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Vertical information about aerosols and clouds is vital to understanding aerosol

transport, aerosol-cloud interactions, and pollution-weather-climate feedback

so as to reduce uncertainties in estimating their climatic effects. The

combination of sounding, lidar, aircraft, and satellite measurements is widely

used to obtain the vertical information of aerosols and clouds. We used an

aircraft measurement over southern Anhui, the upstream regions of Shanghai,

on 1 November which conducted to ensure good air quality for the Third China

International Import Expo to examine the vertical characteristics of aerosol and

cloud microphysical properties and their variations before and after cloud

seeding. Observations showed aerosols and clouds were vertically stratified.

Most aerosols trapped within the boundary layer are small particles with sizes

less than 0.12 µm. Aerosol number concentrations (Na) generally decreased

with altitude in the cloudless atmosphere, with the largest particles occurring in

2500–3500m due to dust transported from distant regions and high ambient

humidity. Four separate cloud layers with unequal depths dominated by

altostratus and nimbostratus appeared at different heights. The maximum

cloud droplet concentration (Nc) and the minimum cloud droplet diameter

(Dc) that appeared in the mid-level cloud (2246–2482 m) were 107.7 cm−3 and

4.03 μm, respectively, owing to the high proportion of hygroscopic particles.

Hygroscopic particles played an important role in the growth of droplets and

the activation of cloud condensation nuclei, especially under high ambient

humidity. Cloud droplet size spectrum showed a unimodal distribution with a

single peak at 5 µm in low- (970–1000m) and mid-level clouds, but a trimodal

distribution with peaks at 7 μm, 12 μm, and 17 μm in the mid-high- and high-

level clouds, indicating the broadening of spectra with increasing altitude. An
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artificial seeding experiment was conducted in the high-level clouds. Big cloud

droplets and ice crystals increased significantly after cloud seeding. Meanwhile,

cloud particle populations showed lessNc, largerDc, and a wider size spectrum.

Our results suggest that the artificial precipitation experiment promoted rainfall

to a certain extent and contributed to the removal of pollutants from upstream

regions, which is beneficial to the air quality of Shanghai.
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1 Introduction

Aerosols can act as cloud condensation nuclei (CCN) and ice

nuclei (IN) to alter cloud microphysical properties, such as

droplet phase, size, number, and liquid water content (LWC),

and thereby indirectly affect rainfall and climate (Andreae and

Rosenfeld, 2008; Berg et al., 2011; Hudson and Noble, 2014a;

Hudson and Noble, 2014b; Altaratz et al., 2014; Rosenfeld et al.,

2019). Given stable LWC, aerosols play an important role in

increasing CCN of warm clouds by raising cloud droplet number

concentration (Nc) and reducing droplet effective radius

(Twomey, 1977), thus elongating cloud lifetime and enlarging

cloud cover (Albrecht 1989). Aerosols can also provide IN to

impact the heterogeneous nucleation of cold clouds (Lopez and

Avila, 2013; Kohn et al., 2016). Due to the complexity of aerosol-

cloud interactions, aerosol-radiation-cloud feedbacks remain

uncertain in predicting global climate change (IPCC, 2022).

The vertical distributions of aerosols and clouds are crucial to

understand aerosol-cloud interactions and evaluate aerosol direct

and indirect radiative forcing (Gobbi et al., 2004; Landman, 2010).

Various projects used in-situ aircraft measurements with high

temporal and spatial resolutions to explore the vertical and

horizontal heterogeneity of aerosols and clouds (Schnitzhofer

et al., 2009), for example, the Aerosol Characterization

Experiment over the Southern Ocean (Bates et al., 1998; Raes

et al., 2000; Huebert et al., 2003), the Intercontinental Chemical

Transport Experiment over North America (Singh et al., 2006;

Singh et al., 2009), and the Observations of Aerosols Above Clouds

and Their Interactions over the Southeast Atlantic basin

(Redemann et al., 2021). Aircraft measurements also contribute

to the understanding of sources and transport of aerosols. For

example, Yang J. M. et al. (2020) pointed out that the vertical

stratification of aerosol and CCN spectrum is attributed to aerosols

at different layers originating from various sources based on

aircraft observation in Shanxi, China. Adachi et al. (2021)

found that the sources, transport, and aging of Arctic aerosols

vary depending on altitude and air-mass history during the Polar

Airborne Measurements and Arctic Regional Climate Model

Simulation Project 2018. In addition, such measurements

provide insights into cloud microphysics. Allen et al. (2011)

reported that Nc is well correlated with accumulation aerosols

with sizes larger than 0.15 μm at low supersaturations in the South

East Pacific during the VAMOS Ocean-Cloud-Atmosphere-Land

Regional Experiment. Earle et al. (2011) found that polluted clouds

have a narrower droplet size spectrum, higher Nc, and higher

albedo compared to clean clouds throughout the Indirect and

Semi-Direct Aerosol Campaign. Zhao et al. (2018) found larger

values of LWC in averaged profiles under polluted than clean

conditions and a robust negative relationship between aerosol and

cloud effective radius under constant LWC in Hebei, China.

Weather modification is an effective approach for altering

small-scale weather. The most common form of weather

modification is cloud seeding, which is used for precipitation

enhancement, hail suppression, fog prevention, etc. (Kenneth,

1996). Silver iodide (AgI) and salt are the most widely used

glaciogenic and hygroscopic seeding agents in weather

modification (Marcolli et al., 2016). The vertical feature of

aerosols and clouds is important for evaluating the seeding

conditions of clouds and estimating their seeding efficiency

(Guo and Zheng, 2010), and differences in cloud microphysics

are often observed after cloud seeding. For example, the Seeded

and Natural Orographic Wintertime clouds: the Idaho

Experiment performed ground-based, remote sensing, and

aircraft observations on clouds in Wyoming and Idaho and

observed the changes in radar reflectivity and cloud

microphysics inside and outside the seeding line (French

et al., 2018; Tessendorf et al., 2019). Sun et al. (2017) found

that the effective diameters of cloud droplets enlarged, and their

size spectra widened and dispersed after seeding in Hebei, China.

Dong et al. (2020) reported spherical liquid droplets were

dominant before cloud seeding, but a large number of ice

crystals with shapes of needle, plate, and columns appeared

after seeding.

Recently, artificial precipitation, along with emission

reduction, has often been used to mitigate urban air pollution

through wet scavenging in China, especially during severely

polluted days (Sun et al., 2019; Zhao et al., 2019). To

guarantee good air quality during the Third China

International Import Expo held in Shanghai from 5 to

10 November 2020, the government took measures to reduce

local emissions in targeted regions and potential sources

according to forecasts of air pollutants between 20 October

and 10 November and applied artificial precipitation

operations to alleviate external pollutants from upstream
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before they arrived at Shanghai. This paper presents aircraft

measurements over southern Anhui to examine the vertical

distributions and variations of aerosols, CCN, and cloud

droplets before and after the artificial precipitation

experiment. The goal is to provide insights into the vertical

microphysical characteristics of aerosols and clouds and the

combined effects of natural, anthropogenic and man-made

aerosols on clouds. The results will help understand aerosol-

cloud interactions and evaluate the potential impacts of

particulate pollutants transported from upstream regions on

downstream cities.

2 Material and methods

2.1 Aircraft platform and seeding
campaign

The aircraft platform used to detect aerosols and cloud

droplets consists of an airplane (King-Air 350) and several

onboard instruments manufactured by Droplet Measurement

Technology of the United States. Their probes and functions are

listed in Table 1. The Cloud Droplet Probe (CDP) can detect

2–50 µm liquid cloud droplets or particles (30 bins). The Cloud

Imaging Probe (CIP) can detect ice crystals and big cloud

droplets ranging from 25 to 1550 µm (25 bins). The Cloud

Condensation Nuclei Counter can measure CCN number

concentrations at various supersaturation levels. The Passive

Cavity Aerosol Spectrometer Probe (PCASP) can detect

particles ranging from 0.1 to 3 µm (30 bins). In addition, the

Aircraft-Integrated Meteorological Measurement System was

employed to collect ambient temperature, relative humidity,

wind speed, wind direction, and other meteorological factors.

Figure 1 shows a 3-D full flight track and its vertical view over

southern Anhui on 1 November. The airplane took off from the

Jiuhuashan airport (117.68°E, 30.74°N) at 14:24 local time

(henceforth, LT)and then flew horizontally at 2000 m height

towards Huangshan between 14:34 LT and 14:46 LT. After that,

the airplane spiraled up to a maximum altitude of 5679 m, during

which it passed through four cloud layers, a low layer at

TABLE 1 Aircraft platform and onboard instruments.

Probe Number of size bins Measured particle size Range (μm) Detection content

CDP 30 2~50 Cloud droplet, Partial ice crystal

CIP 62 25~1550 Big cloud droplet, ice crystal

PCASP 30 0.1~3 Aerosol

CCN Counter 20 0.75~10 cloud condensation nuclei

AIMMS meteorological elements

FIGURE 1
(A) Flight trajectory and (B) its vertical view over southern Anhui on 1 November 2020. Blue line is ascent track, red line is horizontal flight and
green line is descent track. Color shading represents the terrain heights using NOAA data (https://www.ngdc.noaa.gov). A, C, D, E are four turning
points, and B, B1 is overlapped points on the track.
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970–1000 m, a middle layer at 2240–2500 m, a mid-high layer at

3400–4050 m, and a high layer at 4350–5400 m (Figure 1A).

Later, the airplane started to conduct artificial seeding for

precipitation enhancement at 15:06 LT, with an approximately

horizontal “8”-shape cross closed track (A-B-C-D-B1-E-A)

around 5000 m (Figure 1B). The artificial seeding lased two

circles with nearly the same trajectory. According to records,

freezing occurred on the airplane wings above 5300 m at 15:

13 LT, and heavy icing appeared at 15:19 LT, indicating abundant

supercooled water within high clouds. During the flight, air

temperatures were −4 ~ −6°C within seeded clouds. The

seeding operation released 40 AgI strips (seeding agent), about

1440 g in total, with a burning time of 16 min for each one. The

seeding experiment finished at 16:07 LT, and subsequently, the

airplane returned to the airport.

2.2 Data and methodology

The cloud properties, such as cloud top height, brightness

temperature, cloud type, and cloud phase, were obtained from

Himawari-8 (https://www.eorc.jaxa.jp) and FY-4 (http://data.

nsmc.org.cn) satellites. The quality of precipitation datasets

have been greatly improved in Integrated Multisatellite

Retrievals for GPM (IMERG) which provides seamless

precipitation estimates at 0.1 × 0.1 grid every half hour

(https://gpm.nasa.gov/data). Reanalysis data were from the

National Centers for Environmental Prediction (https://psl.

noaa.gov/data). Aerosol optical depth (AOD) at 550 nm and

aerosol classification data were from the version 2 Modern-Era

Retrospective Analysis for Research and Applications (MERRA-

2, https://disc.gsfc.nasa.gov). MERRA-2 provides five types of

aerosols at 72 terrain-following hybrid σ–p model layers,

including dust and sea salt in five bins, sulfate, organic

carbon, and black carbon (Buchard et al., 2017; Randles et al.,

2017). Since this study focuses on submicron aerosols, here we

only calculate the first two bins of dust and sea salt. The mass

concentrations of PM2.5 were obtained from the China National

Environmental Monitoring Center (https://www.cnemc.cn).

Based on particle size, the droplets less than 50 μmmeasured

by CDP are defined as small cloud droplets, and their number

concentrations and effective diameters are recorded as Nc (cm
−3)

and Dc (μm). The droplets larger than 50 μm measured by CIP

are defined as big cloud droplets, and their number

concentrations and effective diameters are recorded as Ncip

(m−3) and Dcip (μm). The droplets larger than 100 μm can be

treated as ice crystals (Dong et al., 2021). Due to the low accuracy

of the first bin (0.1–0.11 μm), it was excluded from the total

measurements of PCASP, so aerosols mainly include

accumulation (0.11–1 μm) and coarse (1–3 μm) particles. In

clouds, aerosol detection by PCASP reveals more uncertainty

compared to outside clouds due to supersaturation conditions,

where part of particles can act as CCN and convert into cloud

droplets (Kleinman et al., 2012; Yang et al., 2019). To avoid

errors, we screened the data observed inside clouds in the

following analysis of aerosol vertical distributions. The profiles

of vertical data were averaged at an interval of 50 m.

Previous studies have proposed many cloud mask

algorithms to detect clouds, such as Nc > 10 cm−3 (Rangno

and Hobbs, 2005), LWC >0.01 g m−3 (Gultepe et al., 1996), and

Nc > 0.1 cm−3 and LWC >0.0005 g m−3 (Gultepe and Isaac,

2004). To eliminate the influence of large aerosol particles onNc

measurements, we used the method of Zhang et al. (2011) to

identify cloud appearance, namely thresholds of Nc > 10 cm−3

and LWC >0.001 g m−3.

3 Results and discussion

3.1 Synoptic situation and cloud macro
physical properties

Precipitation occurred on 1 November over southern Anhui.

One cold vortex originating from northeast areas moved

southward and strengthened the transport of cold air and

water vapor, meanwhile a low-level convergence enhanced in

east China. Wind shear at 850 hPa caused strong upward air

motion at this level. The targeted area is located in the westerlies,

controlled by winds primarily from west and southwest at

500 hPa with wind speeds about 20 ms−1, and the relative

humidity was above 90% (Figure 2). Affected by the wind

direction, the seeded clouds moved eastward.

Figure 3 shows the spatial distribution of PM2.5

concentrations and AOD on 1 November. Ground-based

observations indicated that Henan and northern Anhui were

slightly polluted with PM2.5 of 75–115 μg m
−3. A possible reason

FIGURE 2
500 hPa geopotential height (black contour), wind (barb) and
relative humidity (green shading) fields on 1 November 2020. Red
star is the flight area.
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is that air pollution was mainly concentrated in metropolitan

areas and heavy industry areas (Miao et al., 2022). The pollutants

from these regions can be transported eastward to downstream

cities such as Shanghai. High AOD values ranging from 1.2 to

1.6 were found in one belt from southwest to northeast,

corresponding to the airflow field at 500 hPa.

FIGURE 3
Spatial distributions of (A) surface PM2.5 concentrations and (B) AOD (550 nm) at 15:00 LT on 1 November 2020. The black box refers to the
flight area.

FIGURE 4
(A) Cloud types including cirrus (Ci), cirrostratus (Cs), deep convection cloud (Deep), altocumulus (Ac), altostratus (As), nimbostratus (Ns),
cumulus (Cu), stratocumulus (Sc) and stratus (St), (B) Cloud top height (CTH) and (C) Brightness temperature (TBB) of Himawari-8 satellite, and (D)
Cloud phase of FY-4 satellite at 15:00 LT on 1 November 2020. The black box refers to the flight area.
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Figure 4 presents cloud macro properties at 15:00 LT on

1 November. According to images of Himawari-8, the cloud

cluster covered the belt with high AOD (Figure 3B). The clouds

over southern Anhui were dominated by altostratus and

nimbostratus (Figure 4A) with cloud top height about 6500 m

(Figure 4B). The brightness temperature was −6 ~ −12°C

(Figure 4C). The corresponding cloud phase products of the

FY-4 satellite implied the existence of abundant supercooled

water in clouds.

3.2 Vertical distribution of aerosols

Spatial-temporal variations of aerosol composition, size, and

concentrations can be influenced by emissions, atmospheric

advection and diffusion, conversion of gaseous precursors, and

aging processes (Quan et al., 2015; Zhang et al., 2015). Figures

5A–E shows vertical distributions of aerosol particles. Aerosols

exhibited vertical stratification and heterogeneity. Large amounts

of aerosols were constrained below 1050 m, near the top of the

boundary layer, indicating that the upward transmission of aerosols

to the free troposphere was limited (Figure 5B). In general, aerosol

number concentration (Na) decreased with increasing altitude below

the bottom of the low-level clouds (1050 m), while aerosol effective

diameter (Da) keeped stablewith an average of 0.12 μm near the

surface (Figure 5C). Since aerosols in the lower atmosphere mainly

originate from local emissions, especially under unfavorable dilution

conditions, their properties are complex and greatly affected by

anthropogenic activities. Sulfate and organic aerosols made up a

large fraction of aerosol mass in the lower atmosphere (Figure 6),

where aerosols mainly consist of primary and secondary aerosols

generated through gas-to-particle conversion (Jimenez et al., 2009; Li

et al., 2015; Li et al., 2018).Da showed an evidentmaximumbetween

2500 and 3000 m with an maximum of 1.72 μm (Figure 5C).

However, above 3000 m, dust took a higer proportion, Da was

smaller than 2500–3000 m. The possible reason is particle

hygroscopicity under high ambient humidity, where an obviously

positive correlation (r = 0.58) exists betweenDa and supersaturation

FIGURE 5
Vertical distributions of (A) temperature (blue line) and relative humidity (RH, brown line), (B) aerosol number concentration (Na, cm–3), (C)
aerosol effective diameter (Da, µm), (D) CCN at 0.2% supersaturation and (E) CCN/Na ratios, (F) cloud droplet number concentration (Nc, cm

−3), (G)
liquid water content (LWC, g m−3), (H) cloud droplet effective diameter (Dc, µm), (I) relative dispersion rate (ε) and (J) size spectrum of cloud particles
on 1 November 2020. The green shading denotes cloud layers.
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rate (Figure 7). At other cloudless atmospheric layers, Na declined

slightly with altitude, whileDa remained nearly unchanged. Figure 8

shows the mean aerosol size spectrum observed in five cloudless

atmospheric layers. Clearly, fine particles, especially particles with

sizes of less than 0.15 μm, predominated at all altitudes. The peak of

the unimodal spectrum centers at 0.12 μm. Accumulation mode

aerosols account for up to 98% of total number concentrations. Such

a result is similar to Hao et al. (2017), in which they found that

accumulation mode aerosols accounted for more than 95% during

August 2014 over Anhui Province.

3.3 CCN vertical distribution

Aerosols from several large-scale industrial districts in

southern Anhui have been found to have a high hygroscopic

growth ability (He et al., 2016). Figure 5D shows vertical

distributions of CCN concentrations at a 0.2% supersaturation

level. CCN concentrations decreased with altitude from the

ground until 4000 m and increased sharply at higher levels.

The ratio of CCN to Na represents the activation ability of

aerosols to become CCN under certain supersaturation

conditions. Note that due to the detection limit of

instruments, the absence of particles with sizes less than

0.1 μm or greater than 3 μm may result in somewhat

underestimation for Na and CCN/Na exceeding 1.0 at various

altitudes. Aerosol CCN activation is known to be closely related

to aerosol size, composition, mixing state, and ambient humidity

(McFiggans et al., 2006; Bauer and Menon, 2012; Farmer et al.,

2015; Kanji et al., 2017). It is also known that aerosol chemical

composition and the initial periods of activation play important

roles in aerosol CCN activation under low supersaturation

conditions, particularly for fine particles with low-

hygroscopicity, such as primary organic aerosol (Zhang et al.,

2012). However, aerosol CCN activation depends on aerosol size

more under high supersaturation ratio due to strong

hygroscopicity (Figure 7).

In terms of CCN/Na and Da, the cloudless atmosphere can be

divided into three layers below 5300 m. Below 2200 m, CCN/Na

increased with altitude and reached the maximum at 2200 m

(Figure 5E). CCN/Na was lowest within the boundary layer

(Figure 5E), where aerosols were mainly composed of sulfate

and hydrophilic organic carbon with Da less than 0.12 μm

(Figure 6). Moreover, hydrophobic organic aerosols (i.e., black

carbon and soot) from local emissions are difficult to activate into

CCN (Zhang et al., 2017; Yu et al., 2022). The CCN ability of low-

hygroscopic organic aerosols can be significantly enhanced under

pollution due to their mixing with local and regional pollutants

(Hu et al., 2020). Between 2200 and 3000 m, CCN/Na was stable.

Above 3000 m, CCN began to increase and CCN/Na was

relatively higher than the boundary layer due to a higher

proportion of dust transported from upstream regions

(Figure 6). Li and Shao. (2009) reported that aerosol aging

and secondary material generation occur in long-distance

FIGURE 6
Relative fractions of aerosol composition types as a function
of altitude (PHOBIC: hydrophobic, PHILIC: hydrophilic).

FIGURE 7
Linear relationship between aerosol effective diameter
(Da, µm), supersaturation ratio and CCN/Na ratios in
2500–3000 m.

FIGURE 8
Aerosol size spectrum at different cloudless heights.
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transportation of air mass. Dust hygroscopicity increases after its

aging, and aged dust aerosol become activated to be CCN in the

atmosphere (Tang et al., 2015).

3.4 Cloud vertical distribution

The zero level (0°C) of ambient temperature appeared at

4650 m (Figure 5A). There were four layers of clouds located at

different heights in the atmosphere (Figure 1A, Figure 5).

Specifically, the maximum Nc was 125 cm−3 at 2284 m in the

mid-level clouds (Figure 5F), and the maximum Dc was

34.25 μm at 4777 m in the high-level clouds (Figure 5H).

Overall, inside each cloud layer, Nc and Dc increased with

altitude and reached the maximum in the middle, and then

decreased with altitude until the cloud top. Such variability is

related to the entrainment of drier air from the environment that

induces fewer cloud droplets by promoting evaporation (Freud

et al., 2011).

The low-level clouds at the top of the boundary layer were

very thin, with a mean Nc of 25.21 cm
−3 (Figure 5F). At this level,

a large number of fine particles uplifted from the boundary layer

are difficult to grow into large cloud droplets due to the

competition for limited water vapor (Yuan et al., 2008;

Grandey and Stier, 2010), and therefore, cloud droplets sizes

were small, with a maximum Dc of 12 μm (Figure 5H). The mid-

level cloud layer was also thin, but the maximum Nc and the

minimum Dc appeared here approximately 107.7 cm−3 and

4.03 μm, respectively. According to Swietlicki et al. (2008),

hygroscopic particles are mainly composed of inorganic salts

like sulfates. The average CCN/Na of aerosols was about 0.78 at

200 m below the mid-level cloud base (Figure 5E). Sulfate

accounted for 69.8% of the aerosol mass (Figure 6), indicating

that the aerosol particles here have a high ability of hygroscopic

growth to activate into cloud droplets when entrained into the

cloud, resulting in more cloud droplets with smaller size (Jones

et al., 1994; Ishizaka and Adhikari, 2003). The mean Nc and Dc of

the mid-high level clouds were 24.73 cm−3 and 16.46 μm,

respectively, while they were 12.54 cm−3 and 16.65 μm in the

high-level clouds. Although the mid-high and high-level clouds

had relatively low cloud droplet loading, their Dc was relatively

larger due to sufficient LWC and lower temperature.

FIGURE 9
Size spectra of cloud droplets before and after cloud seeding measured by (A) Cloud Droplet Probe (CDP) and (B) Cloud Imaging Probe (CIP).
The red dotted line refers to seeding start time, the black dashed lines correspond to the routes of A–B and B1–E marked in Figure 1.

FIGURE 10
Time series of (A) cloud droplet effective diameter (Dc, µm),
(B) cloud droplet number concentration (Nc, cm

−3) and (C) big
cloud droplet and ice crystals number concentration (Ncip, cm

−3).
The red dotted line refers to seeding start time, the black
dashed lines correspond to the routes of A-B and B1-E.
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Both cloud droplet size spectra in the low- and mid-level

clouds showed a single peak at 5 μm, and no droplets greater than

12 μm appeared (Figure 5J). By contrast, in the mid-high layer

cloud, the spectra showed a bimodal pattern, with the first peak at

8 μmand the second peak at 15 μm.Moreover, a trimodal pattern

with peaks at 7 μm, 12 μm, and 17 μm appeared in the high-level

clouds. Relative dispersion rate (ε), defined as the ratio of the

standard deviation of cloud droplet size spectrum and average

radius of cloud droplets, is used to illustrate the relative spectral

width of cloud droplet spectrum. It is usually linked with the

physical and chemical properties of aerosols, related activation

process and hygroscopic growth (Ma et al., 2010; Wang et al.,

2019), the development stage of clouds, atmospheric

temperature, humidity, entrainment process, and turbulence

(Lu et al., 2013). A positive correlation was found between the

relative dispersion rate and Dc (Figures 5H,I, r = 0.78). In

addition to the coalescence process (Liu and Daum, 2002;

Pandithurai et al., 2012), the appearance of ice crystals with

large sizes also increases cloud droplet inhomogeneity which

leads to a broadening cloud droplet size spectrum in higher cloud

layers.

3.5 Impacts of artificial seeding on cloud
and precipitation

To examine cloud evolution during the artificial seeding

experiment, we compared the cloud microphysical properties

detected by CDP and CIP (Figure 9). The cloud seeding began at

15:06 LT. Before that, cloud droplets smaller than 25 μm

prevailed, accounting for about 97%, and cloud droplets

greater than 50 μm hardly existed. The size spectra of cloud

droplets showed a trimodal pattern, with the first peak at 7 μm,

the second at 12 μm, and the third at 17 μm, indicating sufficient

supercooled water in clouds. Moreover, there was a negative

relation between Dc and Nc, indicating that the effect of strong

coalescence caused some small cloud droplets to convert into

large droplets and ice crystals. The man-made ice nuclei seeded

into the clouds grew through the Wegener–Bergeron–Findeisen

mechanism (Wegener, 1911; Bergeron, 1935; Findeisen, 1938).

Supercooled water droplets were converted into ice crystals,

resulting in the evaporation and dissipation of small cloud

droplets and the formation of large cloud droplets or ice

crystals (Figure 10).

Considering the horizontal movement of air mass near the

flight track line, seeding agent diffusion, and cloud spatial

inhomogeneity, we selected the A–B and B1–E sub-tracks

(Figure 1B) to compare changes in clouds before and after

artificial seeding. Before seeding, mean Nc and Dc were

20.87 cm−3 and 15.98 μm, respectively, and CIP almost detected

nothing. After seeding, the mean Nc reduced to 16.62 cm−3 in the

FIGURE 11
Cloud droplet effective radius (Rc) before and after seeding detected by Himawari-8 satellite at (A)15:00 LT and (B)16:00 LT. The black box refer
s to seeding area, the yellow box is upstream area without seeding influence, and the green box is downstream area influenced by seeding.

FIGURE 12
Comparison of spatial average precipitaion over 1-h air-
moving influence area between reanalysis and satellite data.
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A-B sub-track and 6.36 cm−3 in the B1-E sub-track, while themean

Dc was raised to 23.33 μm and 38.90 μm in these stages.

Meanwhile, the mean Ncip increased slightly to 20 L−1 and

70 L−1 in two sub-tracks. Especially, cloud droplets bigger than

25 μm increased significantly from 3% to 16% in the A-B sub-track

and to 56% in the B1-E sub-track, indicating a broader cloud

droplet size spectrum because of condensation growth. The

initiation of precipitation is often considered to occur when Rc
exceeds 12–14 μm (Rosenfeld et al., 2012; Bera et al., 2016; Braga

et al., 2017), corresponding to Dc of 24–28 μm (Sheng et al., 2022).

During this experiment,Nc decreased whileDc increased, owing to

the AgI agent that worked as artificial ice nuclei to enhance the

condensation growth of cloud droplets. Ice crystals continued to

grow and formed ice crystal coagulation through condensation,

riming, and collision, thus widening the cloud droplet size

spectrum (Rosenfeld and Bell, 2011; Chen et al., 2017; Lerach

and Cotton, 2018). In this conversion process, latent heat was

released due to seeding-induced glaciation to strengthen updraft in

clouds, and thereby some cloud droplets and ice crystals were

brought to higher levels.

Satellites provide products with high spatio-temporal

resolutions to examine cloud and precipitation changes in

real situation (Rosenfeld et al., 2019; Yue et al., 2019).

Reananlysis data can be regard as the case of cloud and

precipitation not influenced by cloud seeding. We calculate

the 1-h air-moving influence area affected by the seeding agent

through advection and diffusing with wind speed about

20 m s−1 above 5000 m. Figure 11 shows the cloud droplet

effective radius observed by the Himawari-8 satellite at 15:

00 LT (before seeding) and at 16:00 LT (after seeding). Before

seeding, cloud droplets smaller than 20 μm predominated, and

droplets greater than that only accounted for 5%. After

seeding, cloud droplets larger than 20 μm increased notably

up to 15% over downstream regions. In Figure 12, the spatial

average of hourly precipitation over air-moving influence area

is stable around 0.2 mm based on reanalysis data. However,

comparing with satellite products, an obviously increment of

precipitation shows after cloud seeding (15:00 LT) with

maximum up to 1.05 mm. On the whole, the artificial

precipitation experiment enhanced rainfall, reduced cloud

cover, and contributed to the removal of pollutants from

the atmosphere through wet scavenging, which was

beneficial to the air quality in the downstream regions (e.g.,

Shanghai). Previous studies have shown that precipitation has

a significant wet removal effect on aerosols of different sizes,

especially fine particles (Zhao et al., 2015; Guo et al., 2016). Lu

et al. (2019) analyzed the PM2.5 removal effect by precipitation

with different intensities and duration, raindrops spectrum,

and wind speeds and found that strong precipitations often

exert higher removal rates on aerosols. Since Huangshan,

Xuancheng, and Nanjing are located downstream of the

seeding operation area (Figure 1B), air quality in these

cities was improved by the experiment. PM2.5 decreased

since 15:00 LT in Huangshan and then followed with a

1 hour interval in Xuancheng and Nanjing, respectively

(Figure 13A), corresponding to the air-moving influence

area. Comparing with PM2.5 before cloud seeding, it

decreased by 23%, 18% and 26% at most in Huangshan,

Xuancheng, and Nanjing, respectively. However, PM2.5 of

Fuyang, Huaian, and Luan located in northern Anhui, out

of the seeding operation area, was at high levels and worsening

(Figure 13B). This result demonstrated that the artificial

seeding experiment could reduce pollutants by wet

scavenging and mitigate pollution in downstream regions

efficiently. It is worth noting that how to more

quantitatively evaluate the contribution of artificial seeding

precipitation and natural rainfall to the removal of pollutants

is an issue that warrants further studies.

4 Conclusion

Aircraft observations and an artificial precipitation

experiment were conducted over the upstream regions of

FIGURE 13
Time series of PM2.5 in different cities in areas (A) with and (B) without artificial seeding influence. The red dotted line is seeding start time.
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Shanghai on 1 November 2020 during the Third China

International Import Expo. This fieldwork provided a

valuable opportunity to study the vertical characteristics of

aerosols and clouds and how they were impacted by cloud

seeding. Aerosols, CCN, and cloud droplets exhibited vertical

stratification, with most aerosols constrained within the

boundary layer. Note that aerosol size, chemical

composition, mixing state, and ambient humidity all play

important roles in CCN activation. During the observation,

CCN decreased continuously with altitude until 2200 m and

began to increase significantly at a higher altitude due to aerosol

aging during long-distance air mass transportation. Nc and Dc

were close related to hygroscopic particles, which are sensitive

to relative humidity changes. The artificial precipitation

operation led to evident changes in cloud microphysical

properties. The Wegener–Bergeron–Findeisen mechanism

within clouds after artificial precipitation experiment caused

the transformation of supercooled liquid water freezing into ice

droplets manifesting as the decrease of Nc and the increase of Dc

and big cloud droplets, and cloud seeding of man-made

aerosols caused precipitation enhancement. The artificial

precipitation experiment played a positive role in the

removal of atmospheric pollutants due to wet scavenging to

hamper their potential harm to the air quality in downstream

regions. The result here was that PM2.5 was below 50 μg m−3 in

the downstream areas after cloud seeding. Although such

results can be expected, how to identify and quantify cloud

seeding conditions, accurately evaluate the effects of artificial

precipitation, and estimate the role of background natural

aerosols warrant further investigation.
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