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Fire is an important ecosystem process and has played a complex role in terrestrial
ecosystems and the atmosphere environment. Sometimes, wildfires are highly
destructive natural disasters. To reduce their destructive impact, wildfires must be
detected as soon as possible. However, accurate and timely monitoring of wildfires is a
challenging task due to the traditional threshold methods easily be suffered to the false
alarms caused by small forest clearings, and the omission error of large fires obscured
by thick smoke. Deep learning has the characteristics of strong learning ability, strong
adaptability and good portability. At present, few studies have addressed the wildfires
detection problem in remote sensing images using deep learning method in a nearly real
time way. Therefore, in this research we proposed an active fire detection system using
a novel convolutional neural network (FireCNN). FireCNN uses multi-scale convolution
and residual acceptance design, which can effectively extract the accurate
characteristics of fire spots. The proposed method was tested on dataset which
contained 1,823 fire spots and 3,646 non-fire spots. The experimental results
demonstrate that the FireCNN is fully capable of wildfire detection, with the
accuracy of 35.2% higher than the traditional threshold method. We also examined
the influence of different structural designs on the performance of neural network
models. The comparison results indicates the proposed method produced the best
results.
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INTRODUCTION

Fire is an important ecosystem process and has played a complex role in shaping landscapes,
biodiversity and terrestrial ecosystems and the atmosphere environment (Bixby et al., 2015; Ryu
et al., 2018;McWethy et al., 2019; Tymstra et al., 2020). It provide nutrients and habitat for vegetation
and animals, and plays multiple important roles in maintaining healthy ecosystems (Ryan et al.,
2013; Brown et al., 2015; Harper et al., 2017). However, wildfires are also destructive forces—it cause
great loss of human life and damage to property, atmospheric pollution, soil damage and so on. The
existing studies showing an estimated global annual burning area of approximately 420 million
hectares (Giglio et al., 2018). Therefore, to reduce the negative impact of fire, real-time detection of
active fires should be carried out, which can provide timely and valuable information for fire
management department.
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With the continuous development of satellite remote sensing
technology, an increasing number of researchers have chosen to
use satellite multispectral images to detect forest wildfires (Allison
et al., 2016; Kaku, 2019; Barmpoutis et al., 2020). The common
features of fires are bright flames and smoke produced during
combustion, as well as high temperatures on fire surfaces that are
different from the surrounding environment. Smoke and flames
produced during combustion can be detected in the visible light
bands of remote sensing images, and high temperatures on the
surface of fires are easily detected in the mid-infrared, shortwave
infrared and thermal infrared bands (Leblon et al., 2012). In
moderate or low spatial resolution images, the fire is represented
as a fire spot with extremely high temperature, which also called
thermal anomalies on a per-pixel basis (Xie et al., 2016). For
instance, MOD14 monitors fire actively at a 1 km spatial
resolution. Satellite remote sensing has the advantages of
strong timeliness, wide observation range and low cost, which
provides great convenience for fire detection (Coen and
Schroeder, 2013; Xie et al., 2018).

Active fire detection methods can be divided into two types:
those that are based on a manual design algorithm, primarily the
threshold method, and the alternative approach, based on deep
learning, including shallow neural networks and image-level deep
networks.

The threshold-based method sets one or more thresholds for a
specific imager channel, or the combination of different spectral
channels, checks each pixel one by one, and classifies the pixels
that meet the threshold as fire spots; otherwise, they are classified
as non-fire spots. Spectral, spatial or contextual information
usually involved. The major satellite remote sensing for active
fire detection are: the Moderate-resolution Imaging Spectro
radiometer (MODIS) sensor that equips the NASA Terra and
Aqua satellites, with the spatial resolution of 250m to 1 km
(Justice et al., 2002; Morisette et al., 2005; Giglio et al., 2008;
Maier et al., 2013; Xie et al., 2016; Giglio et al., 2016; Earl and
Simmonds, 2018); the AVHRR sensor on board NOAA satellite,
with the spatial resolution of 1 km (Baum and Trepte, 1999; Boles
and Verbyla, 2000); the Visible Infrared Imaging Radiometer
Suite (VIIRS) on board the joint NASA/NOAA Suomi National
Polar-orbiting Partnership (Suomi NPP) and NOAA-20 satellites
(Schroeder et al., 2014; Li et al., 2018). In addition, the Landsat
series, Sentinel-2 remote sensing images have also been used for
research on this filed due to they are relatively high spatial and
temporal resolution (Schroeder et al., 2008; Murphy et al., 2016;
Schroeder et al., 2016; Malambo and Heatwole, 2020; Hu et al.,
2021; van Dijk et al., 2021). The major improvements of these
methods are concentrate on integrating contextual or temporal
information (Schroeder et al., 2008; Murphy et al., 2016; Lin et al.,
2018; Kumar and Roy, 2018), setting more accurate threshold
(Baum and Trepte, 1999), and improving the disturbance factors
algorithm, such as cloud, smoke, and snow (Giglio et al., 2016).

In October 2014, a new geostationary meteorological satellite
Himawari-8 was launched by the Japan Meteorological Agency
(JMA). The satellite is equipped with an Advanced Himawari
Imager (AHI) 16-channel multispectral sensor with a spatial
resolution of 2 km (Xu et al., 2017). AHI can collect a full-
disk of data every 10 min, covering East Asia (Da, 2015). The high

temporal resolution of the Himawari-8 satellite makes it more
suitable for time-sensitive tasks, e.g., fire monitoring.
Wickramasinghe et al. (2016) proposed a new AHI-FSA
algorithm that uses the Advanced Himawari Imager (AHI)
data to detect burning and unburned vegetation, and the edge
between smoke-covered and non-smoke-covered areas,
respectively. Xie et al. (2018) proposed a spatial and temporal
context model to detect fires based on the high temporal
resolution of the Himawari-8 satellite images and applied it to
real fire scenarios. Na et al. (2018) used the 7, 4, and 3 bands of
Himawari-8 data to monitor grassland fires in the border areas
between China and Mongolia. The results show that the detected
fires are highly consistent with the actual situation on the ground.
More studies of fire detection algorithms can be found in Cocke
et al. (2005), French et al. (2008), Boschetti et al. (2015).

As can be seen from the above studies, the traditional
threshold methods have been widely used in active fire
detection tasks. However, due to the different design of
spectral bands and central wavelength of different sensors, the
threshold method is usually applicable to specific satellites, which
makes it difficult to apply to multiple satellites. Moreover, the
threshold is determined according to the statistical data of the
surrounding areas, where fires under different landforms,
climates, and seasons have diverse characteristics. This imply
that the threshold changes dynamically according to the study
area and the data. Furthermore, the threshold methods are easily
affected by cloud, thick smoke, when it used to assess large areas,
is prone to false positives and omissions.

Deep learning techniques have achieved excellent results in the
field of machine vision (LeCun et al., 2015). Deep learning has the
characteristics of strong learning ability, strong adaptability and
good portability. It can discover the intricate patterns in massive
data by using a series of processing layers. Therefore, an
increasing number of researchers have tried to use deep
learning technology in the field of fire or smoke detection and
have developed and designed many algorithms. These algorithms
can be divided into neural networks at the image level and
pixel level.

In the field of fire detection at image level, semantic
segmentation models generally involved. Langford et al. (2018)
applied the deep neural networks (DNN) to detect the wildfires.
To solve the problem of imbalanced training samples, a weight-
selection strategy was adopted during the DNN training process.
The results showed that the weight-selection strategy was able to
map wildfires more accurate compared to the normal DNN. Ba
et al. (2019) designed a new convolutional neural network (CNN)
model, SmokeNet, which integrates the attention of space and
channel direction into CNN to enhance the feature
representation of scene classification. The model was tested
using the MODIS data. The experimental results indicate high
consistency between model predictions and actual classification
results. Vani et al. (2019) designed a convolutional neural
network Inception-v3 method based on transfer learning to
classify the fire and non-fire. Gargiulo et al. (2019) suggested a
CNN-based super-resolution technique for active fire detection
using Sentinel-2 images. Pinto et al. (2020) first use convolutional
neural networks and Long Short-TermMemory (LSTMs) with an
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architecture based on U-net. The red, near-infrared and
middle-infrared (MIR) bands from the VIIRS sensor,
combined with the VIIRS 375 m active fire product as inputs
to train the model. de Almeida Pereira et al. (2021) created
training and testing images and labels using high-resolution
images collected by Landsat-8 to train the improved U-Net
networks. Different from most of the existing studies that use
optical images, Ban et al. (2020) used CNN to detect burnt areas
from Sentinel-1 SAR time series images. By analysing the
temporal backscatter variations, the CNN-based deep learning
method can better distinguish burnt areas with higher accuracy to
traditional method. Larsen et al. (2021) and Guede-Fernández
et al. (2021) adopted deep learning method to identify the fire
smoke. However, the location of the fire can not be directly
determined. In addition, researches are also using deep learning
method to detect the fire using unmanned aerial vehicle (UAV)
images or videos (Yuan et al., 2017; Jiao et al., 2019; Kinaneva
et al., 2019; Bushnaq et al., 2021; Guede-Fernández et al., 2021).
For instance, Muhammad et al. (2018) suggests a convolutional
neural network using surveillance videos. The UAV can provide
timely images of the fire. However, it may not suitable for large
area forest fire detection. In terms of fire detection based on
pixel level, according to the knowledge of the authors, there are
only two related literatures. The first literature is that Zhanqing
et al. (2001) integrated a back-propagation neural network
(BPNN) and the threshold methods for extracting smoke
based on AVHRR imagery. The BPNN can discover and
learn complex linear and nonlinear relationships from
radiation measurements between smoke, cloud, and land, it is
can identify the potential area covered by smoke. To remove the
misclassified pixels and improve the precision, multi-threshold
testing also incorporated. In 2015, Li et al. proposed an
improved algorithm based on their earlier model (Zhanqing
et al., 2001). In the improved algorithm, all bands were regarded
as the input vectors of the BPNN, and the training dataset was
established using the multi-threshold method to train the BPNN
to identify smoke.

According to the above-mentioned studies, some open problems
still exist. First, the traditional threshold methods are easily affected
by cloud, thick smoke, which lead to false positives and omission
errors. Second, most of the existing deep learning methods use
polar-orbiting satellites images which could provide fine spatial
resolution, but the temporal resolution is relatively low. High
temporal is critical for fire monitoring. The Himawari-8 satellite
which has the temporal resolution of 10 min, can continuously
monitor fire and are thus conducive to early fire detection and adopt
aggressive measures. However, few deep learning methods use
Himawari-8 satellite to detect the fires. Third, most of the
existing deep learning methods are conducted at image level.
Over the past decades, deep learning methods have been
promoting major advances in artificial intelligence, and a variety
of new models have been proposed, such as generative adversarial
networks (GAN), deep Convolutional Neural Networks, Recurrent
Neural Networks, Long Short-Term Memory. However, they are
difficult to detect the fires at pixel level, due to the low spatial
resolution of Himawari-8 images and the subtle target of the fire.
The existing models need to be improved.

Therefore, the objective of the study is to propose an active fire
detection system using a novel convolutional neural network
(FireCNN) based on Himawari-8 satellite imageries, to fill the
research gap of this area. The presented FireCNN uses multi-scale
convolution and residual acceptance design, which can effectively
extract the accurate characteristics of fire spots, and to improve
the fire detection accuracy. The main contributions of our study
are as follows. 1) We developed a novel active fire detection
convolutional neural network (FireCNN) based on Himawari-8
satellite images. The new method utilizes multi-scale convolution
to comprehensively assess the characteristics of fire spots and uses
residual structures to retain the original characteristics, which
makes it able to extract the key features of the fire spots. 2) A new
Himawari-8 active fire detection dataset was created, which
includes a training set and a test set. The training set includes
654 fire spots and 1,308 non-fire spots, and the test set includes
1,169 fire spots and 2,338 non-fire spots.

The remainder of the article is organised as follows. In the
Data section, we explain the source and composition of the data
and pre-processing steps and provide basic information
regarding the study area as well as a detailed description of
the database established in this study. In the Methodology
section, the proposed algorithm is described in detail, and
both the traditional threshold method and deep learning
method used in the experiment are introduced. In the
Experiment section, the relevant settings of the experiment,
the parameters used for evaluation, and the analysis of the
results are described. Finally, the key findings of the study are
summarized, and possible future research is briefly discussed.

DATA

Data and Pre-Processing
The fire location data (Label) and multispectral image data used
in this study were obtained from the Meteorological Satellite
Ground Station, Guangzhou, Guangdong, China and Himawari-
8. Specifically, the Himawari-8 product used in this article is full

TABLE 1 | Band information of Himawari-8.

Band Centre wavelength (μm) Notation Unit

1 0.47 A 1 Unitless
2 0.51 A 2 Unitless
3 0.64 A 3 Unitless
4 0.86 A 4 Unitless
5 1.6 A 5 Unitless
6 2.3 A 6 Unitless
7 3.9 T 7 K
8 6.2 T 8 K
9 6.9 T 9 K
10 7.3 T 10 K
11 8.6 T 11 K
12 9.6 T 12 K
13 10.4 T 13 K
14 11.2 T 14 K
15 12.4 T 15 K
16 13.3 T 16 K
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disk Available Himawari L1 Data (Himawari L1 Gridded data),
The detailed information is available on website https://www.
eorc.jaxa.jp/ptree/userguide.html. The fire location data include
the longitude, latitude, and time of the fire. The data are presented
in the form of mask, from which the fire and non-fire points can
be extracted from the multispectral image. The data have high
reliability after manual identification and algorithm inversion.

The multispectral image data were obtained from the
Himawari-8 satellite Himawari-8 is comprised of 16 bands;
information on each band is provided in Table 1. The spatial
resolution of the visible light bands is 0.5–1 km and that of the
near-infrared and infrared bands is 1–2 km. The temporal
resolution is 10 min. The entire range covers the earth, from
60° N to 60° S and from 80° E to 160° W. Although the spatial
resolution of the geostationary satellite is less than that of a polar
orbit satellite, the geostationary satellite has the characteristics of
wide coverage, time synchronisation of data acquisition, fixed
observation position, and high temporal resolution, all of which
make it well suited for real-time monitoring of wildfires.
Moreover, the repeated visit once every 10 min can alleviate
the problem of the blank monitoring period caused by the low
temporal resolution of a polar orbit satellite. Among the
Himawari-8 satellite multispectral images, bands 1-6 are
albedo data, albedo � reflectancepcos(solar zenith angle), and
bands 7–16 are brightness temperature data.

Study Area
A map of Guangdong Province, in southern China, is shown in
Figure 1 The whole region is located between 20° 13′ and 25° 31′

N and between 109° 39′ and 117° 19′ E. The terrain is hillier in the
south than in the north. The study area is located in the East
Asian monsoon region, primarily in a subtropical monsoon
climate. Guangxi is adjacent to Guangdong Province, as
shown in Figure 1, located between 104° 28′ and 112° 04′ E
and 20° 54′ and 26° 24’N. In Guangxi, the terrain tends to be hilly
in the northwest and less so in the southeast. The main climate is
subtropical monsoon and tropical monsoon climates. The two
provinces have high forest coverage rates, and both lie close to the
equator, making these areas prone to forest fires during dry
periods. For these reasons, they were selected as the study area.

Establishing the Database
In assembling the data, the first consideration is that the fire
location data should correspond to the multispectral image data
in terms of position and time. A part of the study area was cut out
from the multispectral image data, and a grid of M × M size was
set up at the centre of each pixel. The average and standard
deviation of each band in the grid were calculated as the
surrounding environment information of the pixels. To ensure
that the pixels at the edge of the image can also set a sufficient
window size, a sufficient width of the mirror edge was added to
the image before processing. The training data is provided by
Meteorological Satellite Ground Station, Guangzhou,
Guangdong, China, which use combination of traditional
algorithm and field survey.

According to the time and latitude information of the fire spot,
the information of each band and the surrounding environment
information of the fire spot were taken from the corresponding

FIGURE 1 | Study area.
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Himawari-8 image as the original characteristics of the fire spot.
At the same time, the original features of non-fire spots were
extracted randomly according to a certain proportion on the
same scene image, where the fire spots were marked as 1 and the
non-fire spots were marked as 0.

The training data set included the data of Guangdong and
Guangxi provinces from January to December 2020, with the data
collected at 3:00 a.m. and 7:00 p.m. (UTC) every day. Due to the
unbalance number of fire and non-fire points, the proportion of
fire and non-fire training points was set by comparison
experiment, and the result indicates that the network can fully
learns the characteristics of fires and correctly distinguishes
between fires and non-fires with the proportion of 1:2. A total
of 654 fire spots and 1,308 non-fire spots were included in the
training set, and 40% of the training set was randomly selected as
the validation set, which was not involved in training and was
only used to adjust the hyper-parameters of the model and
preliminarily evaluate the ability of the model to determine
whether continuous training can be stopped.

METHODOLOGY

Active Fire Detection With Traditional
Threshold Method
In this section, we mainly introduce the fire detection algorithm
proposed by Xu et al. (2017). The algorithm first uses the 3.9- and
11.2-μm bands of Himawari-8 to identify potential fire spots. The
2.3-μm band is then used to identify water, and the 0.64-, 0.86-,
and 12.4-μm bands are used to identify clouds. Water pixels and
cloud pixels are removed from potential fire spots to reduce false
alarms. As the final fire detection results, the experimental results

show that the fire detection method is robust in situations of
smoke and thin clouds and is very sensitive to small fires. It can
provide valuable real-time fire information for wildfire
management. The conditions for the algorithm to identify
potential fires during the day are as follows.

(ZT3.9 > 0.8)AND(ZT3.9−T11.2 > 1.5) (1)
whereZ(λ) � (λ)−mean(λ)

std(λ) ,mean(λ) and std(λ) represents the mean
and standard deviation of the band in the study area.

The conditions for non-water pixels are:

A2.3 > 0.05 (2)
where, Aλ represents the albedo value in this band.

The conditions for non-cloud pixels are:

(A0.64 + A0.86 < 1.2)AND(T12.4 > 265K)AND ((A0.64

+ A0.86 < 0.7)or(T12.4 > 285K)) (3)

FIGURE 2 | The flow chartof the fire detection solution.

FIGURE 3 | Framework of the FireCNN.
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Active Fire Detection Based on
Convolutional Neural Network
In Figure 2 we present a flow chart of the fire detection model
used in this study. First, we create the training and testing data
sets. The specific steps refer to the Data section. This is followed
by the use of the training set to train the model. The training
model is then tested and the classification results are generated.

The active fire detection problem can be transformed into a
two-classification problem; that is, the pixels on the satellite image
are classified as fire or non-fire. The active fire detection framework
based on the CNN proposed in this study (Figure 3) is composed
primarily of a feature extraction component and a fully connected
layer classification component. The feature extraction component
performs feature extraction and feature fusion on the input
samples, and then the extracted features are inputted into the
fully connected layer component, finally outputting the probability
that the point is a fire/non-fire spot.

Feature Extraction
The feature extraction component includes three convolution
modules of different scales and residual edges. The convolution
modules are Conv-2, Conv-3, and Conv-4; that is, the size of the
convolution kernel is 2, 3, and 4. Each convolution module
includes two convolutional layers and a maximum pooling
layer, and each convolutional layer is followed by a rectified
linear unit (ReLU) activation function. In this study,
convolutional neural networks were used in the convolution
module to select features. Through convolutional layers of
different scales, feature selection and extraction can be
performed in different ranges, which is not only beneficial to
reduce the weight of the features with poor correlation with
wildfire in the original feature, but also a more comprehensive
analysis of the relationship between different quantitative features
and extract the key features. In the pooling layer, we chose to use
the maximum pooling to retain the key features to the greatest
extent, while reducing the dimension of the features to facilitate
subsequent calculations. The residual edge in the convolution
module prevents the loss of original features and effectively solves
the problem of neural network degradation. The feature
extraction component fuses the features extracted by the three
convolution modules of different scales with the original features
as the output.

Fully Connected Layer Classifier
The fully connected layer takes the fused features as input, taking
into account all the features, and finally outputs the probability
that the sample point is a fire/non-fire spot through the Softmax
function. Because the problem is finally transformed into a binary
classification problem, we chose the binary cross-entropy
function as the loss function. The binary cross-entropy
function is defined as follows:

LossCELF(y, ŷ) � y · logŷ + (1 − y)log(1 − ŷ) (4)
where y is the predicted value, and ŷ is the true value. If the point
is a fire spot, ŷ = 1, if the point is a non-fire spot, ŷ = 0, and y is
the probability that the point is a fire spot, 0 ≤ y ≤ 1.

To verify that CNN has the potential to be suitable for
thermal power detection tasks at fire spots, we compared our
model with the threshold-based algorithm proposed by Xu et al.
(2017). At the same time, we also compared FireCNN with
BPNN (BPNet) and CNN (simpleCNN), removing multi-scale
convolution and residual edges on the basis of FireCNN. The BP
neural network includes five hidden layers; the number of
neurons is 44, 22, 11, 6, and 2. Except for the last layer, each
hidden layer uses the ReLU activation function, and the last
layer uses the Softmax function. SimpleCNN includes two
convolution kernels with a size of three convolutional layers,
a maximum pooling layer, and a fully connected layer. The
network structure of BPNet and simpleCNN is shown in
Figure 4.

EXPERIMENT

Experimental Setup
In this study, there was no overlap between the training set (used
to train the CNN model) and the test set (used to test the
performance of the CNN model). The code used in this study
was written using Python 3.6, and the deep learning framework
used was Pytorch1.2. In terms of hardware, experiments were
conducted on an Intel CoreI i5-8300H CPU at 2.30 GHz, 8 GB of
RAM, running Windows, with an NVIDIA GeForce GTX 1060.
In the CNN model, the Adam optimizer was selected as the
parameter optimizer, the EPOCH level was 500, the batch size
was 100, and the learning rate was 10–6.

Evaluation of Indicators
Precision rate, misclassification error (ME), recall rate, omission
error (OE), accuracy rate, and F-measure were used to evaluate
the performance of the model. TP denotes true positive (correctly
classified as fire point), TN denotes false positives (non-fire
point), FP denotes false positives (pixels misclassified as fire
point), FN denotes false negatives (pixels incorrectly classified
as non-fire point).

The precision rate (P) refers to the number of fire spots
predicted by the model that are actually fire spots. The higher

FIGURE 4 | The structure of BPNet and simpleCNN.
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the value, the higher is the reliability of the fire spots predicted by
the model. The formula is as follows:

Precision � TP

TP + FP
· 100% (5)

The commission error (CE) refers to how many of the predicted
fire spots are erroneous, and the higher the value, the more
unreliable the fire spots predicted by the model. The formula is as
follows:

CE � FP

TP + FP
· 100% � 1 − Precision (6)

The recall rate refers to the fire spots in the original data, how
many are correctly predicted by the model, the higher the value is,
the fewer the fire spots missed by the model. Recall rate is
calculated, as follows:

Recall � TP

TP + FN
· 100% (7)

The omission error (OE) refers to the fire spot in the original data
and the extent to which it is omitted. The higher the value, the
lower the comprehensiveness of the model. The formula is as
follows:

OE � FN/(TP + FN) � 1 − Recall (8)
Accuracy is the ratio of the number of correct predictions in all
categories to the total number of predictions. The formula is as
follows:

Accuracy � TP + TN

TP + FP + TN + FN
· 100% (9)

The F-measure was used to comprehensively evaluate the
performance of the model. The formula is as follow:

Fmeasure � (2pRecallpPrecision)/(Recall + Precision) (10)

Analysis of Results
In order to test the effectiveness of the proposed FireCNNmodel,
five related methods are selected for comparison. They are can be
divided into three types, that traditional threshold method (Xu
and Zhong, 2017), machine learning methods (Support Vector
Machine and Random Forest), and the deep learning methods
which BP neural network and simpleCNN are involved
(Zhanqing et al., 2001; Li et al., 2015). The Precision, CE,
Recall, OE, Accuracy and F-measure are selected as the
indicators of model performance. The results are presented in
Table 2. In each of the methods, the training of the deep learning
network uses the Adam optimizer, EPOCH level is 500, the batch

size is 200, and the learning rate is 10–6. More specific data are
presented in Table 3. In particular, SVM and RF algorithms used
in this study are implemented by sklrean library, where SVM
kernel function is set to Gaussian kernel function; RF has 100
trees with a maximum depth of 5.

It can be observed from Table 2 that the best performance
indicators are obtained with FireCNN. The algorithm proposed
by Xu does not perform as well as FireCNN in each indicator,
indicating the superiority of the FireCNN to the traditional
threshold method. In machine learning methods, the
comprehensive performance of RF is better than SVM. SVM
identifies most of the points as fire points, resulting in low
accuracy. At the same time, it failed to find most of the fire
points. Therefore, a low recall rate is obtained. Although RF
performs better than SVM in recall rate, it still has the problems
of low accuracy and more false positives. Consequently, a low
recall rate is obtained. In addition, it still has the problem of low
precision and more false alarms. The main reason responsible for
this is that in Himawari-8 images, although abundant spectral
information is provided, spatial contextual information is difficult
to integrate in machine learning method due to the low spatial
resolution of the images. An important character of a fire point is
that its temperature is higher than the surrounding temperature.
Without the surrounding environment information, the machine
learning method cannot completely learn the features of the fire
point. In contrast, the multi-scale convolution in FireCNN can
consider and analyse the hidden relationship between various
features from different scales, and the residual structure prevents
the loss of original features, so it has better learning ability.

Compared with deep learning method, under the same training
rounds, BPNet identifies all points as non-fire points and
simpleCNN identifies all points as fire points. This indicates
that these two networks have not yet learned the complete fire/
non-fire characteristics. This is because the main structure of
BPNet is multiple perceptron (MLP). The learning efficiency of
this simple network structure is relatively low, and with the
deepening of the network depth, it is prone to the problem of
gradient dispersion, which leads to the network unable to further
learn. SimpleCNN only uses convolution structure while multi-
scale convolution is not included. When convolution is carried out
on the original feature, the form is single, so the learning efficiency
is low. In addition, simpleCNN does not use residual structure,
which is easy to cause the loss of the original feature in the learning
process. In contrast, FireCNN was able to distinguish fire from
non-fire spots. In general, FireCNN performs best in all indicators,
indicating that FireCNN which use multi-scale convolution and

TABLE 2 | Comparison of five models, including the proposed FireCNN.

Method Precision CE Recall OE Accuracy F-measure

Xu 0.483 0.517 0.800 0.200 0.648 0.602
SVM 0.144 0.856 0.336 0.664 0.112 0.202
RF 0.281 0.719 0.776 0.224 0.264 0.413
BPNet 0.000 1.000 0.000 1.000 0.667 —

SimpleCNN 0.333 0.667 1.000 0.000 0.333 0.165
FireCNN 1.000 0.000 1.000 0.000 1.000 1.000

TABLE 3 | Additional results from the comparison of models.

Method TP FP TN FN

Xu 935 1,001 234 234
SVM 393 2,338 0 776
RF 907 2,318 20 262
BPNet 0 0 2,338 1,169
simpleCNN 1,169 2,338 0 0
FireCNN 1,169 0 2,338 0

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 7940287

Hong et al. Fire Detection Convolutional Neural Network

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


residual edge structure, can reliably and comprehensively identify
fire spots in this dataset, with fewer false positives and few omitted
fire spots. This also shows that a CNN with a reasonable structure
can fully adapt to fire-detection tasks.

To further explore the differences between FireCNN and
BPNet and simpleCNN, we devised an additional set of
experiments. Using the training set and test set used in the
above experiments, EPOCH trained by BPNet and simpleCNN
was added, and the EPOCH required for BPNet and simpleCNN
to reach 1.000 accuracy on the training set was recorded. The
higher the EPOCH level required, the slower the convergence
speed of the algorithm. Because the initial parameters of the deep
learning network are random, to reduce the impact of
randomness, we take the sum of ten effective experiments as
the final result. At the same time, the model trained by these ten
experiments was tested on the test set, and the precision, recall,
and accuracy were recorded, and the average value of ten effective
experiments was taken. To show the training speed of each
network more intuitively, we recorded the total time (unit: s)
spent by ten trainings. The results are presented in Table 4. We
also tested the results of our model against data from Guangdong
and Guangxi and obtained an accuracy of 0.999 and a recall rate
of 0.999. The data used for this test included all pixels in the study
area, and all pixels in the study area were classified without
artificially setting the ratio of fire to non-fire. On average,
FireCNN spends only 4.784 s for each prediction on the data
of Guangdong, and 3.659 s for Guangxi, which is far less than the
10-min time resolution of the Himawari-8 satellite. Using
FireCNN, managers can fully realise the real-time monitoring
of fire in Guangdong and Guangxi.

It can be seen from Table 4 that BPNet requires the highest
level of EPOCH, followed by simpleCNN, and FireCNN requires
the least EPOCH. The EPOCH level of simpleCNN and FireCNN
is less than that of BPNet, indicating that under the same setting,
the convolution network can extract the characteristics of fire/
non-fire spots more efficiently. The EPOCH level required by
FireCNN is only 49.9% of that required by simpleCNN,
indicating that multi-scale convolution is more effective than
single-scale convolution, and in the design of the network, we set
multi-scale convolution for FireCNN to ensure that the network
can integrate different numbers of initial features for
consideration. At the same time, there may be connections
between different initial features. The convolution of different
scales enables the network to consider the relationship between
different numbers of features and ultimately extract the more
essential features of fire/non-fire. At the same time, the existence
of residual edges prevents the network from losing its original
features. In terms of accuracy and recall rate, the gap between the
three was not more than 0.001, indicating that the three could be

applied to the fire detection task. In terms of time, FireCNN
spends the least time in training, BPNet takes the second place,
and simpleCNN spends themost time. In fact, the BPNet network
is the simplest, and the time of one EPOCH is very short.
However, because of the simple network, a higher EPOCH
level is needed to train the network, and simpleCNN spends
the most time. This is because its network structure is more
complex than that of BPNet and it has more time to train an
EPOCH. In addition, it simply uses convolution to extract
features, and its efficiency is not high. The results show that
the network needs to be complex enough to extract features
efficiently, and a reasonable network will make the training more
effective.

We also recorded the test time, and the average prediction time
for each point did not exceed 0.00003 s. It takes nomore than 4 s to
make a prediction for all data points in Guangdong Province, and
no more than 5 s to make a prediction for all data points in
Guangxi Province. Compared with the 10-min time resolution of
Himawari-8, FireCNN is fully capable of real-time monitoring.

To place these results in context, we have provided simple
statistics of the fires in Guangdong and Guangxi provinces from
January 2021 to June 2021 (Table 5).

As shown in Table 5, the number of fires in Guangdong and
Guangxi provinces decreased gradually from January and then
again sharply in June, when the number of fires decreased to a
single digit. Based on the preliminary analysis of the climate and
geographical environment of Guangdong and Guangxi, the early
spring, autumn, and winter rains in Guangdong and Guangxi
have decreased, and the wind is dry, which leads to frequent forest
fires, as evidenced by the higher number of fires in January and
February. Over time, in late spring and summer, although the
temperature gradually increased, it was affected by the monsoon.
At this time, the rainfall was abundant, and the air humidity was
high; accordingly, the number of fires decreased sharply.

CONCLUSION

To reduce the destructive impact of wildfires, it is crucial to detect
the active fires accurately and quickly in the early stage. However,
the most widely used threshold methods are confronted with the

TABLE 4 | The results of deep learning methods.

Method EPOCH TP FP TN FN Precision Recall Accuracy Time(s)

BPNet 16,605 11,677 4 23,376 13 0.999 0.998 0.999 676.61
simpleCNN 15,905 11,688 4 23,376 2 0.999 0.999 0.999 1,512.65
FireCNN 7,945 11,683 22 23,358 7 0.998 0.999 0.999 571.42

TABLE 5 | Statistical results.

January February March April May June

Guangdong 300 211 27 46 40 2
Guangxi 283 140 55 30 28 7
summation 583 351 82 76 68 9
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problem of relative large commission and omission errors, the
thresholds are varied with the study areas and so on. There are
relatively few researches focus on monitoring active fires using
deep learning method in a nearly real time way. In this article, we
presented an active fire detection system using a novel FireCNN.
FireCNN uses multi-scale convolution structure, which can
consider the relationship between features from different scales,
so that the network can efficiently extract features from non-fire
points, and the residual structure prevents the loss of original
features. These structures improve the network learning ability and
learning speed. In order to evaluate the effectiveness of the
proposed algorithm, it was test on Himawari-8 satellite images
and the presented algorithm is compared with threshold method
and the state-of-the-art deep learning models. Finally, we explored
the influence of different structural designs on the deep neural
network. A number of conclusions can be made as follows:

1) The FireCNN is fully capable of wildfire detection, with the
accuracy of 35.2% higher than the traditional threshold
method.

2) By using combination of FireCNN and Himawari-8 satellite
images, the active fires can be accurately detected in nearly real
time way, which is critical important to reduce the destructive
impact of the active fires.

3) Reasonable network design can make the algorithm converge
faster and shorten the training time.

However, the limitation of the proposed method is that the
training and testing sets are relatively small. The effectiveness of
the proposed method under large amount of data sets remains to
be studied. In addition, the environmental information is

artificially added to the original data to strengthen the feature
representation. In the future research, we will try to present a
more effective and robust method under large data sets.
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