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Estimating annual CO2 budgets on drained peatlands is important in understanding the
significance of CO2 emissions from peatland degradation and evaluating the effectiveness
of mitigation techniques. The closed-chamber technique is widely used in combination
with gap-filling of CO2 fluxes by parameter fitting empirical models of ecosystem respiration
(Reco) and gross primary production (GPP). However, numerous gap-filling strategies are
available which are suitable for different circumstances and can result in large variances in
annual budget estimates. Therefore, a need for guidance on the selection of gap-filling
methodology and its influence on the results exists. Here, we propose a framework of gap-
filling methods with four Tiers following increasing model complexity at structural and
temporal levels. Tier one is a simple parameter fitting of basic empirical models on an
annual basis. Tier two adds structural complexity by including extra environmental factors
such as grass height, groundwater level and drought condition. Tier three introduces
temporal complexity by separation of annual datasets into seasons. Tier four is a
campaign-specific parameter fitting approach, representing highest temporal
complexity. The methods were demonstrated on two chamber-based CO2 flux
datasets, one of which was previously published. Performance of the empirical models
were compared in terms of error statistics. Annual budget estimates were indirectly
validated with carbon export values. In conclusion, different gap-filling methodologies
gave similar annual estimates but different intra-annual CO2 fluxes, which did not affect the
detection of the treatment effects. The campaign-wise gap-filling at Tier four gave the best
model performances, while Tier three seasonal gap-filling produced satisfactory results
throughout, even under data scarcity. Given the need for more complete carbon balances
in drained peatlands, our four-Tier framework can serve as a methodological guidance to
the handling of chamber-measured CO2 fluxes, which is fundamental in understanding
emissions from degraded peatlands and its mitigation. The performance of models on
intra-annual data should be validated in future research with continuous measured CO2

flux data.
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1 INTRODUCTION

Covering only 3% of the global land surface, peatland contains
over 600 Gt of carbon, which is nearly 30% of all global soil
carbon (Parish et al., 2008; Yu et al., 2010). However, centuries of
peatland drainage for agriculture and forestry have changed large
peatland areas from carbon sinks into sources. At present, around
10% of global peatland is degraded due to drainage or exploitation
(Joosten, 2010). Drained peatlands are estimated to annually emit
1.91 Gt CO2-equivalents without further exploitation (Leifeld and
Menichetti, 2018). This comprises an estimated 12–41% of the
greenhouse gas (GHG) emission budget for keeping global
warming below +1.5 to +2°C (Leifeld et al., 2019). Given the
importance of emissions from degraded peatlands, numerous
studies have focused on the measurement of the net ecosystem
exchange (NEE), and, subsequently, estimation of the annual CO2

budgets. These studies helped understanding the magnitude of
emissions among different peatland systems (Campbell et al.,
2014; Tiemeyer et al., 2016), influences of environmental factors
(Järveoja et al., 2016; Hoyt et al., 2019), effects of land use and
management (Beetz et al., 2013; Günther et al., 2015; Renou-
Wilson et al., 2016), and peatland’s contribution to large-scale
CO2 emission inventories (Wilson et al., 2016a; Tiemeyer et al.,
2020). Annual CO2 budgets provide straightforward information
that could be easily adopted in policy- or decision-making
regarding peatland degradation.

Closed-chamber methods represent an inexpensive and easy-
to-use technique that is suitable for use on a wide range of
ecosystems (Heng, 2021). At larger scale, however, estimation
of annual CO2 budgets is heavily dependent on spatial and
temporal interpolation, i.e., gap-filling of chamber
measurement data. The most frequently-used gap-filling
methodologies include parameter fitting of empirical models,
such as the simple temperature and PAR (photosynthetically
active radiation) dependent functions of ecosystem respiration
(Reco) and gross primary production (GPP), respectively. The
most frequently used relations are the Arrhenius-type Reco

relation (Lloyd and Taylor, 1994) and rectangular hyperbolic
light response equation of GPP (Michaelis and Menten, 1913).

A wide variety of models with different complexity can be
applied for better interpretation of the processes. In model
structure, various environmental factors can be incorporated
to improve model performance. For example, hydrological
regimes (e.g., soil moisture content, groundwater level)
regulates Reco by establishing aerobic and anaerobic zones
within the soil profile (Juszczak et al., 2013). Plant
composition, biomass and phenology can reflect the temporal
variations on the contributions from microbial heterotrophic
and plant autotrophic respiration to Reco (Järveoja et al., 2020)
and the photosynthesis capacity of the plants to GPP (Peichl et al.,
2018). An extensive summary of commonly used model
structures and environmental factors are presented in
Supplementary Table S1. Parameter fitting of these models
are applied with time scales from campaign-specific (e.g.,
Beetz et al., 2013) to seasonal (Waddington and Roulet, 2000)
or annual (Wilson et al., 2016b), adding a temporal dimension of
the model’s complexity.

Such diversity of gap-filling methodology creates variations in
the annual CO2 budget estimation, which may lead to
uncertainties on the ability of the methodology to reach
budget estimates closest to the real CO2 fluxes. Such
uncertainties affect upscaling of the CO2 emission and
conclusions in field trials and comparative studies (Hoffmann
et al., 2015). Huth et al. (2017) found strongly diverse CO2

budgets (−7.3 to 15.6 t ha−1) across gap-filling options with
different pooling methods of measured data (temporal
complexity). Karki et al. (2019) calculated widely variable NEE
estimates, ranging from −9.35 to −2.08 t ha−1 yr−1 on one plot,
when combining eight Reco and eight GPP models (structural
complexity). Previous studies attempted to mitigate such
uncertainties by standardizing the data acquisition and
processing approaches. Hoffmann et al. (2015) proposed a
standardized automatic data processing algorithm for
campaign-specific modeling. Huth et al. (2017) provided
options of the timing of the flux measurements, strategies of
data pooling and methods of flux partitioning. However, the
methodological diversity of gap-filling and the subsequent
uncertainties still complicates the application and
interpretation of chamber-based flux data.

Manual closed chamber measurements require human
resources to carry out the measurements. Which makes that
the current state of the method may be limited due to practical
issues, such as accessibility of the sites, equipment deficiency,
and/or unexpected influence from management or weather
events (e.g., in Weideveld et al., 2021), resulting in flux
datasets with potentially low measurement frequency,
prolonged data gaps, and/or large variations. The standard
campaign-specific method may not be possible under such
circumstances, requiring additional procedures in the gap-
filling data processing and modeling.

The above-mentioned methodological challenges regarding
diversity of the methods, uncertainties, and data deficiency
confounds the handling of chamber-measured flux data, as
well as the subsequent data analysis of comparative studies or
field trails. A streamlined framework for the gap-filling strategy is
timely needed that contributes to the current methodological
standards. The main objectives of this study are: 1) present a
systematic framework of gap-filling methodologies following a
gradient of structural and temporal model complexity; 2)
demonstrate and compare the statistical performances of the
gap-filling methods using multiple datasets; 3) investigate the
potential influence of gap-filling method selection on the
detection of treatment effects in a field trail.

2 MATERIALS AND METHODS

2.1 CO2 Flux Dataset
Selected gap-filling methodologies were tested on an existing
chamber-based CO2 flux dataset from the province of Friesland,
the Netherlands, published in Weideveld et al. (2021). CO2

exchanges were monitored from January 2017 till December
2018 at four farms. All farm locations have large fields with
deep drainage (ditch water levels from 60 to 90 cm below surface)
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and intensive fertilization (>230 kg N ha−1 yr−1). The peat soils
have a thickness of 0.8–2.0 m, some of which are covered with a
carbon-rich clay layer of 20–40 cm. The grasslands are dominated
by Lolium perenne. Each farm was set up with a control site
containing traditional drainage and infiltration ditches, and a
treatment site containing sub-soil irrigation (SSI) drains. The SSI
system functions by installing permeable drainage/irrigation
pipes at around 10 cm below ditch water level. It was
proposed to elevate groundwater level in the dry summer
season to reduce CO2 emissions, while fulfilling a drainage
function when the groundwater level is above the ditch water
level (van den Akker et al., 2010; Querner et al., 2012 as cited in;
Weideveld et al., 2021).

CO2 fluxes were measured on all four farms twice a month
during the growing season (April–September) and once a month
during the rest of the year. On each site, three 15 cm-deep soil
collars for flux measurements with chambers (80 × 80 × 50 cm)
were installed as replicates. An opaque (dark) chamber was used
to measure ecosystem respiration (Reco) and a transparent (light)
chamber for the measurement of net ecosystem exchange (NEE).
Gross primary production (GPP) was directly derived from NEE
using measured daytime Reco, which could avoid propagating Reco

modeling errors into GPP models (Huth et al., 2017), while light
and dark measurements were performed in sequence to minimize
errors due to deviations in temperature over time. During each
campaign, per field flux measurements were performed from
sunrise to noon, or from noon to sunset. Depending on the
duration of sunlight, an average of nine light and 10 dark
measurements during winter, and 18 light and 20 dark
measurements were achieved. An average of 383 measured
CO2 fluxes were collected per site and year (Weideveld et al.,
2021; Supplementary Table S2). Grass height and groundwater
table (GWT) were measured at the start of every field campaign.
Photosynthetically active radiation (PAR) and soil temperature at
5 and 10 cm depth were measured during the campaigns. PAR,
soil temperature and air temperature were also continuously
recorded every 5 min during and between field campaigns.
The recorded data was allocated into hourly averages to
simplify the computation in the following gap-filling
extrapolation. According to Hoffmann et al. (2015), the use of
hourly average PAR and temperature could induce systematic
bias in the gap-filled annual budget estimates. The positively
skewed distribution pattern of the GPP functions could result in
an overestimation of over 1 t CO2 ha

−1 yr−1 in the GPP estimates
(Hoffmann et al., 2015). Meanwhile, bias in the Reco estimates in
our case was presumably small since soil temperature as the
driving environmental factor for the Reco functions changes
slower than air temperature. Grass yield inside soil collars was
harvested eight times in 2017 and five times in 2018. Total carbon
was measured in dry plant material (t C ha−1 yr−1) to determine
C-export via harvest. Slurry manure was applied four times per
year at rates of 119–181 kg N ha−1 yr−1 with a C/N ratio of 16.3 ±
1.3 (mean±SD) to simulate C-import via farm management.
Export and import of carbon were converted from carbon
content to CO2 for calculating the CO2 balance. More details
on the experimental design, flux measurements and data
treatment are available in Weideveld et al. (2021).

In the previous analysis in Weideveld et al. (2021), a
campaign-wise gap-filling strategy was applied and no effect
from the SSI technique was detected. In 2018, the
experimental farms suffered from an extreme drought.
Parameter fitting of the data therefore faced difficulties and led
to uncertainties in the CO2 budget estimates, which was
presumably due to drought effect that could not be explained
by the measured environmental factors such as soil moisture and
GWT. This extensive dataset combining multiple years and
locations with the unexpected drought events provided
opportunities to test the performances of gap-filling strategies
and exemplify their differences.

2.2 Gap-Filling Methodological Tiers
A framework of four Tiers of gap-filling methodologies was
constructed (Figure 1). A Tier represents a level of
methodological complexity, which has been used in the IPCC
GHG inventory reporting methods (IPCC, 2019). Tier 1 is the
basic method applying the original form of the empirical models
without extra independent variables on annual datasets. Higher
Tiers are more demanding in terms of model complexity and data
requirements. Within each Tier, the most commonly used
empirical models of Reco and GPP were selected from
Supplementary Table S1. Parameter fitting was performed
using non-linear least square (NLS) models with the R
package lme4 (Bates et al., 2015). Model complexity was
determined by two aspects: model structure and temporal
scale. Structural complexity was increased by adding extra
parameters to the basic empirical models. Temporal
complexity was increased by shortening modeling periods by
separating the dataset according to seasonality or applying
campaign-specific models. For both Reco and GPP, multiple
model structures were tested at each Tier. Significance of the
parameters was determined by the p-value and t-statistic of the
parameter estimate from the NLS model. Models that performed
poorly (non-converging regressions, insignificant/abnormal
parameter values, etc.) were discarded while the best

FIGURE 1 | Methodological framework guiding the selection of gap-
filling strategies.
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performing model combinations (see Section 2.3) were selected
to be used in the next Tiers and for further statistical analysis.

2.2.1 Tier One: Basic Annual Models
From Supplementary Table S1, the most widely-used empirical
models were selected as the basic annual models. For Reco,
temperature-dependent functions including the Lloyd-Taylor
modified Arrhenius (Table 1, Eq. 1) and Van’t Hoff
exponential (Table 1, Eq. 2) models were selected. Air
temperature, soil temperature at 5 and 10 cm depth were
tested in the parameter fitting. Soil temperature at 5 cm depth
consistently provided better performances in different models
and was therefore selected to be used in other Tiers. For GPP,
rectangular hyperbolic functions including the Michaelis-
Menten’s (Table 1, Eq. 3), Smith’s (Table 1, Eq. 4) and
Mitscherlich’s (Table 1, Eq. 5) light response curves were
selected. For the parameter fitting, flux measurement data was
pooled over the entire year. The Lloyd-Taylor modified
Arrhenius and Michaelis-Menten’s hyperbolic functions were
selected to be used in the higher Tiers.

2.2.2 Tier Two: Annual Models With Extra Parameters
2.2.2.1 Inclusion of Extra Environmental Factors
Extra environmental factors were introduced into the Tier one
models for an increased model structural complexity. Multiple
mathematical forms of the environmental factors were tested and
compared for the best model performance (Supplementary
Table S1B). Grass height was used as a vegetation index since
it is correlated to a wide range of vegetation indexes, such as
Normalized Difference Vegetation Index (NDVI), Leaf Area
Index (LAI) and Difference Vegetation Index (DVI) (Payero
et al., 2004), although rarely used directly. The GPP model
with grass height modified GPPmax (Karki et al., 2019,
Table 1, Eq. 7) was selected for further calculations. Reco

models with grass height were not included due to frequently

insignificant parameter fitting, indicating a weak correlation. A
temperature function (Supplementary Table S1B) was
introduced to the GPP function with grass height (Karki et al.,
2019, Table 1, Eq. 8) to account for the influence of low
temperature during winter and spring (Yamori et al., 2014).
Groundwater table, although frequently used in other studies
(see references in Supplementary Table S1B), was discarded
from the models due to its generally poor model performance in
this study. Soil moisture was not tested due to lack of continuous
measurements.

2.2.2.2 Introducing a Drought Index
In order to describe the contrasting climate conditions in the
studied years, a drought index was defined based on drought
events (any period with more than three consecutive days without
precipitation, Jassey and Signarbieux, 2019) and the cumulative
atmospheric water flux (precipitation minus evapotranspiration,
P-ET, Stagge et al., 2015). The daily precipitation and
evapotranspiration data were collected from the nearest official
KNMI weather station (weather station Leeuwarden, 18–30 km
distance from research sites, Weideveld et al., 2021). The
accumulated P-ET was reset to zero at the beginning of both
years. Pulses of water from small precipitation events can
stimulate the carbon flux (Munson et al., 2010; Shen et al.,
2015). Munson et al. (2010) found on a semiarid grassland
that water is less limiting to carbon fluxes after rain events
above 5 mm. No such study was found for peat meadows.
Therefore, we reset the accumulated P-ET also after rain
events above 5 mm, assuming a reduced drought effect. The
drought index was then calculated as absolute values of the
accumulated P-ET that remained negative with resets after
rain events (Supplementary Figure S1). The drought index
was then tested in different forms and included as a residual
term in both the Reco and GPP models (Table 1, Eqs 6, 9) as only
this form resulted in significant model parameters.

TABLE 1 | Equations of the empirical models selected for the gap-filling framework.

Reco GPP

Tier 1–BASIC ARR : Rref × eE0×(
1

Tref −T0−
1

T−T0 ) (1) MM : GPPmax × α × PAR
GPPmax+α × PAR (3)

Exp : A × ebT (2) SMT : GPPmax × α × PAR
�������������

GPP2
max+(α × PAR)2

√ (4)

MIT : GPPmax × (1 − e
α×PAR
GPPmax ) (5)

Tier 2–PARA ARR − D : Rref × eE0×(
1

Tref −T0−
1

T−T0 ) + a × DI (6) MM −G : GPPmax × GH × α × PAR
(GPPmax × GH)+α × PAR (7)

MM −GT : GPPmax × GH × α × PAR
(GPPmax × GH)+α × PAR × Ft (8)

MM −GTD : GPPmax × GH × α × PAR
(GPPmax × GH)+α × PAR × Ft + a × DI (9)

Tier 3–SS Non-drought: Eq. 1 Non-drought: Eq. 8
Drought: Eq. 6 (Linear a × T + b × DI + c (10)a) Drought: Eq. 9

Tier 4–CW Eq. 1 Eq. 3

Abbreviations:BASIC, basic annual models; PARA, annual models with extra parameters; SS, seasonal gap-filling; CW, campaign-wise gap-filling; ARR, Lloyd-Taylor modified Arrhenius
model; EXP, Van’t Hoff exponential model; MM, Michalis-Menten/SMT, Smith’s/MIT, Mitscherlich’s light response curve; -D, with drought index; -G, with grass height; -T, with
temperature function (Ft).
aA linear model was used for the drought season in 2017, where ARR-D did not result in acceptable performance.
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2.2.3 Tier Three: Seasonal Gap-Filling
The annual flux datasets were split into two seasonal subsets,
adding a level of temporal complexity. Here, seasonality was
defined based on drought conditions, whereas a drought season
had a positive drought index, and non-drought seasons had a
drought index equal to zero. The best performing Tier one and
Tier two models were tested in the parameter fitting of two
seasonal data sets. For non-drought periods, an Arrhenius Reco

model was combined with a Michalis-Menten GPP model with
grass height and temperature function. For drought periods, both
models were applied with addition of a drought index. The
drought period covered only 37 days in 2017 (151 days in
2018), which led to insufficient data points for the model
fitting. Therefore, linear regressions were applied to the
modeled Reco for the drought period in 2017 (Table 1, Eq. 10);
and the parameter of light response function adopted fixed GPPmax

and α from the annually fitted Tier two models.

2.2.4 Tier Four: Campaign-Wise Gap-Filling
Campaign-wise gap-filling refers to parameter fitting of flux
data measured on an individual measurement date. The
modeling and gap-filling procedure is adopted from
Weideveld et al. (2021): Per campaign, Arrhenius and
Michalis-Menten functions were fitted for Reco and GPP,
respectively. Pooling of data from two or more adjacent
campaigns was applied when the range of PAR did not cover
a complete light response curve including the light-limited part
and after the light saturation point. This occurred in both years
during winter from January to March, and occasionally in 2017
during summer from June to September when data was collected
on rainy and cloudy days (see campaign-wise parameters in
Supplementary Dataset). Gap-filling between two adjacent
campaigns are averages of the CO2 flux estimates from these
two campaign-wise models, weighted by the temporal distances
of the gap-filled moment to each of the measurements.

2.3 Model Performance
Performances of the fitted models were evaluated by comparing
measured and modeled values based on a series of model

indicators following Moriasi et al. (2007) as used by Hoffmann
et al. (2015). Mean absolute error (MAE), RMSE (root mean
square error)—observations standard deviation ratio (RSR),
coefficient of determination (r2), modified index of agreement
(md), and Nash–Sutcliff’s model efficiency (NSE) were calculated
for each model. Goodness of the fit was determined on a set of
thresholds rating the indicators (Hoffmann et al., 2015).

2.4 Gap-Filling and Validation
Hourly CO2 fluxes (Reco, GPP and NEE) were calculated by
feeding the environmental variables (hourly average soil
temperature at 5 cm depth, air temperature, PAR, and
interpolated grass height) to the selected gap-filling models.
Grass height was linearly interpolated between measurement
campaigns using the R package zoo (Zeileis and Grothendieck,
2005). More accurate interpolation was not possible due to the
lack of high frequency measurement or empirical models for
grass height. Depending on the growth stage of the plants, linear
interpolation may induce overestimation at short grass after
harvest due to the plants’ recovery and underestimation at
relatively long grass when plant growth is reaching the maxima.

Annual Reco, GPP and NEE budgets were calculated by
summing these hourly fluxes. Model errors and extrapolation
errors are the most important sources of uncertainty in the gap-
filling of annual CO2 budgets (Beetz et al., 2013). Only model
errors were estimated, since extrapolation errors were partly
related to, and therefore discussed by, the selection of different
extrapolation methods (Weideveld et al., 2021). A Monte Carlo
simulation was included in each gap-filling run for model error
estimation (Beetz et al., 2013; Leiber-Sauheitl et al., 2014;
Hoffmann et al., 2015; Berger et al., 2019; Zhao et al., 2020)
using R package nlstools (Baty et al., 2015). Parameter fitting of
Reco and GPP models was bootstrapped with 1,000 iterations.
Annual Reco and GPP budgets were calculated with all the
bootstrapped model parameter sets, from which the standard
deviation (SD) was calculated to represent the uncertainties of the
estimates. Uncertainty of annual NEE budgets was subsequently
calculated by combining the SDs of Reco and GPP following the
law of error propagation.

TABLE 2 | Summary of the analysis of variance (ANOVA) for the mixed-effects models fitted on the gap-filled NEE for each gap-filling strategy. Year, treatment and their
interaction are independent variables, and farm location is included as a random effect.

Model combination Independent variable Sum of squares F~F1, 16 p value

Tier 1—BASIC Year 4.50 0.06 0.8150
Treatment 11.79 0.15 0.7053
Year × Treatment 162.57 2.04 0.1721

Tier 2—PARA Year 466.00 6.07 0.0255 (*)
Treatment 41.51 0.54 0.4730
Year × Treatment 168.68 2.20 0.1578

Tier 3—SS Year 1,013.59 14.85 0.0014 (**)
Treatment 0.28 0.00 0.9496
Year × Treatment 176.82 2.59 0.1270

Tier 4—CW Year 182.93 1.86 0.1913
Treatment 0.39 0.00 0.9505
Year × Treatment 40.64 0.41 0.5292

BASIC, annual basic model; PARA, model with extra parameters; SS, seasonal; CW, Campaign-wise.
Significance is indicated in brackets behind the p-value, with *p < 0.05, **p < 0.01.
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An independent quantitative validation of the annual budget
estimates was also needed alongside the proposed model
performance and uncertainty assessments, in order to evaluate
the accuracy of the gap-filled CO2 budgets. However, a direct
validation was not possible in absence of a known true value of
annual CO2 budgets. Therefore, only an indirect validation was
performed using the positive correlations between GPP and plant
biomass presented in previous studies (Otieno et al., 2009; Hirota
et al., 2010; Weideveld et al., 2021). Derived annual GPP budgets
were linearly correlated with C-export per year and method Tier
as a quality check of the estimates by examining the significance
of the regression.

2.5 Applicability Demonstration
Our Tier list framework was developedmainly in consideration of
the drought effect during our measured period that caused large
variances in the fluxes data. Meanwhile, the ever-growing number
of chamber-based flux measurements set up on global peatlands
are performed under influence from various conditions other
than drought events. For example, differences in equipment,
operational techniques, environmental and weather conditions,
etc. Our framework and insights on method selection also need to
be tested under other types of variations or data gaps. Therefore,
the framework was further demonstrated and evaluated on an
unpublished CO2 flux dataset from the fifth farm location over
2018 and 2019. The fifth farm location was close to the other four
main locations in Friesland, with similar soil type and
management regime. The farm followed the same
experimental setup as the other four farms, with a control site
and a treatment site installed with SSI. At this location, the SSI
treatment was enhanced by installing a pressure well connected to
the drainage ditch. Water level inside the well could be raised by a
pump to provide increased inflow pressure, therefore keeping the
groundwater level stable throughout the year (van den Akker
et al., 2019). Measurement procedures were in line with the
previous experiments. The measurement frequency, however,
was significantly lower than in the other locations, with in
total less than ten campaigns: once per month during the
growing season (April–September) and twice during the non-
growing season (in October and November/December)
(Supplementary Table S2). Parameter fitting of gap-filling
models followed the four methodological Tiers. Drought index
was not used as a parameter here, since the drought effect was not
as pronounced as in the four main locations due to extra
irrigation in 2018. Grass height was used instead of the
drought index in the Reco model from the Tier two method.
Model performances and the gap-filled annual budgets were
evaluated and compared. Budget estimates under data scarcity
with large gaps to fill could further test the applicability of our
framework on different datasets and evaluate the strengths and
limitations of each Tier.

2.6 Statistics
The effect of gap-filling methodology on annual budget
estimation and detection of treatment effects were investigated.
Correlation of model performance ratings against the Tier
position of gap-filling methodologies was tested by a simple

linear regression. Linear mixed-effects models were fitted using
R package lme4 (Bates et al., 2015) with gap-filled CO2 fluxes
(Reco, GPP and NEE) as dependent variables; year, treatment,
their interaction and gap-filling methodology as fixed effects; and
farm location as random effect. Type III analysis of variance
tables of the linear mixed-effects models were computed with
Satterthwaite’s method using the anova function from the R basic
package stats. The post-hoc Tukey’s HSD test was used with R
package emmeans (Lenth et al., 2020) to further detect significant
differences between gap-filling methodologies. To test whether
selection of different gap-filling methodology would generate a
treatment effect, linear mixed-effects models were also fitted
separately for all gap-filling methodologies with annual NEE
as dependent variable, year, treatment, and their interaction as
independent variables, and farm location as random effect. All
data was processed and analyzed using R version 4.0.2 (R Core
Team, 2020).

3 RESULTS AND DISCUSSION

3.1Model Performances and Annual Budget
Estimates
The model performances under different gap-filling strategies
improved significantly (p < 0.001) with higher complexity
(Figure 2, Supplementary Table S3). However, such
improvement did not lead to systematic differences among
annual CO2 budget estimates from the four Tiers (Figure 3).
In general, all gap-filling strategies resulted in CO2 emissions
situated in the upper range of emissions from productive
grasslands on organic soils (Grønlund et al., 2008; Tiemeyer
et al., 2016, 2020). Large variances can be observed between the
gap-filled annual budgets (Supplementary Table S4) and daily
fluxes (Supplementary Figure S2) resulting from different
methods. The basic empirical models from Tier one were not
suitable for annual parameter estimates (Figure 2) due to limited
explanatory power regarding the environmental and temporal
variations. Gap-filled daily fluxes showed mild fluctuations
without reflections on rapid changing conditions such as
harvest. This resulted in significantly larger annual GPP
estimates from the Tier one method in 2017 (p < 0.001,
Figure 3). Influence from environmental changes can be
accounted for by higher Tier methodologies with either
inclusion of additional variables or season-/campaign-specific
modeling. For example, inclusion of grass height and the
temperature function in Tier two substantially improved GPP
estimates in all aspects, which is in close agreement with other
studies stressing the importance of accounting for plant growth
and harvest (Eickenscheidt et al., 2015; Huth et al., 2017; Kandel
et al., 2013). This, however, could lead to drastic fluctuations and
contradicting trends in the daily fluxes (Supplementary Figure
S2). The lower soil respiration (Davidson et al., 1998) and
photosynthetic CO2 uptake (Fu et al., 2020; Koebsch et al.,
2020) under desiccation stress may have been oversimplified
by the drought index proposed in our study, leading to
unrealistic peaks and dips of the daily fluxes in Tier two and
three. Tier three seasonal gap-filling substantially improved the
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model performances by circumventing the lack of good
predictors for the drought period that altered important
drivers of CO2 fluxes. However, it is more prone to influences
of individual high Reco measurements under abrupt
environmental changes, such as rain-induced soil respiration
pulses (Lee et al., 2004; Ma et al., 2012). Such data “outliers”
may have confounded the models when fitted seasonally, leading
to less representative temperature-respiration relationships, and
may have resulted in the significantly higher Reco from Tier three
comparing to Tier four in 2017 (p < 0.05, Figure 3). Tier four
campaign-wise model fitting further reduced model errors
(Figure 2). The ability of the Tier four campaign-wise method
to reflect environmental changes without complicated
parameterization demonstrated its robustness and reliability
when applied with sufficient measurement frequency.
However, it is subject to over-extrapolation, since a narrow
measurement range of temperature from a single campaign
could introduce bias when extrapolated outside of that range
(Hoffmann et al., 2015; Huth et al., 2017). Pooling of all gap-
filling results over locations and treatment sites showed an
absence of consistently significant differences (Figure 3) in
spite of the above-mentioned variances. This implies a strong
influence from divergence among years and locations. Gap-filling
method selection should therefore be considered case-specifically
in light of characteristics of the dataset, such as the time scale and
frequency of the measurements and abrupt or abnormal
environmental changes.

3.2 Sensitivity of Treatment Effect to the
Choice of Gap-Filling Method
Despite the seemingly large differences between CO2 budget
estimates of treatment and control plots observed in individual
farms (Supplementary Table S4), we did not find any significant
treatment effect when pooling the data of the four locations
(Table 2). The differences found in individual locations could be
due to random variations in the site-specific biotic and/or abiotic
processes between treatment and control plots, such as
differences in vegetation growth, microbial activities, and
GWT fluctuations. These processes could be highly variable
due to the complexity of in-situ environmental conditions.
Statistical results from the pooled data were less likely to be
affected by such random effects. Therefore, testing of treatment
effects from field trials requires a combination of multiple
locations and a longer timespan (e.g., Maljanen et al., 2007;
Elsgaard et al., 2012) to avoid confounding factors from site or
year differences. Annual budget estimates from a single location
are more consistent in representing the magnitude of CO2

emissions.

3.3 Applicability Demonstration: Gap-Filling
Under Data Scarcity
Parameter fitting and gap-filling for the dataset from the fifth
farm location was carried out for demonstration purposes,
following the methodological Tier list. The low frequency of
the measurement campaigns (<10 per year) in this dataset

insufficiently captured the temporal dynamics in CO2 fluxes.
As a result, Tier four campaign-wise gap-filling, although being
the most commonly used standard approach, led to high
uncertainties and poor fit of gap-filling model parameters
(Table 3). Tiers containing models with lower temporal
complexity at annual or seasonal levels were proven more
applicable, as GPP modeling using Tier one (Michalis-Menten
function) and Tier two (Michalis-Menten function with grass
height) resulted in smaller uncertainties of budget estimates
(Table 3). However, annual Reco modeling methodologies
from Tier one and two (Arrhenius function and with drought
index) resulted in poor or even unsatisfactory performances
(Table 3), mainly due to the large variances in the raw flux
data. The best model performances were achieved by the Tier
three seasonal method (Table 3). Meanwhile, gap-filled daily
fluxes (Figure 4) occasionally showed large fluctuations despite
the satisfactory error statistics. For example, Reco and GPP fluxes
from Tiers one, two and four showed potential overestimations
due to low representativeness of the dataset in the winter season.
Extreme peaks and dips can be observed in the Reco fluxes,
especially from the Tier four campaign-wise method, showing
strong effects of individual high and low measurements when
extrapolated over a prolonged time period (Huth et al., 2017).
The extremely low Reco fluxes observed in summer 2018 from
Tier two method can be imputed to the low explanatory power
of the drought index leading to unrealistic outputs from the
model. The satisfactory model error statistics achieved by Tier
three and four methods (Table 3) demonstrated the potential of
generating annual budget estimates even from scarce data.
However, large uncertainties should be acknowledged given
the varying behavior of the models throughout the year
(Figure 4). It is therefore necessary to test multiple gap-
filling methods when the quality and quantity of raw flux
data is limited. The resulting annual budget estimates should
be interpreted with caution, merely as an indication for the
order of magnitude of the emissions.

3.4 Validation of the Annual Budget
Estimates
Given the lack of known true values of carbon budgets for
locations in this study, independent validation of the derived
CO2 exchange was not possible. Nonetheless, an indirect cross-
validation of derived annual GPP budgets with C-export via
biomass harvest was performed (Figure 5). A similar
validation for Reco was not feasible in our analysis due to lack
of comparable environmental datasets. In general, Annual GPP
showed strong correlation with C-export when pooling data from
all five locations and 3 years from 2017 to 2019 (p < 0.001, R2 =
0.42). GPP estimates in 2018 (p < 0.001, R2 = 0.52) and 2019 (p =
0.007, R2 = 0.69) were roughly in agreement with the general
trend. Previous meta-analysis from Tiemeyer et al. (2016) gave
average values of GPP and C-export from nutrient-rich deep-
drained grassland on organic soils overlapping the range of our
estimates (Figure 5), also indicating realistic estimation of the
GPP values. However, GPP estimates in 2017 showed poor
correlation with C-export values (p = 0.598, R2~0) and strong
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deviation to the general trend, especially with results from the
Tier one method. This is in accordance with the significant
overestimation of Tier one GPP values identified (Section 3.1,

Figure 3), and is reflected in the Tier one daily fluxes
(Supplementary Figure S2) that failed to represent changes of
CO2 exchange due to plant biomass growth and removal.

FIGURE 2 | Heatmap of model performance indicators per farm and treatment site following the four Tiers of the gap-filling guiding framework. (A) Reco, and (B)
GPP. Statistical quality criteria were adopted from Moriasi et al. (2007) as used by Hoffmann et al. (2015): MAE = mean absolute error, RSR = root mean square error
(RMSE)-observations standard deviation ratio, r2 = coefficient of determination, md = modified index of agreement, NSE = Nash-Sutcliff model efficiency.
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Accuracy of GPP estimates in 2017 should therefore be given low
confidence. Within-day timing and frequency of the
measurements (Huth et al., 2017; Gana et al., 2018; Järveoja
et al., 2020) could also be a cause of this low accuracy. Ourmidday
measurements at a fixed timeframe in 2017 resulted in poor
coverage of different PAR ranges. Meanwhile, results from the
four Tiers all showed strong correlation with C-export (p < 0.01,
R2 = 0.38–0.43) when tested separately, including the Tier one

method that also produced GPP values in good agreement with
the GPP~C-export correlation in 2018 and 2019 (Figure 5).
Therefore, the general feasibility of all four method Tiers can
be concluded. However, Tiers one and two methods are more
prone to bias when analyzing raw flux datasets with poor
representativeness for the environmental conditions and
management events, leading to potentially large variations in
the GPP estimates.

FIGURE 3 | Gap-filled annual Reco, GPP and NEE budgets from different model selections and combinations in both years. The box indicates the median and the
upper/lower quartiles. The whiskers represent the maximum and minimum values. Filled points are the outliers. The asterisks between boxes indicate significant
differences between models based on linear mixed-effects (LME) models (*p < 0.05; **p < 0.01; ***p < 0.001).

TABLE 3 | Annual CO2 budgets of the fifth farm location as a demonstration of the framework applicability. Data are CO2 budget estimates in t ha−1 yr−1 (±SD). C-export was
translated from grass yield in t CO2-eq ha−1 yr−1.

Year 2018 2019

Treatment SSI Control SSI Control

Reco Tier 1—BASIC 118.2 (±10.1) 107.2 (±7.4) 124.2 (±6.5) 136.6 (±9.7)

Tier 2—PARA 121.8 (±10) 103.8 (±6.9) 111.2 (±4.4) 121.1 (±9.6)

Tier 3—SS 105.9 (±4.8) 96.3 (±4.2) 100.4 (±3.5) 95 (±5.4)

Tier 4—CW 91 (±13.2) 124.5 (±7.1) 116.8 (±16.3) 118.1 (±20.1)

GPP Tier 1—BASIC −80.5 (±4.5) −61.7 (±3.5) −77.2 (±2.6) −63.6 (±2.6)

Tier 2—PARA −72.3 (±3.2) −57.6 (±4.1) −72.2 (±2) −53.9 (±2.2)

Tier 3—SS −75.4 (±4.6) −61.1 (±3.3) −76.3 (±2.4) −63.7 (±3)

Tier 4—CW −78.6 (±17.9) −62.2 (±35.3) −89.1 (±13.5) −62.8 (±11.1)

NEE Tier 1—BASIC 37.6 (±11.1) 45.5 (±8.2) 47 (±7) 73 (±10.1)
Tier 2—PARA 49.5 (±10.5) 46.3 (±8.1) 39 (±4.8) 67.2 (±9.8)
Tier 3—SS 30.5 (±6.7) 35.2 (±5.3) 24.1 (±4.2) 31.2 (±6.2)
Tier 4—CW 12.4 (±22.2) 62.2 (±36) 27.7 (±21.1) 55.3 (±22.9)
C-export 16.2 12.1 18.0 10.7

Tier 1—BASIC = annual basic model; Tier 2—PARA =model with extra parameters; Tier 3 –SS = seasonal; Tier 4—CW= Campaign-wise. Colour of the cells represents model performances,
following legend of Figure 2 (red–unsatisfactory, yellow–satisfactory, light green–good, dark green–very good), adopted from Moriasi et al. (2007) as used in Hoffmann et al. (2015).
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Better estimates of carbon pools including plant biomass could
serve as a valid data source for indirect cross-validation. For
example, a process-based growth model for plant biomass could

better correlate with the derived GPP values by avoiding
uncertainties introduced by the harvest practice. However,
such models are normally parameterized only for mineral soils

FIGURE 4 |Gap-filled daily summedCO2 fluxes (Reco and GPP are depicted as the positive and negative values, respectively) from different models at (A) treatment
and (B) control site of the demonstration location 5.

FIGURE 5 | Indirect validation by comparing derived annual GPPwith C-export per method Tier and year. The black solid line is the result of general linear regression of
the entire dataset (p < 0.001,R2 = 0.42). Grey lines are regression lines per year (2017,p= 0.598,R2~0; 2018, p < 0.001,R2 = 0.52; 2019, p = 0.007,R2 = 0.69). Red lines are
regression lines per method Tier (Tier one, p = 0.002,R2 = 0.42; Tier two, p = 0.002,R2 = 0.43; Tier three, p = 0.002,R2 = 0.0.42; Tier four, p < 0.001,R2 = 0.38). Black point
with error bars represents average values of GPP and C-export from nutrient-rich deep-drained grassland adopted from Tiemeyer et al. (2016).
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and requires extensive growth data for local calibration (e.g.,
Barrett et al., 2005). Long-term carbon fluxes monitoring can also
be cross-validated with soil carbon pool. Hoffmann et al. (2017)
validated chamber-derived net ecosystem carbon balance by
resampling of soil organic carbon. Net carbon losses could be
proxied by monitoring soil subsidence (Couwenberg and Hooijer,
2013), while such estimated emissions are highly uncertain due to
the complicated processes involved in soil surface changes
including the oscillation of peat soil (Fritz et al., 2008).

It is still challenging to sufficiently validate chamber-based annual
budgets estimates given the limitations of the above-mentioned
indirect validation approaches. Paired comparison of the discrete
manual chamber fluxes with continuous flux measurements from
eddy-covariance and automatic chamber techniques could
potentially enable independent validation of the gap-filling
methods and budget estimates. Lucas-Moffat et al. (2018)
presented highly correlated fluxes between manual chamber and
eddy-covariance fluxes from a cropland. Meanwhile, Cappoci and
Vargas, 2022) discovered up to 60% underestimation of annual CO2

efflux bymanual chamber compared to automatic chamber in a tidal
marsh. More continuous measurements with higher resolution in
long term are needed for the improvement of the validation and
therefore the refinement of the gap-filling methods. An ongoing
year-round automatic chamber measurement including farm
locations of this study (Erkens, 2020) could provide opportunities
for robust cross-validation of the gap-filling approaches in the near
future. However, not without acknowledgement of the specific
shortcomings in each method. For example, while manual
chamber provides low temporal resolution and lack of night-time
fluxes; eddy-covariance measurements have a variable footprint and
insufficient energy closure; automatic chambers could lead to
heating up to the vegetation and upper soil layer, and are subject
to disturbance of the precipitation/evapotranspiration process.
Therefore, our statistical comparison provides insights for the
selection of available gap-filling methods to meet the growing
number of chamber measurements as well as the need to derive
more annual carbon balances in drained peatlands. Despite the fact
that a “best” approach could not be identified.

4 CONCLUSION AND IMPLICATION

In this study, we summarized the most commonly-used empirical
models of Reco and GPP for gap-filling manual chamber-based CO2

flux into a framework of four Tiers with increasing model
complexity. Model performance of the methods from the four
Tiers were systematically compared in terms of error statistics.
The annual CO2 exchange was in the same order of magnitude
with values from literature on similar ecosystems. Detection of
treatment effects requires large number of independent
observations (locations) and longer period of time (years) to
reduce its sensitivity to random variances. Indirect validation of
GPP estimates showed good agreement with the GPP~C-export
correlation, except for the year 2017. However, without independent
validations using high-resolution long-term continuous flux
measurements, the true precision of the methods cannot be
discussed but are better suited to determine only the magnitude

of the annual CO2 budgets. Nonetheless, specific recommendation
could be given for each Tier supporting the selection of suitable
methods:

1) Tier one annual basic gap-filling is feasible when higher model
complexity is not possible due to deficiency of data required for
model input or a low number of measurements. However, Tier one
models are not likely to provide robust parameter fitting in most
cases, because the variance in CO2 fluxes cannot be sufficiently
explained by the limited number of explanatory variables in the
models. 2) Tier two methodology introduces higher structural
complexity with additional parameterization but remains
temporally simple with annual parameter fitting. Robustness of
such models depends on the explanatory power of the included
variables as well as the representativeness and frequency of the flux
measurements. However, the number of variables should be limited
to avoid overfitting. 3) Tier three seasonal gap-filling has a moderate
overall complexity. It is a potential solution in situations where
representativeness of data is an issue, such as with lowmeasurement
frequency. The definition of the seasons used to cluster the data is
essential when accounting for the unexplained temporal variation in
CO2 fluxes. 4) Tier four campaign-wise gap-filling represents the
highest temporal complexity by fitting simple relations per
measurement campaign. It is the most commonly used procedure
in chamber-based CO2 fluxes studies, and the most reliable way of
gap-filling when data is adequately available. However, the risk of
over-extrapolation should be considered in case the range in
temperature or PAR is limited in single measurement campaigns.

Besides in the gap-filling of CO2 fluxes from drained
temperate peatlands, similar empirical models of Reco and
GPP have been applied also on cropland (e.g., Struck et al.,
2020), forest (e.g., Zhao et al., 2020), and tropical peatlands (e.g.,
Hirano et al., 2014; Gana et al., 2018) with consideration of
influences of temperature, groundwater table and plant
phenology. The Tier system following an increased model
structural and temporal complexity proposed in this study is
potentially applicable to these other ecosystems. For example,
CO2 and CH4 fluxes from waterbodies can show clear
correlations with temperature and water chemistry indicators,
and display seasonal differences (Peacock et al., 2021). All in all,
the Tier system can provide opportunities in the modeling of
various greenhouse gasses in a multitude of ecosystems, though
empirical relationships and independent environmental
variables should be considered.
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