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Dust events moving at high altitudes by westerly wind can transport aerosols from Asian
deserts to eastern Asia deposition areas such as China. Aerosols do not include only
mineral particles but also microbial particles, which are called bioaerosols, and impact the
ecosystem and air environment of the deposition area. For identifying the airborne
microbial communities transported from the source area to the deposition area,
bioaerosol samples were collected in the typical source region (Tsogt-Ovoo in Gobi
deserts) and the deposition region (Beijing in Chinese industrial area) during dust events
and non-dust days and the sampling sites were compared. The microscopic observation
using DAPI fluorescent techniques revealed that the concentration of bioaerosols
increased during the dust events in both the source and deposition regions. For the
community structures of airborne bacteria at both sites, the dust-event occurrences
changed the structure of the bacterial community and increased the diversity of bacterial
communities during dust events. Some specific bacterial populations, such asmembers of
Bacteroidetes, dominated during dust events. There is the possibility that specific bacteria
can be maintained for a longer time in the atmosphere and might be transported from the
source area to the deposition area.
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INTRODUCTION

Bioaerosol means biological particles suspended in the atmosphere, and they are an important part of
aerosols (Després et al., 2012). Bioaerosols include viruses, bacteria, fungi, spores, and pollen. Ariya
and Amyot (2003), Iwasaka et al. (2009), and Smets et al. (2016) have reported on the negative
influence of bioaerosols on humans (Wu et al., 2020) and animal health (Onishi et al., 2012; Ma et al.,
2017), which can easily cause various diseases such as asthma (Walser et al., 2015; Fröhlich-
Nowoisky et al., 2016; Li et al., 2018). Bioaerosols are distributed all over the atmosphere and stay in
the atmosphere for a long time (Burrows et al., 2009). The small bacterial particles can suspend for a
long time in the atmosphere and can sometimes reach the upper troposphere (DeLeon-Rodriguez
et al., 2013) withstanding desiccation, ultraviolet (UV) radiation, extreme temperature, and oxygen
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limitation (Rothschild and Mancinelli, 2001), so the sandstorms
can carry bioaerosols across thousands of kilometers to the
deposition area (Okamoto et al., 2004). These microorganisms
(i.e., bioaerosols) may impact the reflection and absorption of
sunlight, and affect the formation of cloud condensation nuclei
(CCN) and ice nuclear (IN) (Peter et al., 2011; Morris et al., 2011;
Sõantl-Temkiv et al., 2020). Du et al. (2018) found the seasonal
variations of bioaerosol, which were identified by the high-
throughput DNA sequencing, showing obvious seasonal
variation in PM2.5 days. The abundance and diversity of
bioaerosol communities are reported to be related to haze
episodes (Xu et al., 2017). Kobayashi et al. (2015) found that
bioaerosols are metabolically active and well adapted to harsh
atmospheric stress conditions. Asian dust events transport the
bioaerosols including bacteria as well as mineral particles from
Asian desert regions and influence the airborne bacterial
communities in downwind areas (Maki et al., 2017b). The
dispersion of bioaerosols by dust events from desert areas may
be related to the ecosystems of subsidence areas (Pointing and
Belnap, 2014). Some studies have confirmed that bioaerosols play
an important role in meteorological processes and chemical
mechanisms of dust deposition areas (Pratt et al., 2009;
Creamean et al., 2013). The major source areas of Asian dust
events are known to be the Gobi Desert, Taklimakan desert, and
Loess Plateau (Duce et al., 1980; Iwasaka et al., 1983; Kurosaki
and Mikami, 2015). In particular, the Gobi Desert located in
Mongolia is one of the major sand sources in the Asian continent.
The release and transport of dust in this region could have a
significant impact on the quality of air and the global geochemical
cycle (Chen et al., 2017).

Several researchers have focused on the microbial community
structures and diversities of bioaerosols influenced by Asian dust.
Maki et al. (2015) found that the compositions of bacterial
communities sampled in the air displayed differences among
the three altitudes of 3000, 1,000, and 10 m. over the Noto
Peninsula during a dust event period. The fungal and bacterial
community structures in bioaerosols collected in autumn and
winter on the Korean Peninsula had high biodiversity, with
seasonal changes causing changes in diversity (Lee and Jo, 2006).

The tethered balloon sampling in Dunhuang’s study of
bioaerosols indicated that the local-scale distribution of
bioaerosols is caused by the air convective mixing and regional
scale diffusion (Chen et al., 2011). Tang et al. (2018) studied Asian
dust in 2016 and compared the diversity of airborne bacterial
communities between dust samples and no-dust samples,
showing that the bacterial relative abundances differ from
those in the surface, sand, or soil. In general, only a few
studies have focused on the changes of the bioaerosols
traveling from the source area in different altitudes (Maki
et al., 2017a; Maki et al., 2019), but the characteristics of
bioaerosols in the deposition area, especially in large cities,
have not yet been compared to those in the dust source regions.

This research focuses on the long-range transport of
bioaerosols from the dust source region, Tsogt-Ovoo, to the
dust deposition region, Beijing. To compare the composition
and structural characteristics of bioaerosols between both
sampling sites, the bioaerosol characteristics were analyzed

using microscopic observation and high-throughput DNA
sequencing. This study explores the influence of the horizontal
transport of dust on bioaerosols and their impact on health and
the deposition environment.

MATERIALS AND METHODS

Sampling Site and Aerosol’s Collection
Aerosol samplings were performed at Tsogt-Ovoo, which is
located in the middle of the Gobi Desert (44.2304°N and
105.17°E) in Mongolia. As a typical source area, the sampler
was placed in the desert, about 5 km away from the downtown
and about 2 m above the ground. The air samples were collected
from 7 to 11 March 2015 and from 26 to 27 April 2015 and were
named as 15To-1 to 15To-9 (Table 1). Other samples were
collected on the office roof of the IAP (Institute of
Atmospheric Physics, Chinese Academy of Science) building
(39.98° N and 116.38° E) in Chaoyang District of Beijing,
where it has typical urban underlying surface features (Wu
et al., 2019) and is a typical dust deposition area. The air
samples were collected on March 30, March 31, April 1, April
2, April 15, and April 16, which were named as 15Bj-1 to 15Bj-6,
respectively (Table 1). The sampling site is about 42 m above the
ground.

Each air sample was collected by applying four sterilized
polycarbonate filters (0.22 μm pore size, Whatman, Japan)
with an air sampling system. The sampling system used the
13-mm Swinnex filter holder sampler (Merck, Germany)
connected to an air pump (AS ONE, MAS-1, Japan). Each
filter was sampled with a flow rate of approximately
0.3L min−1, the sampling time is about 10–18 h based on the
air quality conditions, and the filters were changed after each
sampling period. Detailed information on the samples is provided
in Table 1.

After the sampling, two of them were used to determine the
concentration of bioaerosols using a fluorescence microscope
after DAPI staining, and the other two samples were stored in
a sterile environment at −80°C, before the use for DNA high-
throughput sequencing analysis.

Aerosol Counts Using the Fluorescent
Microscopic Observation
The number of concentrations of microbial particles was
determined using the direct counting method by the DAPI
fluorescence staining. Aerosol particles were fixed with a 4%
concentration of paraformaldehyde for 1 hour and washed with
pure water; then samples were stained with 0.5 μg/mL DAPI (4′,
6-diamidino-2-phenylindole) for 15 min. The staining filter is
placed onto the slide, and the particles on the slide were observed
under a fluorescent microscope equipped with a UV excitation
system from 340 to 390 nm (Olympus, Tokyo, Japan). After
DAPI staining, the particles mainly emitted yellow, blue, and
white fluorescence under the microscopic observation
(Supplementary Figure S1). The microscopic observation
results can be classified as yellow particles (organic matter),
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DAPI-stained bacteria, and white particles (dust) (Maki et al.,
2017a). Ten fields were selected, and the concentration of
bioaerosol particles was calculated using a formula.

DNA High-Throughput Sequencing Analysis
The other two filters were used for DNA high-throughput
sequencing analysis. After the aerosol was suspended on the
filters in 500 µL of sterile 0.6% NaCl solution, the particles
were pelleted by centrifugation at 15,000 × g for 10 min. The
gDNA was then extracted using SDS (10% w/w), proteinase K,
and lysozyme at 50 ˚C for 30 min and purified by
phenol–chloroform extraction (c.f., Maki et al., 2008). Before
sequencing, PCR was used to amplify the fragments of 16 S rDNA
which was extracted from gDNA by the universal primers 515F
(5′-TGTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) (c.f., Caporaso et al.,
2011). The two-step PCR method was performed according to
the method of Maki et al. (2017a), and detailed steps were
described by Maki et al. (2017a). The gene sequence of
bacteria was performed using a Illumina MiSeq Genome
Sequencer (Illumina, USA), which is widely used in
multiplexed sequencing of 16S rDNA (c.f., Maki et al., 2017b).
Finally, an average read length of 250 bp was obtained.

Before the analysis of microbial community structures, the
bioinformatics of sequences was performed with QIIME 2-2020.2
(c.f., Bolyen et al., 2019). Raw sequence data were demultiplexed
and quality-filtered using the q2-demux plugin followed by
denoising with DADA2 (c.f., Callahan et al., 2016), and the
related species of the isolates were searched using BLAST
analysis (http://www.ncbi.nlm.nih.gov/BLAST/) and Silva132
database (Quast et al., 2013). The R software package (version
4.0.2) was employed to analyze the experimental data. The alpha-
rarefaction and PCoA plots were computed using R software with
the Amplicon package (Liu et al., 2021). The Interactive Tree of
Life (ITOL) was used to display the phylogenetic trees. As an
online tool (https://itol.embl.de), it can annotate trees easily
(Letunic and Bork, 2007).

The meteorological parameters of Tsogt-Ovoo were observed
during the sampling period by measuring the concentration of

PM10 to evaluate the occurrences of dust events using an aerosol
mass monitor (DustTrakTM DRX 8533, TSI Inc., Shoreview, MN,
USA). Other meteorological observations of Tsogt-Ovoo were
monitored using the observation systems described by Ishizuka
et al. (2012). The meteorological parameters of Beijing
(temperature, relative humidity, wind velocity, and PM2.5) that
were obtained from the China Meteorological Data Network
(http://data.cma.cn/) are shown in Supplementary Table S1.

RESULTS AND DISCUSSION

Meteorological Condition and Backward
Trajectory
The concentrations of PM10 increased in the 15To-1 and 15To-8
samples, suggesting these samples of Tsogt-Ovoo were collected
during dust events. During March and April in Beijing, strong
sandstorms occurred. So, the air mass backward trajectories after
48 h in March and April 2015 were conducted using Meteoinfo
(Wang, 2014; 2019). Figure 1 shows that there are six back
trajectories of air masses in Beijing from March to April 2015
where four of them originated from northwest China. The air
masses that came from the Gobi Desert accounted for 25.78% as
the largest proportion of all sources during sampling. In
conclusion, Beijing is in a downwind area of the Gobi Desert
and the characteristic of bioaerosols in Beijing may be influenced
by the transported dust.

Variations in the Concentrations of
Bioaerosols Sampled in Beijing and
Tsogt-Ovoo
During non-dust events in Tsogt-Ovoo, the bacterial and organic
matter particles showed low concentrations ranging from 104 to
105 particulars/m3, and they increased to the higher
concentrations ranging from 106 to 107 particulars/m3

(Figure 2A). The concentration of 15To-8 was as high as 108

particulars/m3. At the same time, the changes in bacterial and
organic particle concentration appeared in similar patterns with

TABLE 1 | Sampling information during sampling days.

Sample Sampling time (Utc) Total time (h) Air volume (L) Dust

15To-1 March 7, 2015 10:00-26:00 16 288 Dust
15To-2 March 8, 2015 2:00–14:00 12 216 Non-dust
15To-3 March 9, 2015 02:00–10:30 8.5 153 Non-dust
15To-4 March 9, 2015 11:00–25:30 14.5 261 Non-dust
15To-5 March 10, 2015 02:30–9:30 7 126 Non-dust
15To-6 March 10, 2015 10:00–25:00 15 270 Non-dust
15To-7 March 11, 2015 01:30–8:00 6.5 117 Non-dust
15To-8 April 26, 2015 00:00–10:30 10.5 189 Dust
15To-9 April 27, 2015 00:00–10:30 10.5 198 Non-dust
15Bj-1 March 30, 2015 8:00-20:00 12 216 Non-dust
15Bj-2 March 31, 2015 8:30-20:00 11.5 207 Non-dust
15Bj-3 April 1, 2015 8:00-20:30 12.5 225 Non-dust
15Bj-4 April 2, 2015 8:00-20:00 12 216 Non-dust
15Bj-5 April 15, 2015 8:00-20:00 12 216 Dust
15Bj-6 April 16, 2015 8:00-20:00 12 216 Dust
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dust. During the observation period in Beijing, the particle
concentrations of bacteria and organic matter exhibited a high
peak at 15Bj-5 (more than 105 particles/m3) and a low peak at
15Bj-3 (104–105 particles/m3) (Figure 2B). The dust events may
transport abundant dust and microbes which can increase the
concentrations of organic particles, dust, and bacteria. In
addition, the concentrations of three particles in the dust
source area are at least one order higher than those collected
in the deposition area. The observation concentration ranges are

consistent with those measured by Fang et al. (2008) in Beijing
and observed by Maki et al. (2017b) in Mongolian spring.

Analysis of the Microbial Community
Structure Characteristics
Diversity Analysis of Sequencing Samples
After DNA sequencing, the chimeric sequences were removed
and the effective sequences were obtained, that is, a total of

FIGURE 1 | Back trajectories of air masses in Beijing were calculated using the MeteoInfo from March 2015 to April 2015.

FIGURE 2 | Changes in particle concentrations at the sampling site collected during dust events and non-dust events: (A) Tsogt-Ovoo and (B) Beijing.
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623,992 and 88,729 respectively. The percentage of the input non-
chimeric value is used to represent the sequencing coverage. All of
the percentages have passed 50%, which indicated that the
processed sequences have good coverage and can be used for
subsequent analysis. The amplicon sequence variants (ASVs) of
sequences had shown a significant increase following the dust
event in two sampling sites, suggesting that the occurrence of dust

events increased the abundance and diversity of microorganisms
in the atmosphere.

The Shannon–Wiener alpha-rarefaction curves of all samples
were classified into four patterns, which indicated that when the
sequence reads reached about 500, the curve tends to be flat,
indicating that the sequencing amount is sufficient (Figure 3).
The microbial information contained in the samples is fully

FIGURE 3 | Alpha-rarefaction curves using the Shannon index showing the bacterial diversity observed in the air samples.

FIGURE 4 | Principal coordinate analysis of bacteria by 16 S rRNA sequencing data indicating phylogenetic clustering from 15 samples (PCo: principal coordinate).
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expressed, and the sequencing data can be analyzed for
community diversity (Wang et al., 2012). The Shannon index
is used to draw the ordinate, reflecting the higher microbial
diversity by the higher index. The diversity of the microbial
community in the dust samples was higher than that collected
in non-dust samples (Figure 3); meanwhile, the microbial
diversity of Beijing was lower than that of samples in Tsogt-
Ovoo under the same air condition (Figure 3). The result is in
accordance with another study (Cha et al., 2016), which illustrates
that dust events can enrichen microbial diversity.

To analyze the community similarity of each sample, principal
coordinate analysis (PCoA) with weighted UniFrac distances was
performed. The composition of the bacterial community differed
significantly between the samples between Beijing and Tsogt-

Ovoo (Figure 4). The local bacterial populations are thought to be
regulated by the bacterial compositions in the atmosphere of each
sampling site. The dust sample of 15Bj-6 showed a high degree of
similarity with the dust sample 15To-8 in Tsogt-Ovoo, indicating
the possibility that some bacterial populations were transported
from Tsogt-Ovoo to Beijing.

Analysis of Microbial Community Composition in
Tsogt-Ovoo and Beijing
The microbial community compositions of two sample sites are
shown in Figure 5 by the histograms. The majority (>90%) of
abundance were represented by 8 bacterial phyla and 14 classes
(Figure 5).

Comparative analysis revealed that the main phylotypes
include members of the phyla Acidobacteria, Actinobacteria,
Armatimonadia, Bacteroidetes, Chloroflexi, Firmicutes,
Gemmatimonadetes, and especially Proteobacteria in the two
sample sites (Figure 5A). The proportion of them had passed
90%, while the phylum Proteobacteria accounts for more than
40%. These members are typically phyla found in the atmospheric
and terrestrial environments of dust source areas including the
Gobi Desert, Taklamakan Desert, and Sahara Desert (Griffin
et al., 2007; Zhang et al., 2008; An et al., 2013), and dust
deposition areas like Beijing (Hu et al., 2017; Yan et al., 2017).
The phyla of Chloroflexi and Gemmatimonadetes appeared in all
sample days but had lower relative abundances except dust
samples. The members of the phylum Chloroflexi were often
detected from grassland and alpine soils (Costello and Schmidt,
2006). Will et al. (2010) found the members of
Gemmatimonadetes were adapted to the arid environment and
are found in prairie and pasture soil. Accordingly, these particles
would be transported from desert areas by dust. The phylum
Bacteroidetes showed higher relative abundances in dust days of
15Bj-5, 15Bj-6, and 15To-9 compared with other samples, and the
abundance increased may be impacted by dust events. Maki et al.
(2017b) pointed out that Bacteroidetes which dominate in the
desert atmosphere can form endospores and attach with coarse

FIGURE 5 | Variations of bacterial community compositions at (A) phylum levels (B) and class levels by the alluvial plot.

FIGURE 6 | UPGMA cluster tree of samples. The degree of dissimilarity
was calculated and the dissimilarity value was used to deal with hierarchical
clustering analysis.
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particles such as organic particles to sustain in the air for a longer
time (Maki et al., 2017b); thus, other studies also found their
relative abundance increased during Asia events (Newton et al.,
2011; Thomas et al., 2011). It is worthmentioning that the relative
abundances of phylum Firmicutes decreased in the dust samples
compared with non-dust samples. Tang (et al., 2018) mentioned
that due to the existence of environmental stressors, only a small
fraction of Firmicutes remain during the dust events.

At the class level, the relative abundances of Actinobacteria,
Alpha-proteobacteria, Bacilli, Delta-proteobacteria, and Gamma-
proteobacteria account for more than 80%. The relative
abundances of Alpha-proteobacteria and Gamma-
proteobacteria showed a significant climb compared with other
samples (Figure 5B). The phyla of Proteobacteria that mainly
belong to the classes of Alpha-proteobacteria and Gamma-
proteobacteria have strong adaptability and survivability (Ma
et al., 2016) which help them survive in poor conditions such
as high-altitude ice clouds and mineral particles (Sheridan et al.,
2003; Hara et al., 2012) that are widely distributed (Nicholson
et al., 2000; Puspitasari et al., 2015). In addition, the class member
of Actinobacteria presented a high abundance collected during
the dust events in two sample sites. Cao et al. (2014) indicated that
the Actinobacteria group was primarily detected from
anthropogenic particles collected in Beijing. The abundances
of Bacilli in non-dust samples are higher than that of samples
on dust days. The phylum Firmicutes mainly belongs to the
classes Bacilli (Maki et al., 2017b) and are often collected from the
Chinese desert (Jeon et al., 2011). The result shows a different
pattern would be that all samples collected from the air are
different from those on the surface of the sand.

The analysis of the differences in community composition
between samples is shown in Figure 6. The four dust samples
showed a higher similarity and could be clustered as one group,
while other non-dust samples are similar. The cluster tree is
consistent with the principal coordinate analysis which indicates
the occurrence of dust could transport bacterial particles from the

dust source area and change the microbial community
composition of the dust deposition area.

Comparison of the Phylogenetic Tree
Between Dust Source Area and Dust
Deposition Area
The phylogenetic tree can represent the genetic relationship
among species or genes by using the tree branch graph. The
mathematical statistics algorithm was used to calculate the
evolutionary relationship, and the result was visualized. On the
phylogenetic trees in Tsogt-Ovoo and Beijing, the main phyla and
classes of bioaerosols collected from the two sites are similar
(Supplementary Figure S1). This result also indicated that the
dust can drive the long-distance transport process of bioaerosols,
and there are slight differences between the dust source area and
the deposition area.

Relationship BetweenMicrobial Community
Structure and Environmental Factors
The correlation between the bacterial community structures and
environmental factors was compared using the Mantel test
(Figure 7). There was no correlation between environmental
factors and community structure in Tsogt-Ovoo (Figure 7A). In
the samples of Beijing, the Mantel test’s p-value of Actinobacteria
and temperature and the value between Proteobacteria and PH
were all in the range of 0.01–0.05, and their R-values were
between 0.25 and 0.5. The members of Actinobacteria and
Proteobacteria change in correspondence to temperature and
RH, relatively. Rui et al. (2015) also found that Actinobacteria
is sensitive to temperature, and the relative abundance of
Actinobacteria increases as temperature increases. The
difference in the relationship with environmental factors
indicated some differences between the community structures
of the two sampling areas.

FIGURE 7 | The Mantel test between microbial community and environmental factors: (A) Tsogt-Ovoo and (B) Beijing. The relativities were analyzed according to
the calculated R-value and significance level p-value based on the R package of ggcor. The color of the left line represents the p-value, and the thickness represents the
R-value. On the right part, Pearson correlation analysis was performed for each environmental factor, and the color and size of the squares represent the positive and
negative of correlation and the value of correlation, respectively.
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CONCLUSION

In this study, we conducted quantitative investigations of bioaerosols
collected at the dust source region, Tsogt-Ovoo, and the dust
depositions region, Beijing. Bioaerosol particle sampling was taken
15 times using a self-made biological particle sampler during dust
seasons. Under microscopic observation, we found that the
concentrations of bacteria and organic matter increased after dust
events at both sites, and the particle concentrations in Tsogt-Ovoo
were higher than those in Beijing. The rarefaction curves and PCoA
plots indicated that there are significant differences between Tsogt-
Ovoo and Beijing. The high degree of similarity between some
samples in dust events of Beijing and Tsogt-Ovoo suggests that
some bacterial populations such as members of Bacteroidetes were
transported from the source area in Tsogt-Ovoo to the deposition
area in Beijing. These results suggest that the long-range transport of
dust in the atmosphere may play a significant role in the dispersal
procedure for bioaerosols on local, regional, and even global scales.
Our findings serve as a vital reference for the further cooperation of
countries to reduce dust impact and improve environmental quality.
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