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Drought is the most expensive natural hazard and one of the deadliest. While drought
propagation through standardised indices has been extensively studied at the regional
scale, global scale drought propagation, and particularly quantifying the space and time
variability, is still a challenging task. Quantifying the space time variability is crucial to
understand how droughts have changed globally in order to cope with their impacts. In
particular, better understanding of the propagation of drought through the climate,
vegetation and hydrological subsystems can improve decision making and
preparedness. This study maps spatial temporal drought propagation through different
subsystems at the global scale over the last decades. The standardised precipitation index
(SPI) based on the gamma distribution, the standardised precipitation evapotranspiration
index (SPEI) based on the log-logistic distribution, the standardised vegetation index (SVI)
based on z-scores, and the standardised runoff index (SRI) based on empirical runoff
probabilities were quantified. Additionally, drought characteristics, including duration,
severity and intensity were estimated. Propagation combined the delay in response in
the subsystems using drought characteristics, and trends in time were analysed. All these
were calculated at 0.05 to 0.25 arc degree pixels. In general, drought propagates rapidly to
the response in runoff and streamflow, and a with longer delay in the vegetation. However,
this response varies spatially across the globe and depending on the observation scale,
and amplifies progressively in duration and severity across large regions from the
meteorological to the agricultural/ecological and hydrologic subsystems, while
attenuating in intensity. Significant differences exist between major Köppen climate
groups in drought characteristics and propagation. Patterns show intensification of
drought severity and propagation affecting vegetation and hydrology in regions of
southern South America, Australia, and South West Africa.
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1 INTRODUCTION

Drought corresponds to a sequence of climate events triggered by ocean or atmospheric circulation
conditions which results in rainfall deficits (Zargar et al., 2011; Yuan et al., 2017), leading to a
landscape imbalance between water supply and demand (Ault, 2020). Drought conditions can extend
in time having large environmental and socio-economical consequences (Apurv et al., 2017).
Droughts have been identified as one of the most costly and deadly natural hazards (Ault,
2020), and could be one of the reasons for the collapse of ancient civilizations (Kerr, 1998; Gill
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et al., 2007). In recent decades, large drought episodes have
occurred in different regions and have received different
names, such as the millennium drought that occurred in
Australia between 2001 and 2009 (Van Dijk et al., 2013) or
the megadrought that has affected Chile since 2010 (Garreaud
et al., 2020).

Drought can occur due multiple different atmospheric drivers.
Atmospheric/oceanic circulation cycles strongly impact the
development of dry/wet conditions, leading to interannual/
interdecadal climate variability (Vicente-Serrano et al., 2011).
Some examples of this are the El Niño Southern Oscillation
(ENSO), the Pacific Decadal Oscillation (PDO), or the Indian
Ocean Dipole (IOD), which all cause an oscillation in surface
ocean temperatures (Mantua and Hare, 2002; Xiao et al., 2015).
Other processes, like the Subtropical Ridge (STR) or the North
Atlantic Oscillation (NAO), are mainly driven by atmospheric
conditions that affect the atmospheric pressure at sea level
(Hurrell et al., 2003; Grose et al., 2015). All these cycles
strongly impact weather conditions across different time
scales. However, anthropogenic impacts on the interannual
climate variability as part of “climate change” are still difficult
to quantify. Despite this, He and Li (2019) identified an overall
increase in the interannual variability of rainfall associated with
climate change across all longitudes between latitudes 20°S–50°N,
while Zhu (2013) estimated an overall increase in rainfall
intensities across the United States. In both cases, estimates
were spatially variable. Additionally, climate change has
decreased rainfall in Mediterranean regions, and an increase in
temperatures is expected to increase evaporative demand, reduce
snowfall and increase the ablation of glaciers, the soil water deficit
and runoff, leading to an increase in drought risk and severity
(Cook et al., 2018).

Drought conditions, triggered by oceanic/atmospheric
circulation processes, propagate from the meteorologic
subsystem, which is evident through a deficit in precipitation,
to the hydrologic and agricultural subsystems (Wang et al., 2016),
and therefore, referred to as a multi-scalar phenomenon (McKee,
1995). In terms of hydrology, drought may cause reduced
discharge in streams, lower groundwater levels, and a
reduction in reservoir storage (Maity et al., 2013). However in
the hydrologic subsystem alone, drought may have different
propagation rates. For example, in the surface drainage
network, propagation may be relatively fast compared to the
groundwater system, which depending on variables such as
recharge rate and aquifer transmissivity, can have a substantial
lagged response, which can also vary significantly across sites
(Bloomfield and Marchant, 2013; Lorenzo-Lacruz et al., 2017;
Han et al., 2019). Focusing on the surface drainage system,
propagation rates can further depend on climate and
catchment characteristics (Barker et al., 2016), and may be
additionally modulated by water consumption in different
reaches and water management (Yuan et al., 2017). Reservoirs,
in particular, may play an important role in delaying drought
impacts (Lorenzo-Lacruz et al., 2013). Water deficit conditions
also lead to a propagation of drought in the agricultural/ecological
subsystem, which results in less water in soils and consequently,
vegetation stress conditions due to the water deficit (Son et al.,

2012). These may additionally translate into economic deficits
due to reductions in crop yields, and subsequently into societal
distress and starvation, which may cause political instability
(Sternberg, 2012). However, in each subsystem the
propagation is modulated by different factors that exacerbate/
attenuate their impacts.

One of the difficulties in evaluating drought, is related to the
methods to characterise and quantify drought, given limitations
in the length of historic data and the spatial coverage (Ault, 2020).
Water deficits can be evaluated through water budget anomalies,
and several standardised indices have been developed to
characterize the magnitude of drought (Zargar et al., 2011;
Ault, 2020). For instance, meteorologic drought can be
quantified through the standardised precipitation index (SPI)
(McKee et al., 1993), which has been further modified to include
evapotranspiration (standardised precipitation
evapotranspiration index; SPEI) (Vicente-Serrano et al., 2010;
Guenang and Kamga, 2014). From a hydrologic perspective,
indices may include runoff (standardised runoff index, SRI)
(Shukla and Wood, 2008), the streamflow in channels
(standardised streamflow index, SSI) (Vicente-Serrano et al.,
2012), groundwater levels, or storage volumes in reservoirs
(Bhuiyan et al., 2006; Nalbantis and Tsakiris, 2009). Likewise,
drought has been monitored in agricultural/ecological systems by
studying the impacts on vegetation trough the standardised
vegetation index (SVI) (Peters et al., 2002), which uses the
normalised difference vegetation index (NDVI) as a proxy for
vegetation health, or through the standardised soil moisture index
(SSMI) (Sohrabi et al., 2015).

The main advantage of these indices is that standardisation is
based on simple methodologies which can be used to draw
conclusions on the drought severity from the observed
anomalies and allows comparison across different sites and
scales. This may facilitate the communication of drought
research results between institutions (Zargar et al., 2011).
However, to have a better understanding of drought effects at
different time and space scales, diverse data sources for drought
monitoring involving different variables are needed, as well as a
critical evaluation of how these indices are estimated and how
theymay relate with each other (Wanders et al., 2017; Trnka et al.,
2018). In this regard, Lorenzo-Lacruz et al. (2010) found changes
in the hydrologic response to droughts in regulated systems of the
Tangus catchment, in Spain, due to the external demand after the
implementation of a water transfer system to other basins. Van
Loon et al. (2012) found drought events to become fewer and
longer as these propagate through different subsystems, and also
concluded that the drought propagation processes were
reasonably well reproduced in some European catchments
using an ensemble mean of large-scale hydrological models.
Vicente-Serrano et al. (2013), studying the vegetation response
to drought, found that different biomes vary in the time-scale
response to drought due to vegetation adaptation characteristics.
Barker et al. (2016) studied the variability in the drought
propagation from the meteorological to the hydrological
subsystem using standardised indices across different
catchments in the United Kingdom, while Barella-Ortiz and
Quintana-Seguí (2019) found uncertainties in the
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characterisation and propagation of drought in the hydrologic
and soil moisture subsystems when evaluating regional climate
models using standardised indices including SPI, SRI, SSI, and
SSMI across Spain. Similarly, Peña-Gallardo et al. (2019) studied
the relationships between meteorological and hydrological
droughts in the conterminous United States and found a
response of SSI to SPEI at short time scales, suggesting that
elevation and vegetation play an important role in modulating
this response. The authors also found a higher correlation
between both indices in natural systems compared to
regulated systems.

Given the importance of drought for society, the study of
drought has led to an entire sub-discipline where different fields
of science converge (Stahl et al., 2020). As a result of this, several
unanswered questions for drought research have been identified
(Trnka et al., 2018; Ault, 2020). This reinforces that there is still a
need to better understand drought propagation, particularly in
relation to time lags of propagation across the different
hydroclimatic subsystems, and the factors that determine
drought propagation (Wang et al., 2016; Trnka et al., 2018).
Finally, changes in drought intensity and duration as drought
transitions from one subsystem to another need to be studied.

While drought propagation analysis using standardised
indices has been widely used at both local and regional scales
(Bhuiyan et al., 2006; Barker et al., 2016; Loon et al., 2017; Xu
et al., 2019; Zhou et al., 2019; Chen et al., 2020), few studies have
addressed this at the global scale, and particularly in reference to
the vegetation response to drought (Vicente-Serrano et al., 2013).
Investigating the global scale is important, as the shifts and
similarities in patterns at the global scale can deliver insights
that are not visible at the local and regional scale. This study
therefore aims to: 1) Characterise global drought through
standardised indices using common average drought metrics
(duration-severity-intensity), which evaluates how drought
amplifies or diminishes across different subsystems. These
include the meteorological subsystem through the evaluation
of rainfall-evapotranspiration, the agricultural/ecological
subsystem by assessing the vegetation, and the hydrological
subsystem by studying modelled runoff and observed
discharge. The groundwater subsystem was not included in
this study because of the lack of information from global
datasets that allows to differentiate monitoring wells dug in
shallow alluvial aquifers from deeper aquifers, and the effect
that active pumping from surrounding wells may have on the
piezometric level of monitoring sites. Therefore, we prioritised
surface water in the hydrological subsystem; 2) Quantify the
global propagation of drought, i.e., the delay in response to
drought across the different subsystems (meteorological,
agricultural/ecological, and hydrological), and identify the
spatial variation in this delay; 3) Discuss the implications of
spatio-temporal changes of the drought characteristics across the
last decades (1982–2019) for drought management and future
global drought preparedness. It is clear that the 37 years selected
for this study may constitute a limitation for the characterisation
of drought variability on multidecadal time scales (Ault, 2020).
However, this period might shed some light on average drought
characteristics among subsystems and on drought propagation.

2 MATERIALS AND METHODS

2.1 Datasets Used
Because this study has a global extent, several data sets at that
scale are used for the analysis. Climate variables and vegetation
were based on remote sensing products. Rainfall daily data was
based on the Climate Hazards Group InfraRed Precipitation with
Station Data (CHIRPS version 2.0) (Funk et al., 2015). CHIRPS
daily data was monthly aggregated, with a spatial resolution of
0.05°, covering 1981 to the present. However, this coverage
excludes the Northern Arctic regions. CHIRPS data has been
validated in many regional studies, which in general indicate a
good agreement between estimates and observed data (average r
of 0.94 and 0.85 in Northeast Brazil and Cyprus, respectively)
(Katsanos et al., 2016; Paredes-Trejo et al., 2017). However the
data can have under- and over-predictions in extreme wet and
dry events and the data can have a lower performance in
mountainous regions (Dinku et al., 2018). Given possible
discrepancies beyond those discussed in Funk et al. (2015),
monthly observations from 3,301 weather stations across the
world were obtained from the World Meteorological
Organization (https://climexp.knmi.nl/). These were filtered to
the CHIRPS coverage period and extent, which reduced their
number to 2,978, and compared against CHIRPS predictions
(Figure 1).

At the global scale CHIRPS rainfall estimates are good,
presenting globally on average an R2 of 0.82 (r > 0.9).
Additionally, over 95% of stations presented a correlation
greater than 0.8, confirming the results in Funk et al. (2015).
However, in some locations, such as in the Peruvian and
Atacama deserts in South America, or in the Sahara desert,
few stations show moderate to low correlations (a total of 18
stations have r < 0.4), which should be taken into account in the
drought analysis.

Monthly temperature, wind and surface pressure were based
on the 0.25° European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5 (ERA5) dataset, which is
associated with the fifth generation ECMWF atmospheric
reanalysis of the global climate (Hoffmann et al., 2019).
Several of the ERA5 variables have been compared to other
datasets, and have been described as equivalent to using
observational data for large areas in North America (Tarek
et al., 2020). Compared with the Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2
reanalysis data), it outperforms that data set in all aspects related
to wind (Olauson, 2018). Monthly incoming shortwave radiation
from the Famine Early Warning Systems Network (FEWS NET)
Land Data Assimilation System (FLDAS) was obtained at a 0.1°

resolution (McNally et al., 2017).
The third generation Global Inventory Modeling and

Mapping Studies (GIMMS) normalized difference vegetation
index (NDVI) from the Advanced Very High Resolution
Radiometer (AVHRR) sensors at five arc minute resolution
was aggregated to monthly data for 1981 to 2014 (Pinzon
and Tucker, 2014). We added the Moderate Resolution
Imaging Spectroradiometer (MODIS) NDVI from Terra
instruments (MOD13A2), which is available from 2001 to
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the present, but at a much higher resolution (1,000 m) (Didan,
2015).

Modelled mean monthly runoff rasters from the ERA5
collection were also included in the analysis to account for
hydrological variables. Runoff corresponds to the fraction of
water that flows through the surface or subsurface, which does
not stay stored in the soils. Additionally, to evaluate hydrologic
droughts using point measurements, level 4 basins from the
HydroSHEDS dataset (Lehner and Grill, 2013) were combined
with reference stations from the Global Runoff Data Centre
(GRDC; https://www.bafg.de/GRDC/). These stations (and
basins) were filtered based on drained areas of at least
10,000 km2, and discharge data was filtered from 1981.
From the combined basins and gauging stations, stations
located furthest downstream within each basin were selected
for further analysis. Additionally, the degree of regulation
attribute of the basins contained in the HydroATLAS
version 1.0 dataset (Lehner et al., 2011) was appended to
the stations to differentiate between regulated and natural
systems.

The raster datasets were all accessed, pre-processed, and
analysed using Google Earth Engine (Gorelick et al., 2017),
while observational data was processed using Python libraries.

2.2 Pre-processing and Drought Indices
As discussed, there are several drought indices. In this study, we
used the Standardised Precipitation Index (SPI), the Standardised
Precipitation Evapotranspiration Index (SPEI), the Standardised
Vegetation Index (SVI), and we also standardised the runoff to
get a Standardised Runoff Index (SRI). These indices can be
calculated for different time scales based on the sum of
observations in a selected time window (Zhang and Li, 2020):

xk
i,j � ∑k−1

t�0
xi,j−t (1)

where xk
i,j is the record of the variable used in any index evaluated

in the ith year and jthmonth using the k time scale, which in this
study was set to 1, 3, 6, and 12 months. These different time scales
aggregate the data with increasing periods, which in some cases

FIGURE 1 | CHIRPS global validation against meteorological stations. The (A) presents a map with the correlation between meteorological stations and CHIRPS.
The (B) presents a density scatter plot with monthly observations and predictions for all stations, while the (C) shows the histogram of the correlations.
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have been reported to take into account the meteorological
(1 month), agricultural (3–6 months), and hydrological aspects
(12 months) of droughts (Tirivarombo et al., 2018). The
observations for the different drought indices correspond to
rainfall for SPI, rainfall minus evapotranspiration for SPEI,
NDVI for SVI, and runoff/discharge for SRI.

2.2.1 Standardised Precipitation Index
The SPI was standardised assuming a gamma distribution, as this
distribution has been used as the benchmark for studying drought
using positive hydroclimatic variables and is recommended for
use at large scales (Stagge et al., 2015), which was implemented in
Google Earth Engine (Guenang and Kamga, 2014):

g x( ) � 1
βαΓ α( ) − xα−1ex/β for x> 0 (2)

where α and β are the shape and scale parameters.

2.2.2 Standardised Precipitation Evapotranspiration
Index
Since SPEI requires the subtraction of rainfall and
evapotranspiration, this last was calculated in Google Earth
Engine by combining the ERA5 dataset with the FLDAS
forcing radiation using the Food and Agriculture Organization
(FAO) Penman Monteith equation (Pereira et al., 2015):

ETr � 0.408Δ Rn − G( ) + γ 900
T+273u2(es − ea)

Δ + γ 1 + 0.34u2( ) (3)

where ETr is the monthly reference evapotranspiration, Rn is the
net radiation,G is the soil heat flux,Δ is the slope vapour pressure,
T the mean temperature, es the saturation vapour pressure, ea the
actual vapour pressure, γ the psychrometric constant, and u2 the
wind speed at 2 m height.

The subtraction of precipitation and ETr can result in negative
values. As a result, and based on earlier comparisons (Vicente-
Serrano and Beguería, 2016), SPEI was standardised using a log-
logistic distribution with three parameters (Beguería et al., 2010)
in Google Earth Engine. The probability distribution function for
the log-logistic distribution is:

F x( ) � 1 + α

x − γ
( )β⎡⎣ ⎤⎦−1 (4)

where α, β, and γ are the parameters of the function that can be
estimated from a probability weighted moments calculation.
From this, P, i.e., the probability of exceeding a value of D (D
stands for difference between rain and evapotranspiration), is
calculated as 1−F(x). Finally, SPEI is calculated as:

SPEI � W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3
(5)

whereW � 						−2 lnP√
if P ≤ 0.5 andW � 										−2 ln(1 − P)√

if P > 0.5.
Additionally, when P > 0.5 SPEI is multiplied by -1. In this case
C0, C1, C2, d1, d2, and d3 are constants estimated to be 2.515517,
0.802853, 0.010328, 1.432788, 0.189269, and 0.001308,
respectively (Abramowitz and Stegun, 1964).

2.2.3 Standardised Vegetation Index
Given that the GIMMS NDVI from the AVHRR sensors is
discontinued after 2013, MODIS NDVI was used to generate a
monthly continuous series from 1981 to the present. However,
MODIS data had to be re-projected and re-scaled to the GIMMS
projection and resolution. Additionally, since some artifacts arise
from the difference between sensors, which are evident even when
re-projecting and re-scaling MODIS, a correction using ordinary
least squares (OLS) between sensors was used. Thus, GIMMS
NDVI wasmodelled fromMODIS NDVI based on amodification
of the Mao et al. (2012) methodology, which is needed because of
the seasonal NDVI variability. The modification consisted of
using OLS on both datasets for each month using 10 years
(2001–2010) of observations. A validation was carried out on
1,000 randomly distributed points sampled from 14 polygons
drawn in different continents, comparing the predictions against
the monthly GIMMS NDVI observations from 2011 to 2013
(36 months), which results in a total of 36,000 observations.

Validation results of merging AVHRR and MODIS NDVI are in
Figure 2. The validation of themodelledNDVI has an error of around
5%, with a small bias of 0.003, and a determination coefficient of 0.96,
which was considered acceptable for subsequent analysis.

The SVI was then calculated following the original calculation
described in Peters et al. (2002) based on a z-scores estimation,
which is the deviation from mean values in standard deviation
units:

SVI � NDVIi,k −NDVIk
σk

(6)

where NDVIi,k is the NDVI for observation i at the time period k,
NDVIk and σk are the mean and standard deviation of NDVI for
period k.

2.2.4 Standardised Runoff Index
Lastly, SRI was calculated using empirical probabilities that lead
to non-parametric standardised indices based on the Gringorten
plotting position (Farahmand and AghaKouchak, 2015;Wu et al.,
2018):

p xi( ) � i − 0.44
n + 0.12

(7)

being n the length of observations and i the rank of event x in the
collection. Then, the inverse normal function needs to be applied
to standardise the range of values:

SRI � erfinv 2p xi( ) − 1( ) 	
2

√
(8)

where erfinv corresponds to the inverse error function. SRI was
estimated for the ERA5 runoff rasters and the GRDC gauging
stations. In this case, SRI was used because it allows to relax the
assumption of representative parametric distribution types
assigned to the data (Farahmand and AghaKouchak, 2015).

2.3 Calculations of Drought Characteristics
Drought indices describe wet and dry conditions based on time
series records of different variables, and can be separated in dry/
wet classes (Table 1) (Jain et al., 2015; Potopová et al., 2015).
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While drought propagation can be defined as the delay in the
drought response in the different subsystems, a characterisation
of drought in each subsystem was calculated in Google Earth
Engine to evaluate the amplification or diminishing of drought
effects during drought conditions through subsystems.

Thus, based on a threshold defined at −1 (Van Loon and Van
Lanen, 2013; Li et al., 2020), a drought period was assumed to be
any period where the drought index goes below −1,

corresponding to moderately to extremely dry conditions
(Potopová et al., 2015). Drought duration has been defined in
different ways (Halwatura et al., 2015; Cavus and Aksoy, 2020).
For simplicity, drought duration was defined as the consecutive
months of drought indices below −1, which are preceded and
followed by values above −1. Severity, considered as the strength
of droughts, refers to the cumulative effects of drought and is
calculated as:

FIGURE 2 | Validation of the combination of the GIMMS AVHRR NDVI and MODIS NDVI using monthly observations of GIMMS NDVI from 2011 to 2013. Polygons
where random samples were taken for validation are presented in the (A), while the (B) shows a density scatter plot of the validation and associated statistics.
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Se � ∑D
i�1

|SI| (9)

where Se corresponds to the drought severity for the e drought
event, with D the drought duration (in months) and SI the
estimate of the respective standardised drought index. The
intensity of the drought was also estimated as the ratio of the
drought severity and the drought duration.

2.4 Spatial and Temporal Analysis of
Drought Characteristics
To study the lag response between meteorological, agricultural, and
hydrological drought, the lag at the maximum cross correlation
between the meteorological and the agricultural, and between the
meteorological and hydrological drought indices was estimated at each
pixel. Additionally, this analysis was evaluated at the basin scale by
combining the hydrologic drought calculated fromGRDC stations and
mean meteorologic—agricultural/ecological droughts in the filtered
basins. This was done because pixel values refer to surface estimations
at a particular scale, but point observations such as terminal gauges in a
catchment or pixels aggregated within the catchment refer to
hydrologic/vegetational values representative of the catchment scale,
and different study scales may lead to different conclusions (Joao,
2002). In addition, runoff corresponds to a modelled variable, while
GRDC stations correspond to observational data, which might be
useful as a source of comparison to evaluate the drought propagation
using modelled data in the hydrologic subsystem.

However, since the time series are in general serially
correlated, these were first prewhitened to convert at least one
of them into white noise (Shumway and Stoffer, 2017). Therefore,
multiband raster grids were downloaded and converted into
arrays. The prewhitening used the auto-ARIMA function from
the pmdarima library (Smith 2017) along the 0 axis (time) of the
independent array (x-variable in the cross correlation analysis)
and setting minimum and maximum autoregressive (p) and
moving average (q) terms to 0 and 5 respectively, and a
minimum and maximum differencing (d) of 0 and 2. The
auto-ARIMA function fits an ARIMA model to the time series:

Yt � − ΔdYt − Yt( ) + ϕ0 +∑p
i�1

ϕiΔdYt−i −∑q
i�1

θiϵt−i + ϵt (10)

where ϕ are the constants associated with the autoregressive
behaviour, θ corresponds to the parameters associated with the

moving average in the model, and ϵ corresponds to the error
terms, being:

ΔY � Yt − Yt−1 (11)
The auto-ARIMA function identifies the (p, d, q) model

parameters of ARIMA optimizing (minimizing) the Akaike
Information Criterion (AIC). The x-variable to use in the
cross correlation corresponds then to the residuals of the
ARIMA model. Stationarity in the series is evaluated based on
the d parameter from the ARIMA model. Subsequently, the
selected ARIMA model is also fitted to the cross correlation
y-variable and the residuals are used for the cross correlation.
This makes the series stationary and removes serial correlation
before the cross correlation analysis. The significance of the cross
correlation was based on:

rk > |1.96	
n

√ | (12)

being r the correlation coefficient at lag k and n the length of the
series.

A further hypothesis is that continued climate change would
introduce a trend in the drought characteristics. Therefore a trend
analysis using Ordinary Least Squares (OLS) was applied to the
drought characteristics, rather than directly to the standardised
indices since drought events are considered independent. The
significance of the trend (p-value) was estimated using Google
Earth Engine.

2.5 Major Köppen Climate Groups and
Drought Propagation
Different climate characteristics might result in variations in
drought, especially if droughts are calculated globally in a
standardised way. Vectorial information of major Köppen
climate groups from Rubel and Kottek (2010) was used to
aggregate drought characteristics from the SPEI, SRI, and SVI
and propagation characteristics (Figure 3). Thus, drought rasters
were sampled using all groups and were compared using analysis
of variance or the non-parametric Kruskal Wallis test to evaluate
if major climate groups indicate drought differences and drought
propagation differences. Additionally, a multiple comparison to
evaluate differences between groups was carried out through the
non-parametric Dunn’s multiple comparison test, setting a step-
down method that uses Bonferroni to adjust the p-values (Glantz,
2002). For all these tests, a p-value < 0.05 was assumed to lead to
strong evidence of differences between major climate groups.

3 RESULTS

3.1 Meteorological Drought
Since drought is associated with atmospheric and oceanic
circulation patterns, and these are dynamic in time and space
around the world, it is possible to observe large spatial differences
in dry/wet conditions on any specific date. This is what can be
observed in the Figure 4A for SPI and SPEI maps in July 2019.

TABLE 1 | Drought indices and wet/dry classes.

Classes Range of values

Extremely dry ≤−2.00
Severely dry −1.99 to −1.50
Moderately dry −1.49–−1.00
Mild dry −0.99 to 0.00
Mild wet 0.00 to 0.99
Moderately wet 1.00 to 1.49
Severely wet 1.50 to 1.99
Extremely wet ≥2.00
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The upper and middle panels correspond to a graphical
representation of a single SPI/SPEI record. The lower panel
indicates the Pearson correlation between both series for
1981–2019 at each pixel, which shows high correlation in
South America and the tropics, and more generally in high
rainfall areas.

Average meteorological drought characteristics estimated
from the 3-month SPEI series are in Figure 4B. While the

lowest drought duration regions are in northern latitudes
(western Europe and Asiatic Russia), low duration can also be
found in southern and eastern Asia. On the other hand, regions
showing the largest drought duration seem to be constrained, in
some cases, to areas with high annual rainfall, including some
countries of Oceania such as Indonesia, Philippines, and Papua
New Guinea, which can reach in average to more than 5 months
of continuous drought (SPEI < −1). However, northeastern

FIGURE 3 | Major Köppen climate groups used for drought propagation study.

FIGURE 4 | SPI—SPEI example maps for July 2019 and correlation between the entire time series of both indices (A) and 3-month SPEI drought
characteristics (B).
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South America also presents a large mean drought duration.
Highlights the Kashmir region, which presents the largest
drought duration, reaching on average over 9 months. No
significant correlation was found between average rainfall
and mean drought duration derived from SPEI (not shown).
Drought severity follows a similar pattern compared to
drought duration since it corresponds to the accumulated
drought severity (in standardised units) during drought
events.

In terms of drought intensity, northern Africa and western
Asia have on average the largest values. In contrast, on average,
lower intensities are found in the Amazon, Micronesia, Polynesia,
and Melanesia regions. However, the lowest drought intensity
also occurs around the Kashmir region, but neighbour areas of
very high intensity are also visible.

3.2 Agricultural/Ecological and Hydrologic
Drought
An example map of SVI for July 2019 is in the Supplementary
materials (Supplementary Figure S1), while average agricultural
drought characteristics are in the Figure 5A calculated using the
entire series of 3-month SVI. Agricultural drought duration and
severity increases in most regions compared to the meteorological
drought using SPEI (Figure 4), except in Melanesia. For instance,
while the mean meteorological drought duration in southern
Africa is 2.1 months, its mean agricultural drought duration

increases up to 2.4 months using SVI. In central Asia the
mean drought duration increases from 2.4 to 3.1 months, in
North America from 2.3 to 3 months, and in Australia and
New Zealand from 2.5 to 3.7 months. Additionally, there is a
general increase in spatial variability of drought duration in
different regions using SVI, except in South America. The
increase in variability is stronger in western Europe and
Polynesia. The intensity of agricultural drought using SVI is in
the lower Figure 5A. Higher intensities can be found in northern
regions which can be associated with large severity of short
duration events, since the intensity refers to the ratio between
severity and duration.

An example map of the SRI index calculated for July 2019 and
its correlation with SPEI are in the Supplementary materials
(Supplementary Figure S2). Higher correlations between both
indices occur in large areas of the United States, eastern sectors of
Australia and Southern Africa when considering the entire time
series. Similar to the other indices, average SRI characteristics are
in the Figure 5B. Low duration and severity of drought occur in
the Saharan and Middle East regions, where dry climates occur,
but this is not extensive for Australian deserts, and low duration
and severity also occur in central Asia and southern Africa. On
the other hand, large values can be found in central Africa, to the
east of the Andes mountain range in South America, in north
western Australia and in western and eastern Europe. Intensities,
in general, indicate an opposite behaviour relative to duration and
severity.

FIGURE 5 | Average 3-month SVI (A) and 3-month SRI (B) drought characteristics.

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 7882489

Fuentes et al. Global Patterns of Drought Propagation

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


3.3 Drought Propagation
Apart from the drought characteristics, which may describe how
the drought affects the different subsystems in terms of duration,
severity and intensity, the propagation was identified as the lag in
the peak of correlation between drought time series in different
subsystems.

Theoretically, drought propagation progresses from the
meteorological subsystem (SPEI) to the hydrologic subsystem
(SRI), passing through the agricultural subsystem (SVI) (Wang
et al., 2016). Figure 6 shows the time series of SPEI (red and blue
colours) and the SVI propagation (grey colour) at different global
locations. Different patterns are visible at each of these locations.
For instance, Australia (New South Wales) (E) shows a pattern
with clear drought events after 2012, characterised by low SPEI,
which amplifies the duration in the SVI series. A similar pattern
can be observed in California, United States (A), and in central
Chile (B), especially after 2008, while an opposite behaviour can
be detected in Greece (C).

The lagged responses from the meteorological (SPEI) to the
other subsystems (Figures 7A,C) indicate how these vary
depending on the location and the subsystem being evaluated.
The vegetation subsystem response (SVI) can be direct with
maximum cross correlation with SPEI at lag 0. This seems to
occur especially in Temperate and Dry climates such as in the
eastern part of Australia, the pampas area (Argentina) in South
America, southern and eastern Africa, and south central
United States. These regions also tend to present larger

maximum cross correlation values between both indices
(Figures 7B,D). However, in most cases the response is
delayed several months. In equatorial forest areas like the
Amazon and central Africa, a large lag can be observed, but
this also occurs in mid latitude regions, such as northern North
America. In contrast to what is generally described in the
literature (Zargar et al., 2011; Wang et al., 2016), the response
in the hydrologic subsystem, through runoff, is mainly direct and
minima and maxima are at the same time as the SPEI, but this
occurs on a pixel basis. However, there are also some patches
where large lags occur between SPEI and SRI, for instance in the
Mountainous western region of United States, or surrounding the
Great lakes in the United States and Canada, to the west of the
Andes mountain range in South America, and spread out in
several regions of Europe, and across eastern and central Asia.

Basin aggregated lagged responses in the agricultural/ecologic
and hydrological subsystems are in Figure 8 and tend to confirm
the results found on a pixel basis. Again, it is evident that the
hydrological response tends to be faster than the vegetation
response, except in some particular basins, such as the Great
Plains in North America, to the east of the Andes in South
America, or downstream of the Tsimlyanskoya reservoir in
Russia and the Guanting reservoir in China. These are most
likely all snow/glacier driven systems. From the 403 basins filtered
in the preprocessing steps, 302 and 233 had significant SVI-SPEI
and SRI-SPEI cross correlation values, respectively. For the
maximum SRI-SPEI cross correlation at lag (month) 0 there

FIGURE 6 | SPEI and SVI time series in different locations. Blue and red colours in plots correspond to wet and dry conditions in the SPEI time series, respectively,
while grey colours correspond to the SVI series.
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were 101 basins, while 121 basins indicate lags between 1 and 3,
and 11 basins indicate lags greater than 3. On the other hand, 49
basins indicate a maximum SVI-SPEI cross correlation at lag 0,
while 48 basins were between 1 and 3 months, 39 basins between
3 months and 1 year, and 166 longer than 1 year.

Differences between regulated and natural basins are in
Figure 9. Natural drainage systems indicate higher and more
significant correlations between SPEI and SRI, which was
confirmed using the Kruskal Wallis test (p-value < 0.05).
Additionally, unregulated basins tend to respond to
meteorological droughts at shorter time scales. No significant
differences in the lagged response were found between natural
and unregulated basins. However, regulated systems have a larger
dispersion in the lagged response, with some basins indicating a
delay of over 19 months after the beginning of meteorological
droughts.

Additionally, by subtracting the average drought
characteristics in each subsystem, the change in duration and
intensity can be evaluated (amplification or attenuation of
drought) in the different subsystems. Figure 10 shows the
difference between SVI and SPEI in terms of duration
(months), severity and intensity (left panel).

Drought duration and severity amplify in large regions of the
mid-latitudes. In contrast, smaller patches of attenuation can be
observed in between those areas, probably associated with
vegetation patches. Small areas in the northern South America,
around the Great Lakes in North America, in the Malay
Archipelago, and in the Kashmir region indicate drought

duration/severity attenuation in the agricultural/ecological
subsystem. Drought intensity, on the other hand, attenuates in
several regions. It also shows an opposite behaviour compared to
duration and severity in dry regions where these strongly amplify,
such as in the Argentinian Patagonia, western Australia, some
regions in northern Africa and middle East. In these regions
agricultural/ecological drought intensity reduces to about half of
the magnitude of meteorological drought intensity.

The difference of drought characteristics between SRI and
SPEI are in the right panel of Figure 10. In general, duration and
severity indicate a larger heterogeneity compared to the difference
between SVI and SPEI. Drought duration/severity attenuation in
the hydrological subsystem can be seen in the Saharan and sub-
Saharan regions, Middle East, central Australia, southern Africa,
and the Patagonia, while amplification can be found to the west of
Los Andes and in large extents of Brazil, in eastern North
America, Europe, central Africa, and eastern Asia, among
others. Similar heterogeneity between drought intensity
amplification/attenuation regions can be observed across
the world.

3.4 Spatial and Temporal Drought Patterns
The trends based on the OLS analysis and associated levels of
significance for the 3-month SPEI drought characteristics are in
Figure 11. Trends in the duration, severity and intensity of
meteorological drought are quite variable across the globe.
Concerning are increases in drought characteristic trends
which can be observed in western Europe (Portugal and

FIGURE 7 | SPEI-SVI (A,B), and SPEI-SRI (A,C) response lag (A,C) corresponding to the maximum cross correlation (B,D) between variables. White pixels
correspond to locations where the maximum cross correlations were non-significant.
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Spain), western regions of North America, Central America,
Australia, southern South America, south west Africa, and
eastern Russia. In all those regions droughts are increasing,
either in duration, severity, or intensity, or in all of these.

Similarly, 3-month trends in SVI drought characteristics
follow slightly different patterns, but again increasing trends
occur in southern South America, the Northern Territory and
Western Australia, south west Africa, and regions in central and

FIGURE 8 | Basin aggregated SPEI-SVI (A,B), and SPEI-SRI (A,C) response lags (A,C) corresponding to the maximum cross correlation (B,D) between
prewhitened average aggregated SPEI/SVI and SRI calculated from gauging stations. Basins with non-significant cross correlations were masked out.

FIGURE 9 |Maximum cross correlation coefficient distributions (A) and significant lagged response categories [months; (B)] between 3-month SPEI and 3-month
SRI for regulated and unregulated basins.
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eastern Asia (Supplementary Figure S3). On the other hand,
strong and significant increasing trends in drought effects for
runoff can be detected in central Africa, central Australia, to the
east of the Andes mountain range in South America and in
central and eastern Europe (Supplementary Figure S4).

Heat maps of the severity of drought based on the 3-month
SPEI for latitude and longitude are in Figure 12. About four
severe global drought events can be observed surrounding the
equator (mean SPEI severity > 8), but extending to the north and
south latitudes in 1983, 1993, 1998, and 2016. Some of these tend
to propagate in time and tend to cover a large extent of the
continental surface (above right panels). In between the
30–40°parallels, a relatively large drought event can be
observed, lasting at least 1 year. In between the −25 to
−50°latitude several drought events of large severity can also
be observed. Additionally, the propagation of a long lasting
drought event can be observed in the 80°meridian, yet it seems
to be spatially constrained.

The heat map for SVI (Figure 13A) indicates quite a different
behaviour. The drought observed in 1983 through SPEI record can
also be detected in the SVI heat map. During the 1994–1995 a large
drought is evident in the vegetation based index, covering a large
extent of continental surface, but with the largest severity close to the
equator. Then, after a long gap (1995–2000), some drought events
are observed through the vegetation index which increase in severity
and propagate longer in time, especially after 2005. Another obvious

drought event occurs around the 25°parallel, which propagates over
3–4 years. The same can be observed surrounding the -25°parallel,
whichwould be consistent with themillenniumdrought described in
Australia (Van Dijk et al., 2013).

The largest severity in SRI occurs above the 50°parallel
(Figure 13B). However, severe hydrological drought events
can also be seen in equatorial and southern latitudes. Again,
the drought events detected surrounding the equator (1983, 1993,
1998, 2016) can be also detected in the SRI severity. But one thing
that stands out is the increase over time in SRI severity and its
propagation period, especially after 2008, in northern latitudes,
and the increase and spread in the continental coverage with time,
which means that droughts are extending in space in the
hydrologic subsystem.

Spatial patterns in the difference of drought impacts between
subsystems are in the Supplementary materials (Supplementary
Figure S5). While in the meteorological subsystem drought
severity tends to follow some sort of interannual variability,
which is especially evident surrounding the equator, with a
limited propagation period, such events extend to northern
and southern parallels in the vegetation subsystem, but also
increasing in severity and with longer propagation from 2005.
The propagation also occurs in the hydrological subsystem, but
not as severe as in vegetation, and tend to increase in continental
coverage in low and high latitudes, while diminishing in extent
surrounding the −25 and 25°parallels.

FIGURE 10 | Duration (A,B), severity (C,D) and intensity (E,F) mean differences between SVI and SPEI (A,C,E) and between SRI and SPEI (B,D,F).
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3.5 Major Köppen Climate Groups and
Drought
The distribution of pixels sampled from the mean SPEI, SVI, and
SRI drought characteristics based on the major Köppen climate
groups are in the Supplementary materials (Supplementary
Figure S6). In general, greater homogeneity can be observed
throughmore compact violins and smaller y-scale range of values.
Even though distributions appear quite homogeneous in some
cases, the Kruskal Wallis test indicated significant differences (p
value < 0.05) in all drought characteristics between Köppen
major groups, for all indices. Likewise, the Dunn’s multiple
comparison test showed strong evidence of drought differences
between all major Köppen climate groups (Supplementary
Tables S1–S9). In fact, the largest drought effects occur in
different climate groups depending on the drought index. For
instance, drought severity effects tend to be the strongest for Polar
climates in the meteorological subsystem (using SPEI), while
these are the strongest in Dry and Continental climates for the
vegetation (SVI) and runoff (SRI), respectively.

Additionally, Figure 14 highlights the difference between SVI
and SPEI (left panel), and between the SRI and SPEI mean
characteristics (right panel). The Polar climate group has the

lowest drought duration difference between SVI and SPEI, while
the largest differences occur in Dry climates, which show larger
variations, but also the lowest intensity differences. Significant
differences using Kruskal Wallis were found between Köppen
climate groups, and in most cases, these differences were
significant comparing between groups (Supplementary Tables
S10–S15).

The largest differences between SRI and SPEI occur in
Continental climates, while the Polar and Dry climate groups
contain the smallest differences. Differences between SRI and
SPEI differ in magnitude relative to SVI—SPEI differences,
especially conditional on climate groups. Thus, for instance,
the median difference in duration between SVI and SPEI is 0.5
for the Tropical, 1.0 for the Dry, 0.7 for the Temperate, 0.5 for the
Continental, and 0.2 months for the Polar climates. However,
these differences change to 0.6, −0.3, 0.9, 1.0, and 0.1 months for
the difference between SRI and SPEI.

4 DISCUSSION

Drought propagation and temporal changes are spatially variable
across the globe and linked to climate groups. Correlations

FIGURE 11 | Annual trends in the meteorological characteristics (A) and the significance of the trends from the OLS analysis (B) obtained using 3-month SPEI.
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FIGURE 12 | Heat maps (A) of mean 3-month SPEI severity by latitude and longitude (B) with the corresponding latitudinal and longitudinal continental coverage
[percentage of latitudinal/longitudinal continental extent affected by drought; (C)]. Examples of three parallel and meridian mean SPEI severity time series and their
corresponding continental extents (%) are in the middle and lower panels.
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FIGURE 13 |Heat maps of mean 3-month SVI severity (A) and 3-month SRI severity (B) by latitude and longitude with the corresponding latitudinal and longitudinal
continental coverage (right panels).

FIGURE 14 | Differences of drought characteristics between SVI and SPEI (A) and between SRI and SPEI (B) for major Köppen climate groups.
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between meteorological indices (SPI and SPEI) depend on the
precipitation abundance or the dominance of precipitation
relative to evapotranspiration. For example, lower correlations
can be observed in mid latitudes associated with areas with arid
and desert climates, characterised by low rainfall and elevated
evapotranspiration. Generally speaking, drought progresses
through the subsystems and, as in Peña-Gallardo et al. (2019),
this varies by location. The propagation lag increases from the
runoff to the vegetation subsystems. Similar to other studies
(Lorenzo-Lacruz et al., 2013; Sattar et al., 2019), runoff or
streamflow, in most cases, have a maximum response to
meteorological droughts at short time lags, e.g., in the same
month on a pixel basis, or during the next few months if
aggregated to a larger scale. Additionally, the severity and
duration of drought tend to amplify across large regions
moving from meteorological to the agricultural and the
hydrological subsystems, but attenuating in intensity on dry
and polar climates. However, the dominant idea that drought
progresses following the meteorological-agricultural-hydrologic
order (Zargar et al., 2011; Wang et al., 2016) does not necessarily
apply to all regions, at least in terms of the time lag of response
among subsystems (start of drought event in subsystems). In
some places, the hydrological response to rainfall through runoff
is almost immediate and may precede the vegetation response to
drought. Differences in this lagged response would depend on
catchment characteristics, land cover, vegetation, climate, and
water management (Lorenzo-Lacruz et al., 2010; Vicente-Serrano
et al., 2013; Barker et al., 2016; Yuan et al., 2017; Ding et al., 2021).
For example, runoff/discharge may proceed faster in areas with
large rainfall and with a large slope gradient, while vegetation in
semiarid and subhumid biomes may take several months to
respond to meteorological droughts (Vicente-Serrano et al.,
2013). Yet the streamflow response to meteorological droughts
may be delayed/affected by geologic/geomorphic features, the
location of the gauging station relative to the basin, water storage,
and water usage (Lorenzo-Lacruz et al., 2013), which may explain
the drop in stations that had significant cross correlation values
between SRI and SPEI, clearly distinguished among regulated
river systems as in Peña-Gallardo et al. (2019).

Vegetation, on the other hand, may have drought adaptation
strategies (Vicente-Serrano et al., 2013), and can strongly rely on
groundwater either by irrigation (Siebert et al., 2010) or due to
root growth exploring the vadose zone and even reaching aquifers
(Miller et al., 2010). In this case, groundwater has been reported
to have a delayed response to meteorological droughts of on
average 20.1 months in the United States (Schreiner-McGraw
and Ajami, 2021), which might translate into a delayed response
of vegetation in areas that rely extensively on groundwater
resources. Additionally, different indices can lead to different
results in the lagged response of subsystems. For instance, if soil
moisture is used as an indicator of agricultural drought as
proposed by (Zargar et al., 2011) instead of vegetation, it
might lead to a faster response than the hydrological
subsystem (runoff and streamflow).

While the characterisation of meteorological drought through
SPEI and SPI is widely accepted (Hayes et al., 2011; Zargar et al.,
2011; Wang et al., 2016; Ault, 2020), agricultural drought indices

based on NDVI are less well accepted (Hayes et al., 2011). In this
case, SVI, as any vegetation standardised drought index, can be
questionable, since land cover changes affect the continuity of the
NDVI series, which may translate into abrupt changes, causing
non-stationary behaviour (Karnieli et al., 2010; De Keersmaecker
et al., 2017). Additionally, NDVI can also be affected by natural
hazards, such as fires and floods (Zargar et al., 2011) and
agricultural practices (harvesting). These changes can obscure
the real drought response and might affect time series analysis as
well as trend detection (Peters et al., 2002). However, while at the
local scale these are considered relevant, at a global scale these
effects may attenuate. Other indices, such as those using soil
moisture, have a shorter data length, which limits their
applicability (Ault, 2020).

The global drought characteristic and propagation analysis
presented here can be also extrapolated to include other
hydrological and economic subsystems (Wang et al., 2016;
Jehanzaib and Kim, 2020). However, a clear identification of
the targets for drought evaluation need to be defined.
Additionally, the spatial representation of the relevant data
needs to be addressed. For instance, gauging stations,
monitoring wells and reservoirs refer to point estimates that,
in some limited cases, can be representative of catchment
conditions. This means boundaries of the spatial units for the
properties being evaluated and the aggregation of meteorological
or agricultural/ecological data to be used needs to be considered.
Additionally, while raster data is commonly available at the global
scale, hydrological streamflow data cannot really be represented
well at the global scale. More general hydrological variables, such
as GRACE records, have disadvantages, including low spatial
resolution and relatively short length of records (Li et al., 2019).
In the present study, we choose to use runoff, which is frequently
available as a modelled variable in a gridded format. However,
using other variables, such as streamflow or groundwater, may
lead to a different propagation behaviour given the lagged
response of these variables (Kuss and Gurdak, 2014; Lorenzo-
Lacruz et al., 2017), which was observed in a slight increase in the
lagged response using catchment discharge.

Additionally, a multi-scale analysis should be considered when
studying drought and the potential effect of water usage (McKee,
1995; Lorenzo-Lacruz et al., 2010), because it requires of a
regional/local component for water withdrawals (Loon et al.,
2019; Rangecroft et al., 2019). As stated by Barker et al. (2016),
different catchment characteristics may be responsible for the
drought propagation, but also different reaches within the same
river might vary in the drought propagation and response given
water withdrawals (Yuan et al., 2017). This means quantifying
drought may require a nested scale analysis given the complexity
of processes.

Mitigation plans for drought require consideration of local/
regional climate characteristics and drought impacts in different
subsystems by policy makers and planners (Wilhite, 2016) given
the clear spatial variation in drought propagation observed here.
Drought monitoring and knowledge of drought propagation
characteristics and trends give governments further tools to
develop national scale drought preparedness plans. This means
resources can be prioritised to cope with drought based on the
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likelihood drought will amplify in the agricultural/hydrological
subsystems and in time at certain locations. Additionally, the
lagged drought response between subsystems can be used as an
early warning by decision makers to trigger drought mitigation
actions and reduce socioeconomic impacts. Similarly, at the
global scale, the study of drought propagation can help to
identify spatially connected regions prone to drought impacts.
Overall this study maps the global temporal changes in drought
and the regional extent, likely partly associated with climate
change. This can help global aid and development
organizations to delineate strategies for drought impact
mitigation and water and food security improvement. For
instance, the definition of drought resistant crops and
promotion in regions/countries where drought strongly
amplifies in the agricultural/ecological subsystem can reduce
drought effects (Wang et al., 2014). Groundwater storage is an
important subsystem to consider for drought mitigation at
regional scales (Wendt et al., 2021). In drought prone regions,
replenishing groundwater and soil water stocks in wet periods
should be further promoted to increase water security in dry
periods (Zhang et al., 2020), as groundwater reduces the large
evaporation losses associated with water storage in dams (Zhao
and Gao, 2019; Fuentes et al., 2020). On the other hand, a clear
global concern is the increasing hydrological drought extent
observed in the last years (Figure 13B) and its severity
increase in northern latitudes. Drought effects in the
hydrological and agricultural/ecological subsystems are clearly
increasing in some regions, which can also be observed in trend
analysis. This increase in the drought effects in these subsystems
may arise as a response to a loss in catchment memory caused by
a reduction in storage capacity due to climate change, which
needs to be addressed.

Different drivers can lead to spatially variable dry/wet
conditions (Schubert et al., 2016) such as those evaluated here.
Here we observed that major climate groups lead to differences in
the drought characteristics and in the propagation of drought.
However, no evaluation of changes in atmospheric/oceanic
circulation patterns was carried out such as in Van Dijk et al.
(2013) at a smaller scale. Additionally, there is no clarity on where
different drivers have preeminence at the global scale, nor the
interaction between these and their hierarchical importance.
Since differences in drought propagation arise, it is necessary
to understand why such differences occur. These are questions
that we will address in future research.

5 CONCLUSION

Drought differs in average characteristics based on different
standardised drought indices. Its effects vary spatially and lead
to a propagation from the meteorological subsystem towards the

agricultural/ecological and hydrologic subsystems. However, the
lag in the response from the meteorologic subsystem to other
subsystems is also spatially variable but in general faster towards
the hydrological subsystem, while this propagation is much
slower reflected in the vegetation subsystem. Drought can both
amplify and attenuate from one subsystem to the other, driven by
differences in major Köppen climate groups. However, drought
duration and severity tend to amplify progressively into the
agricultural/ecologic subsystem, especially under Dry and
Temperate climates, and into the hydrological subsystem,
especially under Continental and Temperate climates, while
attenuating in intensity in Dry and Polar climates. Drought
characteristics have intensified in the last decades in several
regions of the world, including areas in southern South
America, central Australia, south west Africa, and central and
eastern Asia, and these changes are much more evident in the
vegetation and hydrological subsystems, which may be explained
by a decrease in catchment memory as a consequence of climate
change. The results of this study highlight the need for policy and
decision makers to consider the global space and time
relationships to prioritise resources for drought mitigation plans.
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