrics were used to evaluate the classification results
generated by our deep learning workflow (Table 3). Precision
describes the proportion of positive identifications that are
correct, whereas recall is a measure of the proportion of actual
positives identified correctly. Precision and recall results are
based on the accuracy of the entire label, as compared to
individual characters. The Average Precision mainly
considers placement of the predictive bounding boxes
relative to the ground-truth, a value that is less important
in an operational application. The harmonic mean, in this
case, is equivalent to the F-score and provides a single
measure of the models’ ability to predict the correct spot
elevation value. This metric is commonly used as a measure of
accuracy and is often referred to as such. Additionally, the
F-score was the primary metric used to analyse individual
model performance and compare models against each other.

Initial work focused on gathering a baseline performance
metric with which to compare other results. We were
interested to see if a benchmark-trained deep learning model
with the default configuration could recognize text in HTMC
images without training on any custom examples. The pretrained
model was finetuned with data from the benchmark sets ICDAR
2013, ICDAR 2015, SCUT, and Total Text, then evaluated against
the entire USGS dataset. As expected, this test yielded poor
performance (Table 4). Without any custom data, the
workflow was unable to predict the correct value of any of the
labels in the USGS dataset (Table 4, USGS Training Images
equals 0).

The first set of experiments tested the effect of using various
quantities of custom data for finetuning a pre-trained (on
Synthtext) PyTorch model. These experiments finetuned the
same pretrained model as the baseline but included a mix of
benchmark data and custom USGS images. The USGS dataset
was weighted at a 0.5 ratio, whereas the supporting datasets (the
two ICDAR datasets, SCUT and Total Text) were weighted at 0.1

each. This means the USGS dataset had 5 times the impact of each
other individual dataset, and twice the impact of the others
combined.

Our custom dataset, containing 350 examples, was split 70%
245) into the training subset and 30% (105) into the testing
subset. The test set was the same for all evaluations, but models
were trained on sets that incrementally added batches of 35 of the
entire 245-image training set, to observe the impact of each
additional batch on prediction ability.

This method is less comprehensive than, for example, a K-fold
test where each image in the entire dataset is tested exactly once
and trained K-1 times, and the average performance is analyzed.
However, due to the amount of training time needed to run such a
set of experiments, it was more practical to utilize the 70/30 split
with the knowledge that the results may not be the best
representation of a model’s capability. Still, a single test subset
can give us a good estimation of the accuracy of a model, and it is
likely that training and testing with other subsets would produce
similar outputs.

The base learning rate was set to 0.002 with a weight decay of
0.0001 at a single image per batch for 300,000 iterations. Available
server memory limited the number of images per batch. A model
checkpoint was saved after every 5,000 iterations. The final model
checkpoint was tested at a single image per batch purely on the
USGS images from the evaluation set. The model predictions
were evaluated against the ground truth labels and interpreted
using the previously described performance metrics (Table 4).

Complementary to this set of runs, we conducted experiments
to investigate the effect of reducing the number of training
iterations. MTS is constructed to run in two phases, pre-
training on SynthText (synthetic text) and fineturning on real-
world data. By training on top of the SynthText pretrained model,
we are essentially using the training dataset as the validation
dataset for fineturning, and the testing dataset as inference. Due
to this, performance improvements along the epochs must be
analyzed for better inferences. Training a single model requires an
average of ~40 h to complete 300 k iterations, which renders the
testing of parameter changes costly. Loss during training falls
rapidly for the first 50 k iterations and appears to level out around

FIGURE 7 | Loss by iteration for a training run with 300 k iterations.

FIGURE 8 | Test accuracy by 35-image batches using 200 k, 250 k, and
300 k training iterations.
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200 k iterations with no further improvement (Figure 7). We
compared results across iterations diminishing at 50 k intervals to
understand whether iterations could be reduced to decrease
training time without a significant decrease in predictive
ability. A set of iterative training runs was computed two
more times with the same configurations and datasets except
for the number of training iterations reduced to 250,000 and
200,000, respectively (Table 4).

The first set of results demonstrates promising detection
ability with the addition of only a small number of map-
specific training images to the dataset. The addition of just 35
USGS training image/label pairs significantly improved predictive
capability—from 0 to 63.3% accuracy (Hmean), and the addition
of 210 map-text training images resulted in 78.6% overall
accuracy, a 15.3% increase. The highest accuracy across all
models in this experiment was produced with 245 training
images and 200 k iterations, with Hmean of 82.4%. In general,
as the number of USGS training images increases, the Hmean also
increases (Figure 8).

Training time for 250 k iterations was reduced by 37.5% to
25 h, and training time for 200 k iterations was reduced by 50% to
20 h. Little or no improvement was made in Hmean produced by
models with higher iteration counts, which is a strong indicator
that 300 k iterations is not the optimal training configuration. It is
possible that iteration counts as low as 100 k may produce
comparable accuracy and vastly reduce training time.

An interesting pattern is that every model exhibited poorer
performance with the 140-image training set than it did with the
105-image set. This is likely due to some error within the 35-
image batch that was added to the 105 set. Including that batch in
training reduced the model’s general ability to interpret spot
elevations, regardless of the number of training iterations. Due to
the complex nature of how a model interprets image content, it is
not easy to deduce why this particular batch causes a drop in
accuracy when included in finetuning. Further investigation
would be necessary to draw conclusions.

A similar phenomenon occurred with the addition of a batch
to the 210-image set (to make 245 total). However, in this case,
the 200 k model did not suffer the decrease in accuracy that the
other two did. In fact, it increased the accuracy to the highest
recorded for this set of experiments. Yet again the cause of this
anomaly is difficult to determine due to the nature of deep
learning, and it warrants further investigation.

Advanced experiments made use of data augmentation, which
automatically generates new examples for training and testing.
Data augmentation includes various ways of manipulating copies
of existing data to create similar but distinct new data. This allows
for increased volumes of relevant custom training and test
examples, which, as indicated by previous experiments, is a
good means to achieve higher performance. Data
augmentation also provides a greater diversity of examples,
which can extend the generalizability of the model.

For this set of tests, we were interested in attaining the highest
possible model accuracy, utilizing datasets expanded with
augmentations to realize this goal. All models were initialized
with the default pretrainedmodel, then finetuned exclusively with
USGS training data. The additional benchmark datasets were
used to finetune when very little training data were available
(starting at 35 images), but then eliminated when the data were
increased by augmentation. The base learning rate was set to
0.0002 (10× lower than previous experiments, to avoid divergence
in model parameters) with a weight decay of 0.0001 at a single
image per batch for 300,000 iterations (both same as before).

To observe the effects of each separate augmentation type
when used for training and compare that performance against
previous models, we computed a total of 5 finetuned training
runs: one for the original centered dataset, one for each
augmentation set individually (offset, rotation, and scale), and
one for the mixed dataset, composed of all examples from the
other sets. The models produced by each training run were
evaluated against each test set, 5 for each model (Table 5).
Our primary metric for analysis, harmonic mean, was plotted
for each output (Figure 9).

The center-trained model, when evaluated on the centered test
dataset, performed similarly to the model trained on the same
images for 300 k iterations from the previous experiment set. The

TABLE 5 | Evaluation results of models trained with augmented datasets. Each
training subset was used to finetune a single model, then each model was
evaluated against each test subset for a total of 25 evaluation outputs. Bold text
indicates the best performance in the set of tests with that model.

Training set Precision Recall Harmonic mean AP

Centered Test

Centered 83.7 78.1 80.8 69.3
Offset 91.2 88.6 89.9 84.6
Rotated 93.1 90.5 91.8 86.3
Scaled 87.0 82.9 84.9 76.8
Mixed 99.0 96.2 97.6 96.2

Offset Test

Centered 90.2 88.5 89.3 83.4
Offset 82.3 76.0 79.0 63.6
Rotated 89.1 86.5 87.8 76.2
Scaled 88.5 81.7 85.0 76.8
Mixed 98.0 95.2 96.6 94.3

Rotated Test

Centered 91.0 67.6 77.6 60.5
Offset 88.4 72.4 79.6 60.7
Rotated 78.8 74.3 76.5 65.7
Scaled 88.5 73.3 80.2 67.3
Mixed 96.9 89.5 93.1 89.0

Scaled Test

Centered 70.8 60.0 65.0 49.5
Offset 69.0 57.7 62.8 46.4
Rotated 69.7 62.4 65.8 50.4
Scaled 76.0 70.6 73.2 56.4
Mixed 98.7 91.8 95.1 91.3

Mixed Test

Centered 84.6 74.2 79.0 65.3
Offset 83.7 74.4 78.8 63.1
Rotated 83.6 79.2 81.3 69.5
Scaled 85.4 77.4 81.2 68.7
Mixed 98.2 93.2 95.6 92.8
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center-trained model produced 80.8% Hmean on the 245-image
centred evaluation set, and the 300 k model from before achieved
77.5%Hmean (+3.2%). Although there is a slight improvement in
the center-trained model, the results are comparable. This was
expected because these models used the same dataset of centered
spot elevation images and had nearly identical configuration
parameters. However, a few differences were noted in the two
experiments: the dataset of centered spot elevations was split into
different training and evaluation sets for both experiments, the
learning rate parameter was 10x lower for the center-trained
model, and the 300 k model included benchmark data in its
training, whereas the center-trainedmodel used 100%USGS data.

Variance in accuracy probably stems from these differences in
configuration and dataset split. Further investigation may
ascertain more exact explanations and to optimize
configurations, although such clarifications are not imperative
because the difference is small.

The most noteworthy result from these experiments was that
the mix-trained model vastly out-performed all others in every
evaluation. We had expected the mixed dataset to generally
produce the best results due to its larger training set size and
increased training diversity, although the increase in performance
was considerably greater than we anticipated. The average
Hmean scores across all tests were calculated for each model:

FIGURE 9 | Visualization of the harmonic mean (Hmean) for each evaluation output. The bottom axis displays which set themodel was trained on and each group of
5 are results from a single evaluation set.

FIGURE 10 | Three error types that the study approach failed to resolve, and ROI output from the RNP (A) contours (or other features) overlap/intersect with
elevation text (also showing image noise); although the larger ROI is accurate, the prediction was too low to be considered in the character mask process (B) image noise,
possibly introduced during the scan process; two small ROIs do not represent the numeric string 57 well, and (C) introduction of too many other features in zoomed out
images (also showing overlapping features); no proposals were generated.
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center-trained achieved 78.3% average Hmean, offset-trained had
78.0%, rotated-trained had 80.6%, scaled-trained had 80.9%, and
mix-trained had 95.6%. The mix-trained model performed 14.7%
better than scaled, which has the next highest accuracy.
Compared to the four non-mixed models, which had a range
of just 2.6% variance between the lowest (centered) and highest
(scaled), the mix-trained model greatly improved prediction
capability. We can conclude that models trained with mixed-
augmentation data are superior to those trained with only a single
augmentation method, or none. Further experimentation to
determine the most effective types and compositions of
augmented data would be beneficial, and implementation of
other techniques such as data synthesis may also benefit
performance through the creation of even more custom data.

DISCUSSION

Incorrectly predicted image labels in the mixed train/test dataset
fall into three general groups: overlapping features, excessive
noise, and small map scale. Overlapping features is the most
common problem (30% of the errors in the mixed train/mixed
test experiment) and refers to other features intersecting the
number characters themselves (Figure 10).

Many spot elevations were correctly detected despite
overlapping features. Those typically have more even (square
or mechanical) text - appearing less like handwriting, thicker line
strokes relative to surrounding features, and/or intersection of
other lines with fewer characters of the whole elevation string.
The combination of the three issues in Figure 10A resulted in no
prediction whatsoever, although a good ROI was proposed by the
SPN, as well as one small proposal on part of the character 4
(Figure 10A). However, the SPN calculated the likelihood of both
ROIs to be true too low to pass to the character mask process.
These errors can be reduced through the inclusion in the training
dataset of more overlapping strings, particularly with less
uniform text.

Several small, poor ROIs were proposed for the noisy image
depicting the spot elevation 57 (Figure 10B), and those only
vaguely represented the first character 5. The poor quality of the
image results in a noisy scene, although to the human eye the
characters are easy to identify, and caused 19% of the errors in the
mixed/mixed experiment. Noise can be reduced through various
filters, which is an area of potential improvement in this work.
Some portions of the HTMC exhibit JPEG artifacts, resulting
from the way the original JPEG compression and its discrete
cosine transform function when too much compression is
applied. These artifacts can be fine for interpretation by the
human eye but can introduce subtle features that may be
confusing to a computer. To reduce these artifacts the image
needs to be filtered. Both OpenCV (Bradski 2000) and Scikit-
Learn (Pedregosa et al., 2011) have image filters geared towards
denoising images and implement non-local means denoising
algorithms given by Buades et al. (2011). Scikit-learn also
draws from Darbon et al. (2008). The edge-preserving Perona-
Malik denoising filter has been used with medical imagery (Halim
et al., 2014) and elevation data (Xu et al., 2021). Many studies

address JPEG related artifacts and noise (for example, Shohdohji
et al., 2002; Popovici and Withers 2007; Chen and Wu 2017).
Some studies have analyzed the use of machine learning to
address the issue (Chang et al., 2006; Quijas and Fuentes 2014;
Zhang et al., 2016). Such an approach could be investigated
further to determine applicability.

Another possible cause of poor prediction on this spot
elevation may be due to the number of characters. Most spot
elevations have three to four characters. In fact, this in part may
also contribute to problems identifying the spot elevation 26 in
10C. This issue can be addressed through the addition of more,
shorter-stringed spot elevations to the custom training dataset.

In addition to the short string, the image in 10C is scaled out
and so contains more conflicting information, including other
strings of characters—both alphanumeric and numeric—and
various other features types, such as marsh symbols, roads,
and trails. It also suffers from overlapping features as the
index (bold) contour line runs through the 2 and a lighter
contour line “closes” the 6. Scaling issues accounted for 11%
of the mixed-mixed errors. Hence, adding more scaled images to
the training data would be useful. On the other hand, the spot
elevations in many scaled images appearing to have the same
characteristics were correctly predicted. The discerning factor in
this particular image may be the shortened string of the spot
elevation value.

To explain the remaining mixed-mixed errors would require
some advanced assessment techniques as they were not obvious
from our visual evaluation. However, only 5 images were
incorrectly predicted in the mixed-centered experiment. Out of
these 5 errors, 4 (80%) were due to overlapping features, and the
remaining error was caused by image noise.

The ability to generalize the approach to larger map areas or a
map service, as well as to other map text classes, would benefit
from additional study. Although the prediction accuracy in the
controlled, small images used in this study is quite high, further
experiments could expand to less controlled imagery to
understand its performance, and what is beneficial to improve
accuracy. Because finetuning increased with greater custom data,
place name labels were eventually ignored. This behavior is
desired in the case where the extraction of only one class of
text (in this case, spot elevations) is needed. Further experiments
could be used to understand whether this approach is the most
beneficial, or whether it is more productive to label and classify all
text in training images. Another area of concern for generalizing
is to other map products, such as National Geographic or
OpenStreetMap, where different font types, text placement,
etc., may not be represented in the existing training dataset.

CONCLUSION

Our experiments demonstrate that deep learning OCR is a viable
method for map text interpretation. We achieved high accuracy
performance on single feature spot elevation examples within
HTMC raster images and this success can likely be extended to
additional text instances within the HTMC and other map
contexts. The proposed approach could be applied to many
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map-text detection and recognition projects by incorporating
map-specific training examples. This proposal can be tested using
other map types, such as other USGS historical maps,
OpenStreetMap, or National Geographic maps, and can boost
knowledge in engineering, geography, and cartography,
particularly through the data mining processes.

Expanding usability to other map types would require the
creation of custom image/label pairs that depict various text types
within the given map contexts, which is a costly endeavour when
done by hand. However, augmentation techniques such as the
ones described in this paper could be utilized to reduce the
workload needed to craft custom datasets. Additionally,
augmentation directly increases the volume of available data to
train a model, which generally increases the overall accuracy.

Models have shown to be effective with reduced iteration
counts in the training phase. When reduced from the default
300 k iterations to 200 k iterations, there was little or no change in
performance. Reducing the number of training iterations can
greatly decrease the needed training time, so could be considered
in future experiments.

Despite excellent performance when training with the larger
mixed dataset, some spot elevation images are still not properly
interpreted, or even not detected at all. These problems are difficult
to troubleshoot because themachine learning algorithm is essentially
a black box. Techniques such as heatmap generation or salient
feature detection (Aodha et al., 2019) may be able to provide more
insight into why our models are unable to accurately recognize
certain spot elevations and possibly lead to an elegant solution to
further the capability of future text recognition models.

Other investigative diagnostic tools may be available, and it
would be prudent to seek these out or develop custom tools to
facilitate the troubleshooting process. Visualization methods
may be of use in future production environments and would be
invaluable when expanding functionalities or developing new
experiments. Potential methods include deconvolution (Zeiler
and Fergus 2014), heat maps (Samek et al., 2017), and salient
maps (Rashid et al., 2021). Our study is the first application of
Mask TextSpotter, as far as we are aware, to historical
topographic map text recognition. With an overall word
recognition accuracy of ~95%, the method compares
favorably to other studies in historical map text detection
and recognition. For example, Weinman et al. (2019) found
a 22% word recognition error with their methods that
depended on a lexicon, which is useless in the case of
numeric strings. Chiang and Knoblock (2010) achieved
word recognition recall and precision in the 80% range
using their approach to essentially ‘normalize’ the map text
to feed into commercial OCR software. Accuracies of our
approach are also higher than that reported by (Yu, 2016)

that added additional contextual information for the
recognition of historical map text. However, these studies
seek to recognize alpha and numeric characters, making a
direct comparison of the results impossible.

Because the room for improvement in accuracy is small in this
limited study, we can look forward to ways this accuracy will
plummet in an operational context, and discover enhancements
needed to recover it. Thus, such research could focus on the
challenges of recreating this performance on a larger spatial scale
to develop a spot elevations database. These issues include map
tiling methods, detecting multiple features in a single image,
handling disjointed text, creating and appending the derivative
database, and identifying and removing instance multiples, to
name a few. Meeting these challenges would contribute to general
machine learning research and specifically text recognition work
and forward the goal of deriving a spot elevations database for use
by the global community.
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