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The rapid and disorderly expansion of urban construction land has exacerbated

the contradiction between land use and low-carbon development. In this

paper, we use the spatial autocorrelation model and coupling model to

analyze the spatial characteristics of the coupled coordination degree of

land transfer and carbon emissions in 291 cities in China. The multi-scale

geographically weighted regression (MGWR) model is used to explore the

spatial heterogeneity of the influence of socioeconomic factors on their

coupled coordination degree. The results show that: from 2005 to 2015, the

scale of land transfer and carbon emissions has been increasing quantitatively

and spatially showing a shift from the southeast coast to the central andwestern

regions. In 2005, 2010, and 2015, the global Moran’s I of the coupled

coordination degree are 0.3045, 0.3725, and 0.3388, respectively, indicating

that the coupled coordination degree between land transfer and carbon

emissions has a significant positive spatial autocorrelation. The MGWR

model indicates that the influence of socioeconomic factors on the

coupling coordination degree has significant spatial heterogeneity at

different time nodes. In 2005 and 2015, the coefficients of the NGR on the

coupling coordination of land transfer and carbon emissions have obvious

stratification characteristics, with the coefficients decreasing from northeast to

southwest. In 2010, the high coefficient (0.924~0.989) of GPC is mainly

distributed in the central region. The coefficient of the PD ranges from

0.464 to 0.918, but the difference of influence degree between the

southeast coast and the northwest is obvious. This study may provide new

clues for sustainable urban development and carbon reduction.
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1 Introduction

To mitigate global warming and ensure the sustainable

development of human civilization, it has become a global

consensus to make reasonable emission reduction of carbon

dioxide and other greenhouse gases (Arneth et al., 2017; Bhan

et al., 2021; Tan et al., 2021b; Zhang et al., 2022a). The solution to

the carbon emission problem inevitably requires the intervention

of governmental entities, and the effect of the governmental

intervention will directly affect the achievement of the carbon

emission control target or not (Akbari et al., 2016; Chen M et al.,

2016; Demuzere et al., 2014). To mitigate this global warming

situation, cumulative carbon emissions must be controlled

through the cooperation of all countries to achieve the goal of

limiting the warming rate to 1.5°C (Broto, 2017; Cox et al., 2018;

Zhang et al., 2022b). In this context, the Chinese government has

set the goal of reaching peak CO2 emissions by 2030 and

achieving carbon neutrality by 2060 (Luyssaert et al., 2014;

He, 2018). It is committed to ensuring sustainable national

development while promoting global climate cooperation and

governance (Bokaie et al., 2016; He, 2019; Ren et al., 2022). Under

the realistic scenario of severe carbon emission situation and

local responsibility for emission reduction targets, local

governments, as land suppliers and responsible parties for

carbon emission reduction, have paid attention to intervene in

carbon emissions through multi-dimensional land policies (Ou

et al., 2013; Lai et al., 2016; Arneth et al., 2017; Zhang et al.,

2022e). It is estimated that optimizing the land use structure can

make a significant contribution of 27.6% to the carbon emission

reduction of 40%–45% per unit of GDP by 2020 (Kalnay and Cai,

2003; Kotharkar and Bagade, 2018; Chen et al., 2022). As a basic

production factor and spatial carrier, land has become an

important way to achieve carbon emission reduction. The

land transfer of local governments directly affect the scale or

structure of regional industrial development, which in turn is

reflected in the total amount or intensity of regional industrial

carbon emissions (Derkzen et al., 2017; Luo et al., 2021; Liu et al.,

2022; Zhu et al., 2022).

Studies show that urban areas consume more than 60%–80%

of the world’s energy and emit more than 70% of the world’s

greenhouse gases, so the urban problem is accompanied by the

carbon emission problem (Broto, 2017; Cai et al., 2021; Gong

et al., 2022). Optimizing the urban land use structure can

effectively control and reduce carbon emissions, and it is an

important tool worthy of consideration by land managers and

policymakers (Coseo and Larsen, 2014; Zhang et al., 2022c; Fu

et al., 2022). How to control the effective construction of land in

friendly coordination with environmental protection is an

important issue currently faced. Unlike other countries,

China’s urbanization process is mostly dominated by land

transfer, where the government grants land use rights to

facilitate the rapid development of urbanization (Liu et al.,

2018; Zhang et al., 2022d). Therefore, a reasonable control of

land transfer can effectively control carbon emissions and

effectively mitigate the climate and global atmospheric

environment. As the world’s second largest economy and the

number one emitter of greenhouse gases, the Chinese

government is under tremendous pressure to reduce carbon

emissions (Deng et al., 2017; Huo et al., 2020; Gong et al.,

2022). With the shift of China’s economy from the stage of

high growth to the stage of high quality development, the effect of

carbon emissions from land use has become the focus of

academic circles (Zhang et al., 2018; Wang et al., 2020).

Scholars have conducted preliminary explorations on the

carbon emission effects brought about by the marketization of

land transfer (Zhang and Xu, 2017; Cao et al., 2022). These

studies are mainly based on multidimensional theoretical

perspectives such as overall land use planning, land supply,

land transfer intervention, land use structure and intensity,

and land intensification or expansion (Houghton et al., 2012;

Chen et al., 2014; Chen et al., 2019; Fei et al., 2021; Gong et al.,

2022). The impact of land use on carbon emissions has been

explored in two major directions: land use change and land

management change (Zhang and Xu, 2017; Long and Qu, 2018;

Yu et al., 2019). Some studies argue that local governments

attract investment through lenient land transfer policies,

attracting polluting enterprises and duplication of production

capacity (Lai et al., 2016; Houghton and Nassikas, 2017), and

generating large amounts of energy consumption and pollution

emissions (Zhang et al., 2020; Nathaniel and Adeleye, 2021; Yang

et al., 2022). This model of “land for development” promotes

economic benefits but also leads to the loss of environmental

benefits, especially carbon emissions (Huang and Li, 2022; Wang

M. et al., 2022a). Some studies showed a significant inverse

mitigation effect of land marketization on carbon emissions

based on panel data econometric models (Liu et al., 2014; Jin

et al., 2019; Lu et al., 2020; Zhang and Zhang, 2022). The level of

land marketization shows a more significant negative

relationship with land use carbon emissions. Many scholars

believed that the impact of land grant marketization on

industrial structure to the threshold effect and crowding out

effect, and further investigate the impact on green total factor

productivity and carbon emissions by using this as a mediator

(Deng et al., 2017; Cheng et al., 2018; Ge et al., 2019; Zhou et al.,

2020). Studies showed that increasing the marketization of land

transfer and promoting the upgrading of industrial structure will

effectively serve the goal of “carbon peaking” and “carbon

neutrality” (Li et al., 2019; Huo et al., 2021; Ma et al., 2021).

On the whole, these researches can be basically divided into

two categories, one is mainly based on the urban ontology

problem to propose the impact of urban land use on carbon

emission and some land use optimization measures (Li et al.,

2012; Chen Y. et al., 2016; Ahmad et al., 2021; Zhang et al.,

2022e). The other category mainly reflects the analysis and

explanation of carbon emission and land and land-related

elements, and finally proposes a solution for the deterioration
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of carbon emission problem (Lai et al., 2016; Arneth et al., 2017;

Tan et al., 2021b; Zhang et al., 2022f). The above studies provide

insights into the multi-layered influence effects and transmission

mechanisms between land transfer and carbon emissions (Lu

et al., 2020; Kan, 2021; Yang et al., 2021). However, the

theoretical assumption of a simple correlation between the

two actually conceals the deeper inhibitory paths, and it is

difficult to implement specific measures to control the carbon

emission effect of land transfer market, which makes the study

lack a certain theoretical depth and practical significance (Zhang

M. et al., 2019;Wang et al., 2020; Zhang et al., 2022c). In addition,

most of the studies simply discuss the relationship between the

two systems, but do not explore the coupling coordination degree

of the two systems, and ignore the influencing factors that affect

the coupling coordination degree, which makes it difficult to

promote the coordinated development of urban economy and

environmental protection (He et al., 2017; Ariken et al., 2021).

In view of this, this paper explores the coupled coordination

relationship between land transfer and carbon emissions through

a coupled coordination model based on land transfer data,

carbon emissions and related socio-economic data of

291 prefecture-level cities in China from 2005 to 2015. The

multi-scale geographically weighted regression (MGWR)

model is also used to explore the influence of socio-economic

factors on the coupling coordination degree. The possible

innovations of this paper are as follows: first, using ArcGIS

v10.2 to analyze the spatio-temporal characteristics of land

transfer and carbon emissions in 291 cities in China from

2005 to 2015. Second, the coupling coordination degree

between the two systems of land transfer and carbon emission

is calculated using the coupling coordination degree model.

Thirdly, the spatio-temporal evolution pattern of the coupling

coordination is analyzed by spatial autocorrelation model.

Finally, this work takes into account the vast area of China

and the large differences in regional economic development, and

uses geographically weighted regression (GWR) and MGWR

models to compare and analyze the influence of socioeconomic

factors on the spatial heterogeneity of the coupling coordination

degree. This article discusses the spatial and temporal coupling of

land transfer and carbon emissions, as well as their spatial

heterogeneity and influencing factors, which can provide a

theoretical basis for realizing the coupled synergy of economic

and environmental benefits of land resources, and complement

and improve the realization path of carbon emission reduction.

2 Data sources

The study area consists of 291 urban administrative areas in

Mainland China. However, due to the lack of relevant data

acquisition, the research unit does not include China’s Tibet

Autonomous Region, Hong Kong Special Administrative Region,

Macao Special Administrative Region, and Taiwan Province. The

regional carbon emission data of each city in China comes from

the China Carbon Accounting Database (CEADs, China

Emission Accounts and Datasets, http://www.ceads.net/data/).

The land transfer data comes from China Land Market Network

(https://www.landchina.com/). With reference to existing studies

and the availability of information (Ge et al., 2019; Zhang et al.,

2022c), the article selects five indicators of GDP per capita,

natural population growth rate, population density, share of

secondary industry in GDP, and public green space area to

explore the spatial heterogeneity and influence mechanism of

the coupled coordination degree of land grant and carbon

emission based on multi-scale geographically weighted

regression model. The statistics of the indicators are shown in

Table 1. These data are obtained from the “China Statistical

Yearbook (2006–2016)” and the corresponding city’s historical

statistical yearbook.

3 Research methods

3.1 Spatial coupling coordination model

The coupling of urban land transfer and carbon emission

is a dynamic development process of urban social and

economic development demand redistribution in both

quantity and space, which reflects the characteristics of

different stages of socio-economic transformation (Wu

et al., 2018; Dong et al., 2019). There is a coupled

interaction between land use structural change and carbon

emission that promotes and coerces each other. In this paper,

we study the coupling degree of land system and carbon

emission system, and use the land transfer area and carbon

emission to represent the level of urban land system and

carbon emission system respectively. Coupling degree refers

to the phenomenon that two or more systems are influenced

by each other by various interactions between themselves and

the outside world (Fan et al., 2019). The formula of coupling

degree can be expressed as follows.

A � 2
���������
f L( )g C( )

√
/(f L( ) + g C( ) (1)

Where A represents the degree of coupling, f(L) represents the
level of the land system, g(C) represents the level of the carbon
emission system (Xiao et al., 2022).

Although the coupling degree can reflect the degree of

interaction between urban land transfer and carbon emissions,

it cannot characterize whether the two are mutually reinforcing

at a high level or constraining at a low level (Li et al., 2012).

Therefore, this paper introduces the coupled coordination model

to discuss the coupled coordination relationship between land

transfer and carbon emission. The degree of coupling

coordination is the degree of harmony between land transfer

and carbon emission in the development process, and the larger
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the value of coupling coordination, the stronger the coupling

coordination (Ge et al., 2019; Xiao et al., 2022). The formulas are

as follows.

T � af L( ) + bg C( ) (2)
B � A × T( )0.5 (3)

Where T represents the comprehensive reconciliation index of

land and carbon emissions, and a and b represent the

contribution shares of land and carbon emissions, respectively.

With reference to existing research, set a and b to be both 0.5, and

B represents the degree of coupling and coordination between

land and carbon emissions. With reference to existing research

results, based on 0 < B ≤ 0.3, 0.3 < B ≤ 0.5, 0.5 < B ≤ 0.8, 0.8 < B ≤
1, the coupling coordination stage is divided into the following

four stages: low coordination stage, medium coordination stage,

high coordination stage, and higher coordination stage.

3.2 Spatial autocorrelation

The spatial correlation of carbon emissions is measured by

Moran’s I index, which is divided into a global Moran’s I index

and a local Moran’s I index (Kumar et al., 2013; Zhang et al.,

2022a). The global Moran’s I index can be used to study the

spatial correlation of carbon emissions in the whole region, and

the local Moran’s I index can be used to study the spatial

correlation of the coupling coordination between land transfer

and carbon emissions between each city and its neighboring

areas. The formula for the global Moran’s I index is as follows

(Zhang X. et al., 2019).

I � n∑n
i�1∑n

j�1ωij yi − �y( ) yj − �y( )
∑n

i�1∑n
j�1ωij yi − �y( )2 (4)

Where i is the global Moran’s I index, ωij is the spatial weight

function. yi and yj are the coupling coordination of land transfer

and carbon emissions for cities i and j, respectively. �y is the

average of the coupling degree of land transfer and carbon

emission of each city, and n is the number of cities (Tan

et al., 2021a).

The formula for the local Moran’s I index is as follows.

Ii � yi − �y
1
n∑n

i�1 yi − �y( )2 ∑n

j ≠ i
ωij yi − �y( ) (5)

Where Ii is the Moran’s I for city i. The other parameters are

consistent with the formula in Eq. 4.

3.3 Geographically weighted regression
model

GWR model is a method by Fotheringham et al. that adds

the geographic location of the data to the regression

parameters based on the traditional least squares (OLS)

model, while considering the spatial weights of

neighboring points, allowing geostatistical methods for

local parameter estimation (Wang and Zhang, 2018; Liu

et al., 2019). To set the explanatory variables and allow

the parameters to vary spatially, GWR assumes a non-

smooth relationship between the response variables

(Wang Q. et al., 2022). In this paper, GWR is used to

describe the spatial heterogeneity of factors influencing

the coupled coordination of land transfer and carbon

emissions with the following equation. Therefore, the

model estimates the local parameters for each location

separately with the following equations.

Yi � β0 ui, vi( ) +∑p
j�1
βj ui, vi( )Xij + εi (6)

Where βj(u, v)(j � 0, 1, . . . , p) is the spatial geographic location
function. Yi denotes the coupling coordination of land transfer

and carbon emissions in city i. (ui, vi) is the spatial geographic
location of city i. β0 is the fixed-effect intercept at (ui, vi). Xij is

the value of influence factor j in city i. βj is the regression

coefficient of Xij, εi is the random error (Song et al., 2016).

TABLE 1 Variable names and detailed descriptions.

Variable name Unit Variable description

GDP per capita (GPC) CNY
(Yuan)

The GPC can reflect the economic spending power of individuals and the economic level of the region.

Natural population growth rate (NGR) % The NGR can reflect the population growth rate of the region.

Population density (PD) People/km2 PD can effectively reflect the population saturation of the area and the carrying capacity of the area’s
population.

Proportion of secondary industry in GDP
(PSIG)

% The PSIG can reflect the level of production of manufacturing and industry in a region.

Public green space area (PGA) Hectares The PGA can reflect the greening rate of public space and the green space environment enjoyed by
citizens.
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The estimation of the regression coefficients obtained using

the partially weighted least squares correction model (6) is shown

in Eq. 7.

β̂ ui, vi( ) � XTW ui, vi( )X[ ]−1XTW ui, vi( )y (7)

X �
1 x11 / x1p

1 x21 / x2p

..

. ..
.

1 ..
.

1 xn1 / xnp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, y �

y1

y2

..

.

yn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

Where xT
i � (xi1, xi2,/, xin) is the i-th row of the matrix X.

3.4 Multi-scale geographically weighted
regression

The MGWR model is developed on the basis of the GWR

model (Kumar et al., 2012). It remodels the traditional

geographic weighted regression model GWR into a general

additive model (GAM) and extended this framework to

MGWR to obtain the standard error of local parameter

estimates (Guo et al., 2021; Rong et al., 2022). The MGWR

model can derive bandwidth and smoothing coefficients for each

covariate separately, fit between traditional global models and

adjust multiple assumptions inspection. The formula is as

follows.

yi � ∑k

j�1βbwj ui, vi( )xij + εi (9)

Where bwj represents the bandwidth used by the regression

coefficient of the j-th variable. Each regression coefficient βbwj of

MGWR is obtained based on local regression, and the bandwidth

is specific. In the GWR model, all variables of βbwj have the same

bandwidth, which is the biggest difference between it and the

GWR model.

4 Results and analysis

4.1 Spatial and temporal characteristics of
carbon emissions

We used ArcGIS v10.2 natural breakpoint classification

tool to classify the scale of carbon emissions into five classes

(Figure 1). Figure 1 shows the carbon emissions are mainly

concentrated in the eastern coastal areas such as Shanghai,

Jiangsu Province, and Zhejiang Province. With the passage

of time, the center of gravity of carbon emissions began to

spread from the southeast coastal areas to the central and

western regions, which coincided with the transfer trajectory

of land transfers, which explained to a certain extent the

strong correlation between carbon emissions and land

transfers. In 2005 (Figure 1A), although the center of

carbon emissions was in the Northeast, Shanghai, the

eastern coastal city with the highest carbon emissions

(170.761 mt), and the lowest carbon emissions city, Sanya,

Hainan Province (1.723 mt). This may be due to the highly

developed socio-economic level of Shanghai, the level of

urbanization is also at the forefront of the country, the

population density is relatively high, and the flow of

vehicles and people are large, so carbon emissions rank

first in the country. Sanya City in Hainan Province is a

tourist city with relatively low carbon emissions. Figure 3B

shows that the largest city in terms of carbon emissions in

2010 is still Shanghai, with an increase of 25.99% compared

to 2005. Sanya, Hainan Province, has the lowest carbon

emissions, with an increase of 37.78% compared to 2005.

Figure 1C shows the city with the most carbon emissions in

China in 2015 was still Shanghai (189.981 mt), but it was

17.65% less than in 2010 (230.712 mt). The city of second

largest carbon emission is Chongqing (140.741 mt). The

carbon emissions are the least in Bazhong City

(4.3047 mt), but compared to the carbon emissions in

Sanya in 2010, it has increased by 35.66%.

4.2 Spatial and temporal characteristics of
land transfer

Using the natural breakpointmethod inArcGIS v10.2, the scale of

land transfer was divided into five classes (Figure 2). Figure 2A shows

that most of the land transfer area was the southeastern coastal cities,

and the Yangtze River Delta urban agglomeration performed most

prominently in 2005. For example, the area of land transfer in

Hangzhou, Zhejiang Province reached 8,596.413 ha, and the area

of land transfer in Shanghai was 6,783.594 ha. Compared with 2005,

the area of land transfer in major cities across the country increased

significantly in 2010 (Figure 2B). However, the cities with larger

transfer areas are still concentrated in the Yangtze River Point City

Group. The city with the largest land transfer area is Lishui City with

8,912.532 ha, followed by Chengdu City in Sichuan Province, with a

transfer area of 8,347.634 ha, and Chaozhou City, Guangdong

Province with the least land transfer area (40.481 ha). Figure 2C

reveals that the focus of land transfer has shifted from the southeast

coast to the central andwestern regions, and the increase in the area of

land transfer in the central and western regions has increased

significantly in 2015. This is probably because the eastern coastal

cities are economically developed and have a greater need for land

transfers as urbanization continues to accelerate. However, with the

implementation of the country’s “Rise of Central China” and

“Western Development” strategy, the social and economic

development of the central and western regions has accelerated

significantly in 2010. The acceleration of the process of

industrialization and urbanization in central and western cities has

put forward higher requirements for land transfer, and the area of

land transfer has increased rapidly.
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4.3 Analysis of coupling coordination

To further analyze the degree of coupling and coordination

between land transfer area and carbon emissions, we divide the

degree of coupling and coordination into four types: low

coordination stage, medium coordination stage, high

coordination stage and higher coordination stage (Figure 3).

Figure 3 shows that the spatial distribution of the coupling

coordination degree of land transfer area and carbon

emissions is consistent with the spatial distribution of land

transfer area and carbon emissions. The high-value areas of

carbon emissions have a high degree of coupling and

coordination, which may be due to the more developed socio-

economics in these areas, the accelerating urbanization process,

and the increasing energy consumption, leading to increased

carbon emissions and intensified urban land expansion. In 2010

(Figure 4A), except for Shanghai which was in the high

coordination stage, all others were in the middle and low

coordination stage. In 2010 (Figure 4B), there were three cities

in the middle coordination stage, and in 2015 (Figure 4C) there

were 17 cities were in the middle coordination stage. The high

degree of coupling and coordination in Shanghai may be due to

the optimization and upgrading of its industrial structure, which

has gradually shifted its industry from “two-three-one” to “three-

two-one.” The modern service industry gradually replaced the

traditional service industry, and the high-end manufacturing

industry replaced the traditional manufacturing industry.

Therefore, the efficiency of land use increased, the carbon

emission intensity decreased, and the coordinated

development of urban land and carbon emissions.

4.4 Spatial autocorrelation analysis

The spatial correlation of the coupled coordination degree of

land transfer and carbon emissions was tested by calculating the

FIGURE 1
Carbon emissions; (A) for 2005, (B) for 2010, (C) for 2015.
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global Moran’s I. The global Moran’s I of the coupling

coordination degree of land transfer and carbon emissions in

Chinese cities in 2005, 2010, and 2015 were calculated to be

positive, and all passed the 95% significance level test. Table 2 and

Figure 4 reveal a significant positive spatial autocorrelation

(clustering of high values or clustering of low values) for the

coupling coordination degree of land transfer and carbon

emissions at the national level, indicating a significant

clustering phenomenon in the distribution of the coupling

coordination degree of land transfer and carbon emissions. In

addition, the global Moran’s I of the coupled coordination degree

were 0.3045, 0.3725, and 0.3388 in 2005, 2010, and 2015,

respectively, showing an obvious inverted “U” shape trend.

This reflects that the spatial clustering effect of land transfer

and carbon emission coupling coordination is fluctuating

increasing from 2005 to 2015. This work further indicates that

the spatial distribution of the coupled land grant and carbon

emission coordination degree has obvious characteristics of

“high-high clustering” or “low-low clustering.”

4.5 Detection of factors influencing
coupling coordination

4.5.1 Comparative analysis of models
Table 3 shows that the goodness of fit R2 of the MGWR is

higher than that of the GWR, and the value of the AICc is

lower than the GWR. From this, it can be judged that the result

of the MGWR is better than that of classical GWR. In terms of

the number of effective parameters (NEP), the MGWR is

smaller and the residual sum of squares (RSS) is also

smaller, indicating that it uses fewer parameters to obtain a

regression result closer to the true value. On the other hand,

from the overall regression coefficients, the coefficients of the

FIGURE 2
Land transfer area; (A) for 2005, (B) for 2010, (C) for 2015.
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MGWR are significant on the whole, while the coefficients of

the GWR except the constant term are not significant on the

whole. This also shows that the GWR may have ignored the

diversification of the scales of various variables, resulting in a

lot of noise and bias in the regression coefficients, which in

turn led to the instability of the regression coefficients.

Therefore, at least based on the analysis results of this case,

it is found that the MGWR model is better than the GWR

model.

4.5.2 Scale variability analysis of the model
Table 4 reveals that the MGWR model can directly reflect

the differentiating scales of different variables, while the

classic GWR model can only reflect the average of the

scales of each variable. Specifically, all variables in the

GWR model in 2005, 2010 and 2015 correspond to the

same. The scale of action of MGWR’s variables is different.

In 2005 and 2015, the bandwidths of GPC, PSIG and NGP

were 280, 280, 242 and 271, 271, 215, respectively. In 2010, the

bandwidth of PD was 259. We believe that these three

variables have a significant impact on the coupling degree

of carbon emissions and land sales. The impact on the global

scale of the second level, that is, there is basically no impact of

spatial heterogeneity, and these variables have basically the

same impact on the degree of coupling in the corresponding

year. In 2005, the PGA loan was 120, which can be considered

to have a community-scale impact and there is a large spatial

heterogeneity. The bandwidth of the PD in 2005 was 64, the

FIGURE 3
Spatial distribution of the coupling coordination degree; (A) for 2005, (B) for 2010, (C) for 2015.

TABLE 2 Global spatial autocorrelation tests.

Year Moran’s I E(I) Z p-value

1990 0.3045 −0.0035 8.7083 0.0010

2000 0.3725 −0.0035 11.1401 0.0010

2010 0.3388 −0.0035 9.9445 0.0010
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bandwidth of CGP, NGP, PSIG, and PGA in 2010 and the

bandwidth of PD and PGA in 2015 were not more than 50.

Their scale of action is small, close to the street scale. This

shows that the variation of variables with time has a large

difference in space, and has a large spatial heterogeneity effect

on the degree of coupling.

4.5.3 The spatial pattern of the coefficients of the
MGWR model

The statistical description of the coefficients of each variable

estimated by the MGWRmodel is shown in Table 5 and Figure 5.

Figures 5A,I revealed the influence coefficients of the NGR on the

coupling coordination degree of land transfer and carbon

emissions have obvious hierarchical characteristics, and the

coefficients decrease from northeast to southwest. In 2005, the

NGR had a negative impact on the degree of coupling and

coordination, indicating that the higher the natural population

growth rate, the smaller the impact on the degree of coupling and

coordination. The influence coefficient of NGR in the north of

China is between 0.019 and 0.027, while the coefficient in the

south is between 0.062 and 0.079. In 2010 (Figure 5E), NGR had a

strong spatial heterogeneity impact on the coupling and

coordination of land transfer and carbon emissions. The high

value areas of the coefficient (0.013~0.054) are mainly distributed

in the northeast and some western cities. However, the NGR

influence coefficients of the Pearl River Delta urban agglomeration

and the Yangtze River Delta urban agglomeration were relatively

small, ranging from −0.068 to −0.042. It may be because the region’s

economy is developing well and the population is relatively

concentrated, but basically all belong to the migrant population,

and the natural growth rate of the local population is relatively low.

Figures 5C,F,K show that the impact coefficient of PGA on

the coordination of land transfer and carbon emission

coupling increases over time, the high coefficient area

gradually evolves from zonal to clustered, and the low

coefficient area gradually decreases. In 2005 (Figure 5C),

FIGURE 4
Moran scatter plot of the coupling coordination; (A) for 2005, (B) for 2010, (C) for 2015.
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cities in areas with high coefficients (1.042~1.385) of the PGA

were basically distributed in the northwest and central

regions. This may be due to the low level of urbanization

in the region, the relatively small area of public green space in

the total urban area, and the high degree of fragmentation, so

it has a greater impact on the coordination of land transfer and

carbon emissions. From 2010 (Figure 5K) and 2015

(Figure 5F), we found that the PGA of most of the central

regions and some southeast coastal city clusters has generally

low impact coefficients on the coupling coordination degree,

such as Hunan Province, Hubei Province, Henan Province,

and the Yangtze River Delta and the Pearl River Delta.

Figure 5D shows that the GPC has strong spatial

heterogeneity impact on the coupling and coordination of

land transfer and carbon emissions in 2010. In general, the

high coefficient (0.924~0.989) of the GPC was mainly in the

central region and gradually decreases to the surrounding

cities. The main reason is that the central region is

dominated by real estate development and industrial

processing and manufacturing. There is a large demand for

land transfer area, and the development of traditional

manufacturing will obviously increase carbon emissions.

This will directly or indirectly affect the degree of coupling

and coordination between carbon emissions and land sales. In

2015 (Figure 5H), the impact coefficient of the GPC on the

coupling coordination degree showed an obvious hierarchical

distribution feature, with the coefficient gradually decreasing

from northeast to southwest. The coefficient of the GPC in the

northeastern region ranges from 0.177 to 0.196, and the

coefficient in the southwest region ranges from 0.138 to

0.146. Most cities in northern of China are dominated by

traditional resource mining industries such as steel and coal,

while the south is dominated by industrial manufacturing. To

this extent, it determines the difference between regional land

transfer and carbon emission needs, so it has obvious regional

characteristics of the coordination degree of land transfer and

carbon emission coupling.

TABLE 3 Statistics of GWR and MGWR model indicators.

Indicators MGWR GWR

Year 2005 2010 2015 2005 2010 2015

R2 0.601 0.995 0.713 0.575 0.996 0.966

AICc 618.012 −555.951 529.686 −644.898 3,005.718 −892.905

ENP 33.434 60.048 39.968 38.545 72.322 70.659

RSS 112.097 1.303 78.187 1.289 298,038.279 .384

TABLE 4 GWR and MGWR model bandwidth.

Model MGWR GWR

Year 2005 2010 2015 2005 2010 2015

Intercept 49 77 63 115 52 52

GPC 280 43 271 115 52 52

NGR 242 49 271 115 52 52

PD 64 259 44 115 52 52

PSIG 280 45 215 115 52 52

PGA 120 43 45 115 52 52

TABLE 5 Coefficient statistics of the MGWR model.

Year Variable Mean STD Min Median Max

2005 Intercept 0.129 0.349 −0.532 0.060 0.792

GPC 0.074 0.006 0.053 0.074 0.086

NGR −0.073 0.050 −0.156 −0.066 0.013

PD 0.129 0.241 −0.238 0.090 0.864

PSIG −0.021 0.016 −0.059 −0.019 0.006

PGA 0.527 0.415 0.129 0.349 1.385

2010 Intercept 0.042 0.019 0.005 0.041 0.077

GPC 0.852 0.083 0.652 0.824 0.989

NGR −0.015 0.022 −0.068 −0.015 0.054

PD −0.003 0.004 −0.012 −0.003 0.003

PSIG 0.340 0.027 0.284 0.336 0.406

PGA 0.002 0.057 −0.070 −0.008 0.198

2015 Intercept 0.135 0.407 −0.451 0.041 0.935

GPC 0.160 0.015 0.138 0.158 0.196

NGR 0.039 0.017 0.019 0.034 0.079

PD 0.183 0.272 −0.349 0.108 0.918

PSIG −0.074 0.059 −0.161 −0.093 0.055

PGA 0.713 0.413 −0.055 0.713 1.602
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FIGURE 5
Spatial distribution of variable coefficients of the MGWR. (A) for NGR (2005), (B) for PSIG (2005), (C) for PGA (2005), (D) for GPC (2010), (E) for
NGR (2010), (F) for PGA (2010), (G) for PSIG (2010), (H) for GPC (2015), (I) for NGR (2015), (J) for PD (2015), (K) for PGA (2015).
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Figure 5J shows that the PD has strong spatial

heterogeneity impact on the coupling and coordination of

land transfer and carbon emissions. Compared with the

northeast region, the population density is relatively small

and sparse, on the contrary, it has a greater impact on the

coordination degree of land transfer and carbon emission

coupling, and the coefficient ranges from 0.464 to 0.918.

The impact of population density on the degree of coupling

and coordination is relatively small in northeast China, with a

coefficient between 0.176 and 0.464. The relatively

underdeveloped areas in the northwest and southwest have

low population density, which has a negative impact on the

coupling and coordination of land transfer and carbon

emissions, with a coefficient between −0.349 and −0.078.

Figures 5B,G show that the impact of the PSIG on the

coupling and coordination of land transfer and carbon

emissions has a certain timeliness and spatial location.

Figure 5B shows that the coefficient of the PSIG has

obvious zonal distribution characteristics, showing a

negative influence relationship in 2005, and the degree of

influence increases from the southwest to the northeast of

China. Figure 5G shows that the influence of the PSIG on the

coupling coordination of land grant and carbon emission

shows a shifting characteristic, and the high coefficient

gradually shifts to the southeast coastal cities, and a

positive influence relationship appears in 2010. Most of

these cities with low coefficients are located in the west of

China, with coefficients ranging from 0.284 to 0.311.

5 Conclusion and discussion

This paper analyzes the spatio-temporal characteristics of

land transfer and carbon emissions and their coupling

coordination characteristics in 291 cities in China from

2005 to 2015. The GWR and MGWR models are used to

explore the spatial autocorrelation and clustering

characteristics of the coupling coordination of land transfer

and carbon emissions. The main conclusions are as follows.

(1) From 2005 to 2015, the scale of land transfer continued to

rise in China, and the focus of land transfer gradually shifted

from the southeast coast to the central and western regions.

In 2015, the land transfer area increased significantly in the

central and western regions. Cities with high carbon

emissions are mainly concentrated in eastern coastal areas

such as Shanghai, Jiangsu Province and Zhejiang Province.

In 2005, 2010 and 2015, the cities with the highest carbon

emissions were mainly concentrated in the eastern coast, of

which Shanghai had the largest carbon emissions of

170.761 mt, 230.712 mt, and 189.981 mt, respectively.

(2) The global Moran’s I for the coupled coordination degree of

land transfer and carbon emissions in 2005, 2010, and

2015 are 0.3045, 0.3725, and 0.3388, respectively. All these

values passed the 95% significance level test, which shows

that their coupling coordination has significant positive

spatial autocorrelation, and there is a significant clustering

phenomenon.

(3) The goodness of fit R2 of MGWR is higher than GWR, and

the AICc value is lower than GWR, which indicates that the

result of MGWR is better than that of classical GWR. In

terms of the NEP, MGWR is smaller and the RSS is smaller,

which indicates that it uses fewer parameters to obtain

regression results closer to the true value. The MGWR

model is more robust than the traditional GWR model,

and is able to adaptively find a reasonable bandwidth in

this work, which can more objectively reflect the influence of

socio-economic factors on the coordination of land transfer

and carbon emission.

(4) TheMGWRmodel shows that the influence of socioeconomic

factors on the degree of the coupling coordination has obvious

spatial heterogeneity. In 2005 and 2015, the influence

coefficient of the NGR on the coupling coordination degree

has obvious stratification characteristics in space, and the

coefficient decreases from the northeast to the southwest.

In 2010, the high coefficient of the NGR (0.013~0.054) is

mainly distributed in the northeast and western of China.

The high coefficient of the PGA gradually evolves from a band

to a cluster, while the range of low coefficient gradually

decreases. In 2005, the cities with high coefficient

(1.042~1.385) of the PGA were distributed in the northwest

and central regions. The coefficients of PGA were generally

low in 2010 and 2015, mainly concentrated in Hunan, Hubei

and Henan provinces, the Yangtze River Delta and the Pearl

River Delta. In 2010, the high coefficient (0.924~0.989) of the

GPC was mainly distributed in the central region of China,

with a decreasing trend in all directions. The coefficients of the

PD range from 0.176 to 0.464 in southeastern coastal cities. In

2010, the high coefficient of the PSIG gradually shifted to the

southeast coastal cities, with coefficients ranging from

0.284 to 0.311.

This study analyzed the spatio-temporal heterogeneity and

impact mechanism of the coupling degree of carbon emissions

and land transfer by comparing the traditional GWR and MGWR

models. The results of this work can provide new ideas for

sustainable urban development and carbon reduction. However,

there are also shortcomings in this research, for example, the

selection of explanatory variables may miss some other variables,

whichmay affect the accuracy of the results. In addition, the analysis

of this paper is conducted frommunicipal cities, which is a relatively

large scale. In the future research, it can be discussed and analyzed in

a smaller scope (for example, county level, township level), which

may be more conducive for the government to formulate specific

measures to manage the sustainable development of cities and

reduce carbon emissions.
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