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Optimality principles have been applied in ecohydrological modeling to derive optimal
vegetation properties and describe co-evolution states of vegetation and water cycle.
Unfortunately, most existing optimality-based models only consider vertical vegetation-soil-
water interactions on plot scale, without considering the lateral hydrological processes. This
work aims to extend the field-scale VegetationOptimalityModel (VOM) to thewatershed scale.
Lateral flow is incorporated to VOM through a hierarchical strategy, establishing theDistributed
Vegetation Optimality Model (DisVOM). The model is tested with long-tem flux measurements
in the Walnut Gulch watershed, a United States Agricultural Research Service (US-ARS)
experimental watershed in southern Arizona. The results indicate the model performance is
acceptable for most of years, especially for the growing season. The seasonal dynamic of ET,
soil water, and GPP demonstrate good consistency with observations. The model provides
reasonable spatial distribution of ET and GPP, suggesting the model can discriminate the
effect of lateral flow on water redistribution, and consequently on root water uptake, as well as
carbon assimilation. The model could be a useful tool assessing the impact of climate change
and human activities on vegetation and water cycle.

Keywords: ecohydrology, ecohydrological modeling, vegetation optimality, lateral hydrological processes, spatial
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1 INTRODUCTION

Vegetation and the water cycle are intrinsically coupled through physical and biological
processes, such as carbon, water, energy, and nutrients exchange (Rodriguez-Iturbe et al.,
1999; Biederman et al., 2017; Wang et al., 2019; Rice and Emanuel, 2019; Xia et al., 2021). Over
the past few decades, there has been a growing awareness that vegetation co-evolves with the
environment achieving an equilibrium status and optimal use of resources (such as light, water)
when adapting to the environment (Ball et al., 1987; Cowan, 2002; Berninger et al., 1996;
Eagleson, 2002; Rodriguez-Iturbe and Porporato, 2005; Chen et al., 2019; Franklin et al., 2020).
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Based on Darwin’s theory of natural evolution, Eagleson (1978,
2002) proposed the optimality hypothesis that in water-limited
ecosystem vegetation reaches a “growth equilibrium” density
when stress is minimized in short term, and an “evolutionary
equilibrium” at which the rate of production is maximized in
long terms (Eagleson, 1978; Eagleson, 2002). Following
Eagleson’s pioneering work, different optimality principles
have been established (Rodriguez-Iturbe and Porporato,
2005). Those optimality principles are applied to derive the
optimal vegetation properties, such as optimal vegetation
distribution (Caylor et al., 2004), optimal root properties
(Schymanski et al., 2008; Gao et al., 2014; Carbon et al.,
2018; Speich et al., 2018), optimal photosynthetic canopy
properties (van der Tol et al., 2008; de Boer et al., 2011).

In recent years, optimality principles have been applied in
ecohydrological modeling to derive optimal vegetation properties
and describe co-evolution states of vegetation and water cycle
(Van der Tol et al., 2008; Schymanski, et al., 2009; Caylor et al.,
2009; Pauwels et al., 2007; Lei et al., 2009; Huang et al., 2020). In
contrast to the traditional ecohydrological models (Chen et al.,
2015; Fatichi et al., 2016), which heavily rely on calibration
(Kuppel et al., 2018), optimality-based ecohydrological models
do not need prior knowledge of vegetation, which make them
powerful to predict the system’s response to new conditions
(Sutherland, 2005; Sivapalan, 2009). To our knowledge, most
existing optimality-based models only consider vertical
vegetation-soil-water interactions on plot scale, without
considering the lateral hydrological processes (Hwang et al.,
2009).

It is well acknowledged that lateral hydrological processes and
redistribution of soil water contribute to the complex vegetation
structure and patterns at watershed scale (Band et al., 1993;
Govind et al., 2009; Chen et al., 2015). It is especially
significant in mountainous and hilly terrain due to the
complex variability of topography (Ivanov et al., 2008; Gao
et al., 2019). Therefore, the lack of lateral flow in
ecohydrological models will lead to inappropriate
representation of soil water, which directly affects the
description of ecohydrological processes, such as root water
uptake, evapotranspiration.

Vegetation Optimality Model (VOM) (Schymanski et al.,
2009) is an optimality-based model, which applies a principle
of maximization of Net Carbon Profit (NCP) to acquire optimal
vegetation properties. One key merit of this model is that it does
not need prior knowledge about the vegetation to run the model.
However, like the other optimality-based models, this model only
considers vertical water and vegetation dynamics on field scale.

This work aims to extend the field-scale VOM to the
watershed scale. We incorporate lateral hydrological processes
to VOM, establishing the Distributed Vegetation Optimality
Model (DisVOM). The model is tested in the Walnut Gulch
watershed, a United States Agricultural Research Service (US-
ARS) experimental watershed in southern Arizona. The model
outputs are validated with the observed flux data. To evaluate the
contribution of lateral flow to ecohydrological processes
modeling, we compare the distribution of modeled
evapotranspiration (ET) and Gross Primary Productivity

(GPP) with the spatial pattern of topography. We further
examine the problems associated with the model, which
pointed out the orientation of model improvements in the future.

2 MATERIALS AND METHODS

2.1 Model Description
The model developed in this research is an optimality based,
spatial explicit ecohydrological model at watershed scale.
The watershed is delineated from the Digital Elevation Model
(DEM) into grid cells, and each grid is considered as a unique
vegetation-soil system. Vertically, each grid is subdivided into
many layers and simulates ecohydrological processes such as
photosynthesis, transpiration, soil evaporation, infiltration, etc.
Horizontally, it describes the heterogeneities in topography, soil,
vegetation and atmospheric forcing, and adequately describes
the mutual interaction among grids utilizing grid-based routing
algorithms.

2.2 Vertical Ecohydrological Processes
VOM (Schymanski et al., 2009) is implemented to describe
vertical ecohydrological processes at each grid cell. VOM
couples a multilayered physically based water balance model
and an ecophysiological gas exchange model. The model
represents vegetation as two “big leaves.” One covering an
invariant area fraction represented perennial vegetation (e.g.,
trees) and a varying area fraction representing seasonal
vegetation (e.g., annual grasses). The model acquires
optimal vegetation properties through the optimality
principle that vegetation would maximise NCP. We list the
most important equations as follow. For detail of the model,
please see the reference of Schymanski et al (2009).

2.2.1 Photosynthesis
Leaf CO2 assimilation is based on a biochemical model of
photosynthesis (Schymanski et al., 2009).

Ag � 1
8
(4CaGs + 8ΓpGs + JA − 4Rl)

− 1
8

�������������������������������������������������
( − 4CaGs + 8ΓpGs + JA − 4Rl)2 + 16GsΓp(8CaGs + JA + 8Rl)

√
(1)

where Ca is the mole fraction of CO2 in the air, Gs is stomatal
conductivity, Γp is the CO2 compensation point in the absence of
mitochondrial respiration, and JA is photosynthetic electron
transport rate.

2.2.2 Stomatal Conductivity and Transpiration
Transpiration is treated as a diffusive processes controlled by
stomatal conductivity, following the equation developed by
Cowan et al. (1977):

Et � aGs(Wl −Wa) � aGsDv (2)
where Dv is atmospheric vapor deficit, Wl and Wa denote the
mole fraction of water vapor in air inside the leaf and in the
atmosphere, which is approximate to Dv, and a is the molecular
diffusion coefficient of CO2 in the air, defined as 1.6.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 7983362

Chen et al. Optimality-based Spatial Explicit Ecohydrological Model

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Cowan and Farquhar (Cowan, et al., 1977) proposed the
stomatal conductivity optimal hypothesis that leaves would
maximize CO2 uptake for any given amount of water in a
period. It can be expressed as the slope of transpiration (Et)
and carbon assimilation (Ag), which can be maximized with a
constant value of λ over the period.

zEt/zGs

zAg/zGs

� zEt

zAg
� λ (3)

Combining Eq. 1, Eq. 2, and Eq. 3, vegetation transpiration
can be calculated as

Et � aDv[Ca(JA − 4Rl) − 4(JA + 2Rl)Γp]
4(Ca − 2Γp)2

+
�
3

√ ������������������������������������������������������������������
aDvJAΓp(λCa − 2aDv + 2λΓp)2(λCa − aDv + 2λΓp)[Ca(JA − 4Rl) − (JA + 8Rl)Γp]

√
4(Ca + 2Γp)2(λCa − aDv + 2λΓp)

(4)

where λ including λs and λp is a constant within 1 day, and is
parameterized as a function of the average matric suction head of
each soil layer (hi) in the root zone.

2.2.3 Soil Evaporation
Soil evaporation includes evaporation from saturated zone and
evaporation from unsaturated zone. Soil evaporation is
determined by radiation, soil surface fraction, as well as soil water.

Esu � Ig(1 − 0.8(1 −MA))ωuSu,1
λEρ

(5)

Ess � Ig(1 − 0.8(1 −MA))ω0

λEρ
(6)

where Ig is global irradiance, MA is fraction of area covered by
vegetation, ωu is unsaturated surface area fraction, Su,1 is average
saturation degree in the unsaturated zone, ω0 is saturated surface
area fraction.

2.2.4 Vegetation Optimality Principle
The vegetation optimality principle applied in VOM is
maximization of NCP, which is defined as total CO2 uptake of
tree and grasses over the entire period, excluding all identified
maintenance costs of the organs assisting photosynthesis,
including foliage, roots, and water transport tissues:

NCP � ∫tend

tstart

(Ag,tot(t) − Rf(t) − Rr(t) − Rv(t))dt (7)

where Ag,tot is the combined CO2 uptake by trees and grasses, Rf

is the foliage cost of grasses and trees combined, Rr is the root cost
of grasses and trees combined, and Rv is the cost associated with
the vascular systems of grasses and trees combined.

2.2.5 Vegetation Optimality Strategy
Vegetation optimality strategy consists of long-term optimization
of vegetation properties adapted to environmental conditions and
short-term optimization of vegetation properties adapted to daily
changes of environment. Long-term vegetation properties
include fraction of area covered by perennial vegetation
(MA,p), the thickness of root zone of perennial vegetation

(yr,p) and water use parameters of perennial and seasonal
vegetation (cλf,p, cλe,p, cλf,s, cλe,s). Short-term vegetation
properties include the fraction of area covered by seasonal
vegetation (MA,s), electron transport capacity of perennial and
seasonal vegetation (Jmax 25,p, Jmax 25,s), root area depth
distribution of perennial and seasonal vegetation (Sadr,i,p,
Sadr,i,s). The Shuffle Complex Evolution (SCE) algorithm
developed by Duan et al. (1994) is used to achieve the optimal
vegetation parameters to maximize NCP over the entire period.

2.3 Explicit Flow Routing
This model calculates the overland flow with run-on infiltration
determined by the excess water flow. It is assumed that all
overland flow generated by a grid will rout to the downstream
grid cell in a single time step. If the receiving grid is not saturated,
the overland flow will infiltrate according to infiltration capacity,
and the excess amount will be routed.

Overland flow can be described by dynamic wave equations,
which is also known as St Venant equations. As St Venant
equations are highly nonlinear and do not have analytical
solutions, practical equations are derived, such as kinematic-
wave and diffusion-wave. In this study, we used the 4-point
implicit method to solve kinematic wave overland flow (Amein
and Fang, 1969; Cevza et al., 2005). The governing equation for
kinematic-wave is expressed as follow:

zy

zt
+ αmym−1zy

zx
� i − f (8)

where y is the depth of water, t is distance, x is time, i is rainfall
intensity, f is infiltration rate. α and m are coefficient, which can
be obtained from Manning equations for fully turbulent flow:

α � 1
n

��
S0

√
(9)

m � 5
3

(10)

The implicit method gives the approximation of kinematic
wave equation:

qj+1i+1 − qj+1i

Δx + yj+1
i+1 − yj

i+1
Δt � (i − f)ji+1 (11)

FIGURE 1 | Flow direction (A) and different level of priority (B).
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qj+1i+1 � α(yj+1
i+1 )m (12)

qj+1i � α(yj+1
i )m (13)

We can build a constructor equation as follow:

f(yj+1
i+1 ) � Δt

Δx α(yj+1
i+1 )m + yj+1

i+1 − [ΔtΔx α(yj+1
i )m + yj

i+1

+ Δt(i − f)j+1i+1 ] (14)

FIGURE 2 | Location of study area and observation station.
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Eq. 15 can be solved by Newton–Raphson iteration.

(yj+1
i+1 )k+1 � (yj+1

i+1 )k − f(yj+1
i+1 )k

f′(yj+1
i+1 )k (15)

where f′(yj+1
i+1 )k is the derivative of f(yj+1

i+1 ), which can be
expressed as:

f′(yj+1
i+1 ) � 1 + αm

Δt
Δx(yj+1

i+1 )m−1
(16)

2.4 Hierarchical Incorporation Strategy
To account for the spatial variability of topography and
consequently modify optimality principle in VOM, we
incorporate lateral flow to VOM for each grid cell. According
to the characteristic of grid-based flow routing solved by the 4-
point implicit scheme as stated in section 2.4, for a given grid, the
overland flow of a given grid at a time step is determined by two
grids at two-time steps, including water depth of the upstream
grid at current time step, water depth of upstream grid at last time
step, water depth of the current grid at current time step, water
depth of current grid at last time step. In such a circumstance, the
downstream grid’s water depth can only be calculated until the
upstream grid has its outflow calculated. However, the upstream
grid’s outflow can only be obtained until the vegetation
parameters optimization, which also depends on its
upstream grid. This extremely complicates the incorporation
of lateral flow to VOM.

To overcome the problems mentioned above, a hierarchical
strategy is developed to integrate lateral flow to VOM. The
hierarchical approach first prioritizes the grid cells of the
watershed into different levels according to the flow dependency
of grid cells. Different levels have different calculation priority. The
highest level includes those grid cells that have no inflow from other
grid cells. Vegetation optimization can be conducted by themselves
as they do not need inputs from other grid cells. We define the grid
cells of highest level as the first grid layer. The downstream grid cells
of the first-layer grid cells are defined as the second grid layer.
Calculations of those grid cells, including vegetation optimization
and ecohydrogical processes modeling, rely on the outflow of the
first-level grid cells. The downstream grid cells of the second-layer
cells are defined as the third layer cells, and so on until all of the grid
cells are ranked.

Prioritization of grid cells is conducted based on flow
direction, which is obtained from DEM data. This study uses
the D8 algorithm from ArcGIS to derive flow direction.

Figure 1A shows a simple example of flow directions. Grid
cells with no upstream grid are ranked as first level, labeled 1
in Figure 1B. The downstream grid cells of those grids are ranked
as second level, which are labeled 2 in Figure 1B. By this means,
all of the grid cells can be classified into different levels.

Following the prioritization of grid cells, ecohydrological
modeling of different-level grid cells is implemented. The
first level has the highest computation priority. Vegetation
optimization is firstly conducted for the first-level grid cells
and after vegetation parameters have been gained,
ecohydrological processes of those grid cells are modeled.
The outflow of those grid cells serves as the inflow of the
downstream grid cells and accordingly participates in
vegetation properties optimization of downstream grid cells.
In this way, the lateral flow can be fully incorporated into
vegetation optimality model.

2.5 Study Area
The model test and evaluation are conducted in USDA-ARS
Walnut Gulch Experimental Watershed (WGEW) near
Tombstone, Arizona (Figure 2). The watershed is located in
the upper San Pedro River Basin, covering 7,600 km2 in Sonora,
Mexico and Arizona. The area of the WGEW is about 145 km2.
The average annual temperature is about 17–19°C, and the
average annual precipitation is 322 mm, with 67% rainfall in
summer (Goodrich, et al., 2008). The primary vegetation of the
watershed is grass and shrubs and is a transition zone between the
Chihuahuan and Sonoran Deserts.

We use a small watershed near the Kendall grass site
(109°56′8″W, 31°44′10″N; elevation: 1,526 m) as the validation
watershed (Figure 2). The watershed is small, with nearly unique
climate, vegetation, and soil type, therefore, the spatial variability
of modeled ET and GPP can be attributed to lateral flow.

2.6 Data
Data used in this study are obtained from the Southwest
Watershed Research Center (SWRC) of USDA through the
official governmental website (http://www.tucson.ars.ag.gov/
dap/) (Emmerich and Verdugo, 2008). These data include
spatial data, model driving data, and model validation data
(Table 1). Meteorological measurements include precipitation
(except for 2002), air temperature, air humidity,
Photosynthetically Active Radiation (PAR), solar radiation are
gained from flux data near the Kendall grass site. Flux data are
acquired from Bowen Ratio Energy Balance System (BREB,
Model 023/CO2, Campbell Scientific Inc., Logan, UT). In the

TABLE 1 | Data used in this study.

Data type Data items Time scale

Input data Meteorological data Solar radiation, temperature, precipitation, PAR, Soil temperature 1 h
Topography DEM 30 m
Soil data Soil type, soil physical properties including texture, saturated conductivity, etc 30 m

Validation data Flux measurements CO2 flux, moisture flux 1 h
Hydrological data Soil water 1 h
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FIGURE 3 | Subdivision of measured NEE into GPP and ecosystem respiration.

FIGURE 4 | Flow direction (A) and prioritization of grid cells (B) in Kendall watershed.
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BREB system, atmospheric gradients of air temperature,
moisture, and CO2, are measured every 10 s and averaged to
20 min. These measurements are scaled up to 1 h for model input.
Precipitation data of 2002 is gained from the precipitation
database of Walnut Gulch Raingages because precipitation of
2002 from flux data is much lower than that from raingage
indicating there is missing observation of this year.

The validation data including water vapor flux and CO2 flux
are also acquired from Bowen Ratio Energy Balance System.
Considering the quality and continuity of the data, the
meteorological data from 1998-01-01 to 2007-12-31 are
selected to force the DisVOM model.

The model only has the outcome of leaf photosynthesis, which
can not be directly measured. In this study, as grass is the main
vegetation in the ecosystem, we convert themeasuredNet Ecosystem
Exchange (NEE) of CO2 through a flux-partition method into GPP
and ecosystem respiration (Re) by the following equation.

GPP � −NEE + Re (17)
As Re is explicitly dependent on air or soil temperature, Re can be

estimated from observed temperature data using the exponential
regression model (van’t Hoff, 1884)

Re � ap exp(bpTs) (18)

Where a and b are fitting parameters, Ts is the soil temperature.
As nighttime NEE values are equal to Re as GPP equals 0,
therefore we can use the nighttime NEE (nighttime is defined
as down solar radiation <1Wm-2) and soil temperature to
estimate the parameters. Once the parameters are fitted, the
daytime NEE can be computed (Figure 3).

3 RESULTS

3.1 Grid Cells Prioritization
Based on the flow direction data (Figure 4A), prioritization of the
grid cells are conducted as illustrated in Figure 4B. All the grid cells
are partitioned into 45 layers. Grid cells of lower layers have higher
priority, and grid cells in the same layer can model simultaneously.

3.2 Model Parameterization
Parameters for the optimality-basedmodel consist of soil parameters
(Table 2) and vegetation parameters. Soil parameters are specified
according to Scott et al., 2000. In the VOMmodel, the soil profile is
subdivided into sub-layers but the van Genuchten soil parameters of
each layer are treated as one value. Therefore, we then average the
soil parameters of each sub-layer from the work of Scott et al (2000)
and obtain one value for the whole soil profile.

TABLE 2 | Soil and vegetation parameters.

Parameters Value Source

Soil depth (m) 1.5 USDA (2008)
Soil layer depth (m) 0.25 This study
Residual soil water θr (m

−3 m−3) 0.065 Celia et al. (1990)
Saturated soil water θs (m−3 m−3) 0.30 This study
Van Genuchten parameter α (m−1) 7.5 Celia et al. (1990)
Van Genuchten parameter n (-) 1.89 Celia et al. (1990)
Saturated hydraulic conductivity Ksat (mm s−1) 1.228 × 10−2 Celia et al. (1990)
Rate of exponential increase of Jmax with temperature (J mol−1) 88,900 Massad et al. (2007)
Rate of exponential decrease of Jmax with temperature above optimal temperature (J mol−1) 22,000 Massad et al. (2007)
Optimal temperature for electron transport (°C) 35 Schymanski et al. (2009)
Leaf respiration rate per volume (-) 0.07 Schymanski et al. (2009)

FIGURE 5 | Scatters of simulated and measured ET (A), SW (B) and GPP (C).
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Most of the vegetation parameters in this study are derived from
vegetation optimization. Some of the parameters that cannot be
optimized are obtained from existing studies, as shown in Table 2.
These parameters are prescribed according to the average value of C3
shrub from previous studies (Schymanski et al., 2009; Massad et al.,
2007; Lei et al., 2009).

3.3 Validation of Simulated Fluxes
The simulated daily ET, soil water and GPP are compared with
the measured at the Kendall grass site. As the flux measurements
of 2001 are seriously absent, this year is removed for validation. A
one-to-one comparison of simulated values and measurements is
shown in Figure 5. Most of the points are distributed along the 1:

1 line, indicating a good agreement between the observed data
and simulated values.

Figure 6 illustrates the measured and simulated ET from
1998-2007 (except 2001). The simulated ET shows a similar
seasonal dynamic pattern with measured ET. It indicates that
the model can explain the variability of measured ET. As
compared with precipitation data, we can see that the model
captures the ET dynamic reasonably well in response to rainfall
events. When precipitation occurs ET occurs and simulated ET is
mainly concentrated in monsoon when rainfall concentrates.
Root Mean Square Error (RMSE) of ET simulation is 0.57
mm/day, which is lower than the standard deviation of ET,
1.09 mm/day (Table 3). Figure 7 shows simulated daily
evaporation and transpiration. Evaporation and transpiration
both mainly occur in the monsoon following the precipitation
events. Evaporation responds immediately to precipitation
events, while transpiration shows a lagged response to those
events. In spring or winter, ET is mainly dominated by
evaporation, while in the monsoon, transpiration increases
quickly after precipitation and dominates ET. These results are
consistent with Emmerich and Verdugo (2008).

FIGURE 6 | Comparison of simulated and observed daily ET.

TABLE 3 | Accuracy of simulation.

Fluxes RMSE Standard deviation

Soil water 2.44 mm/day 3.67 mm/day
ET 0.57 mm/day 1.09 mm/day
GPP 5.72 g/m2/day 4.84 g/m2/day
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Figure 8 shows the seasonal dynamic of measured and
simulated soil water. Generally, the performance of soil water
simulation is well. Soil water in the monsoon season is simulated
pretty well with nearly the same peak and corresponding seasonal
variation. Root Mean Square Error (RMSE) of soil water
simulation is 2.44 mm/day, lower than the standard deviation
of soil water, 3.67 mm/day (Table 3). However, there is a
tendency to underestimate soil water in the spring, especially
in those years with low spring precipitation (like 2005 and 2006).
It might be because, as precipitation is relatively small, the model
assumes vegetation is inactive, and roots are not developed,
leading to low soil water restored.

Figure 9 gives the simulated results of daily GPP and NEE-
partitioned GPP. Generally, the performance of GPP
simulation is acceptable. Simulated GPP shows the same
patterns with NEE-partitioned GPP in most years. RMSE of
GPP simulation is 5.72 g/m2/day, which is slightly higher than
the standard deviation of GPP, 4.84 g/m2/day (Table 3).
However, we also find a tendency to underestimate GPP in
some years. It might be due to the unreasonable prediction of

vegetation cover as it underestimates vegetation in the non-
growing season.

3.4 Spatial Patterns of ET and GPP
Figure 10 shows the spatial distributions of annual ET and GPP of
DisVOM (Figure 10) for 1999. The spatial variations of ET and GPP
exhibit nearly identical patterns. Comparing the distribution of slope
and TopographicWetness Index (TWI) (Figure 11), we can find that
the spatial distribution of annual ET and GPP of DisVOM
demonstrates similar patterns with slope and TWI. Grid cells with
high slopes tend to have low ET and GPP, while grid cells with low
slopes tend to have high ET and GPP. Grid cells with high TWI are
inclined to have high ET and GPP, while grid cells with low TWI
appear to have low ET and GPP.

ET and GPP of all grid cells in the watershed are sorted and divided
into eight groups to quantitatively analyze the correlation between
simulated ET and GPPwith slope and TWI. The averaged value of ET,
GPP, slope and TWI of each group is estimated. As illustrated in
Figure 12, ET and GPP show a significant negative correlation with
slope andpositive correlationwithTWI.Annual ETandGPPdecreased

FIGURE 7 | Comparison of simulated soil evaporation and transpiration.
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with the increase of slope. Annual ET and GPP increase with the
increase of TWI.

In general, the spatial pattern of annual ET and GPP reflect the
fundamental impact of topographical controls on soil water and root
water uptake. The lower portions of the watershed have higher soil
water content due to the above recharge. Grass could develop high
root density in those areas and consequent high transpiration and
carbon assimilation. It is the truth, as in water-limited ecosystems,
water is a scarce resource for plants and plays a fundamental role in
vegetation dynamics, such as canopy property and root density. The
DisVOM model can discriminate the effect of topography on
redistribution of precipitation into soil water and the consequent
variations in ET and carbon assimilation.

4 DISCUSSION AND CONCLUSIONS

This paper presents an optimality-based watershed ecohydrological
model. Themodel subdivided watershed into grid cells. On each grid
cell, an optimality-based ecohydrological model, VOM is applied to
describe the vertical water and vegetation mutual interactions.

Overland flow is incorporated to the VOM model to simulate
soil water redistribution and subsequently modify vegetation
properties optimization. A hierarchical strategy is developed to
integrate lateral flow to VOM model, which prioritizes the grid
cells of the watershed into different levels according to the
dependency of grid cells. The model is tested in the Walnut
Gulch watershed and demonstrates good consistency with site
measurements. However, there are still some limitations of this
study, which can be summarized as follows.

4.1 Discrepancy of Simulation in
Non-growing Season
The model demonstrates good performance in growing season,
however, evident discrepancies arise during winter and spring.
This is probably, to a great degree, attributed to the
underestimation of soil water.

As we look into the precipitation data and compare spring soil
water of different years, one possible reason might be the
undocumented precipitation. For 2002, we utilize the data
from rain gauge, because precipitation measurement of flux is

FIGURE 8 | Comparison of simulated and observed daily soil water dynamic.
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FIGURE 9 | Comparison of simulated daily GPP and NEE-partitioned GPP.

FIGURE 10 | Spatial distribution of ET (A) and GPP (B) simulated by DisVOM and VOM.
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FIGURE 11 | Spatial distribution of slope (A) and TWI (B) of Kendall watershed.

FIGURE 12 | Correlation of annual ET and GPP with slope and TWI.
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lower. However, there was no rain in the spring of 2002, which is
unrealistic. In contrast, from the flux data we find a small amount
of precipitation. Besides, we compare observed soil water of two
period 2002.12-2003.05 and 2007.01-2007.05. The two periods
have quite similar soil water with respect to similar amount, shape
and peak. However, measured precipitation in 2002.12–2003.05 is
considerably lower than precipitation of 2007.01–2007.05. As
there is no precipitation for nearly 2 months for both periods,
antecedent soil moisture is nearly the same for the two periods.
Hence, it is unlikely to have the same soil water with dramatically
different amount of precipitation.

Another possible reason might be the uniform setting of soil
profile. In the model, soil profile is subdivided into sub-layers
with same depth (25 cm). According to the previous study in
this area, vertical soil properties vary dramatically (Scott et al.,
2000). For example, saturated hydraulic conductivity of the top
layer (0–4 cm) is about 31.1 cm/day, 18.7 cm/day for the
second layer (4–9 cm), 7.2 cm/day for the third layer
(9–16 cm), 8.5 cm/day for the third layer (16–35 cm),
8.7 cm/day for the third layer (35–62 cm), and 36.9 cm/day
for the bottom layer (62–150 cm). For the layers near surface, a
depth of 25 cm is unable to characterize the variation of soil
properties, which could attributed to the underestimation of
soil water in the non-growing season when root uptake of
vegetation is low.

4.2 Discrepancy of GPP Simulation
There are some inconsistent of GPP for some years especially in
the non-growing season. For 2002, 2003, 2004, and 2007, grass
grew in the spring as there is GPP partitioned fromNEE, but from
the model there is no grass grew as GPP is little. This is possibly
caused by the underestimation of soil water. As stated in 4.1, soil
water is dramatically underestimated, so the available water for
root water uptake is low. This might directly influence root
development and leaf growth, leading to low simulated carbon
assimilation.

Another reason is that there is no directed measured GPP.
GPP separated from NEE measurements are used for validation.
Not only the NEE measurements are highly associated with
measurement error, but also the NEE separation is associated
with uncertainty (Raj, et al., 2016). This might contributed partly
to the inconsistent of simulated and observed GPP comparison.

4.3 Simple Representation of Lateral Flow
Another problem of this study is that the model only considers
overflow routing, subsurface flow and ground water is not
simulated. Therefore it can’t give stream flow as the other
two components are neglected. The main concern of this
study is to explore whether incorporated a kind of lateral
flow could alter the soil water redistribution and influence
vegetation-soil-water mutual interaction and coevolution.
Incorporation of subsurface flow and ground water would

otherwise require much more parameters which need to be
calibrated. Although VOM model has the unique merit that it
does not need prior vegetation properties as input, we still find
environment parameters (such as topography, soil), associated
with hydrological processes are difficult to determine.
Calibration might need for hydrological processes.
Nevertheless, the lateral flow of the current model is simple
and it is unrealistic without simulating the other component of
stream flow. We will integrate subsurface flow and ground water
to the model in the future and learn the method from big data
science for hydrological parameters estimation (Liu et al., 2017;
Zhang et al., 2021).

Despite the above issues, the model presents in this study is
capable of predicting ET, soil water, and GPP reasonably well, for
most of years, especially for the growing season. The seasonal
dynamic of ET, soil water, and GPP demonstrate good
consistency with observations. The model produces reasonable
spatial distribution of ET and GPP, indicating it is able to capture
the influence of lateral flow on water redistribution, vegetation
dynamic and so on. It can be concluded that the model effectively
extends VOM from field scale to watershed scale and could be a
useful tool assessing the impact of climate change and human
activities on vegetation and water cycle.
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