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Heavy metal immobilization using poly-γ-glutamic acid-producing bacteria is a

novel and environmentally friendly technique for the remediation of heavy

metal-contaminated soil. However, only a few studies have investigated the

effects of γ-PGA-producing bacteria on the Cd uptake of wheat plants and the

Cd distribution in soil aggregates in Cd-polluted soils. In this study, solution

culture and pot experiments were used to investigate the Cd immobilization

effect andmechanism of the γ-PGA-producing bacteria Bacillus subtilisW7 and

Bacillus amyloliquefaciens W25. In the two bacteria-inoculated culture media,

the concentration of Cd decreased, whereas the pH, cell growth, γ-PGA

production and cell-immobilized Cd significantly increased over time. Strain

W25 exhibited a higher ability to produce γ-PGA and immobilize Cd than strain

W7. In the pot experiments, the grain Cd content of wheat was reduced by

24–35% and the DTPA-Cd content was decreased by 22–37% in the

rhizosphere soils inoculated with both strains compared to the control.

Furthermore, strain W25 had a greater ability to decrease the grain Cd

uptake than strain W7. Inoculation with the two strains significantly

increased the pH, organic matter content, and urease activity and promoted

the migration of Cd from large fractions (>0.25 mm) to small fractions

(<0.048mm) and the transformation of available Cd to unavailable Cd in

wheat rhizosphere soil. Our results highlight the potential of γ-PGA-

producing bacteria in remediating Cd-polluted soils for safe wheat producing.
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1 Introduction

Human activities such as mining and the use of fertilizers

and pesticides can result in soil Cd contamination (Ma et al.,

2020a). Excessive Cd threatens the ecosystem and human

health (Pi et al., 2019; Ma et al., 2022). Wheat (Triticum

aestivum L.) accounts for 21% of the global food crop (FAO,

2020) and is one of the most important and widely distributed

crops (Klymiuk et al., 2018). In wheat production, Cd is

readily taken up via the root system and translocated to the

grain (Jafarnejadi et al., 2011). Therefore, dietary uptake of Cd

through wheat consumption is one of the major sources of Cd

in the human body (Rizwan et al., 2016). Thus, an efficient

approach to reduce Cd uptake by wheat in Cd-contaminated

soils is critically needed.

In-situ stabilization has received considerable attention

among the techniques for the remediation of heavy metal-

contaminated soils because it is environmentally friendly,

cost-effective, and dose not land use management (Liu et al.,

2018a; Xia et al., 2019). Recently, the application of microbes to

immobilize heavy metals in soils has been extensively researched

(Etesami, 2018; Cheng et al., 2020b). Metal-resistant bacteria can

decrease the availability of metals in soils and metal uptake by

wheat (Hassan et al., 2016; Han et al., 2020). For example,

Pseudomonas aeruginosa CPSB1, isolated from metal-

contaminated chili rhizosphere soils, decreased the Cd content

in shoots and grains of wheat (Rizvi and Khan, 2017). In another

study, Ralstonia eutropha Q2-8 and Exiguobacterium

aurantiacum Q3-11 increased the abundance of Fe- and Mn-

oxidizing Leptothrix species (whichmay involve the development

of Fe and/or Mn oxides and the adsorption of Cd in the soil) and

reduced the grain Cd content in wheat to meet the Cd threshold

(Wang et al., 2018). Also, Serratia liquefaciens CL-1 increased the

pH of wheat rhizosphere soil resulting in decreased available Cd

in rhizosphere soil and, consequently, a lower Cd content of the

wheat (Cheng et al., 2020a).

Poly-γ-glutamic acid (γ-PGA), produced by Bacillus species,

is a biopolymer made up of D/L-glutamic acid units. Because of

its many carboxy groups, it is used to adsorb heavy metals

(Inbaraj et al., 2009; Luo et al., 2016). Studies have shown

that γ-PGA can improve salt tolerance of wheat and

significantly increase the plant yield (Xu et al., 2013; Guo

et al., 2017). In a previous study, γ-PGA decreased Cd and Pb

uptake by cucumber seedlings (Pang et al., 2018). Also, the γ-
PGA-producing bacteria Bacillus subtilis W7 and Bacillus

amyloliquefaciens W25 (strains W7 and W25) decreased Cd

availability and accumulation in lettuce (Wang et al., 2020b).

However, the effects of these two strains on wheat Cd uptake and

Cd distribution in soil aggregates and the underlying

mechanisms are still largely unclear. To develop effective and

environmentally friendly bioremediation technologies, we need

an in-depth understanding of the mechanisms of γ-PGA-
producing bacteria involved in reducing Cd uptake by wheat.

Soil aggregates, the basic units of soil structure, are formed by

organic matter, metals, and primarily minerals (Sithole et al.,

2019). Heavy metal immobilization and mobility in soils are

strongly associated with soil particle size and controlled by their

interactions with the components of soil aggregates (Zhang and

Zhang, 2020; Shentu et al., 2022). Studies have shown that γ-PGA
has a great potential in promoting the formation and stability of

soil aggregates, thus improving the soil structure (Chen et al.,

2018; Liang and Shi, 2018). Fine soil particles have a higher ability

to keep heavy metals because of their larger surface area and

higher amounts of clay and organic matter (Li et al., 2020).

Inoculation of plant growth-promoting bacteria can affect the

structure of soil aggregates. For example, Neorhizobium

huautlense T1-17 and Serratia liquefaciens CL-1 increased the

ratio of small soil aggregates, reducing heavy metal availability in

soil (Wang et al., 2016; Han et al., 2018). However, there is no

report on the effects of γ-PGA-producing bacteria on the

accumulation and distribution of Cd in soil aggregates.

The objectives of this study were: 1) to explore the impacts of

the γ-PGA-producing bacteria Bacillus subtilis W7 and Bacillus

amyloliquefaciensW25 on Cd immobilization in solution and Cd

uptake by wheat in Cd-contaminated soil. 2) to investigate the

effects of these two strains on soil available Cd, pH, organic

matter content, and soil enzyme activities, as well as the Cd

distribution in wheat rhizosphere soil aggregates. This study

improves our understanding of the remediation mechanisms

in Cd-polluted soil and the environmental impact of γ-PGA-
producing bacteria.

2 Materials and methods

2.1 Bacteria and wheat

The isolates of Bacillus subtilis W7 and Bacillus

amyloliquefaciens W25 (accession numbers MN894000 and

MN894001, respectively) were obtained from the rhizosphere soil

of Lactuca sativa L. grown in a Cd-contaminated environment.

Strains W7 andW25 exhibited several traits, including the ability to

tolerate high concentrations of Cd (1.5 and 2.5 mm, respectively)

and produce IAA (31.7 and 50.4 mg L−1, respectively), siderophore

(60.1% and 30.6%, respectively) and γ-PGA (6.4 and 8.5 g L−1,

respectively). The strains also decreased lettuce Cd uptake (Wang

et al., 2020b). Jimai 22 is a high-yielding winter wheat cultivar

cultivated over large areas in China (Xia et al., 2018).

2.2 Determination of Cd immobilization by
strains W7 and W25

The effect of strains W7 and W25 on Cd immobilization was

analyzed as described previously (Han et al., 2021) with some

modifications described in the Supporting Information (method
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1). Both strains were cultured in sterile LB medium, harvested,

washed, and resuspended in sterile deionized water to a final

concentration of 108 cells mL−1. The bacterial suspensions of the

two strains were inoculated in culture flasks (in triplicate)

containing 150 ml sterile LB medium supplemented with

0 and 20 mg L−1 Cd (Cd cannot precipitate under these

conditions). The cultures were then shaken at 150 rpm under

37°C. The culture solution was taken for the following

measurements on days 0, 1, 3, 5, and 7. Bacterial growth was

analyzed bymeasuring the optical density (OD600), and the pH of

the culture medium was determined with a pH meter. The NH4
+

concentration in the solution was analyzed using the

salicylatehypochlorous acid method (Hu and Wu, 2005). The

Cd concentration of the culture medium was determined by an

inductively coupled-plasma optical emission spectrometer (ICP-

OES) (Optima 2100DV, Perkin Elmer). Another 10 ml of

supernatant was used to analyze the strain’s γ-PGA
production according to previously described methods (Zeng

et al., 2013).

To determine Cd immobilization on the cell walls of the two

strains, 2.5 ml of bacterial suspension (108 CFU ml−1) was added

into a conical flask containing 250 ml of LB medium (0 and

20 mg L−1 Cd) and incubated the cultures at 150 rpm under 37°C

for 3 days. Subsequently, 5 g samples of wet bacterial cells of

strains W7 and W25 were collected, and Cd immobilization on

the cell walls of the two strains was observed using a scanning

electron microscope coupled with an energy dispersive

spectrometer (SEM-EDS) analysis. To understand the

contributions of strains W7 and W25 to the immobilization

of Cd, we evaluated the Cd contents in the extracellular

adsorption, intracellular accumulation, bioprecipitation, and

supernatant fractions using the methods described previously

(Wang et al., 2022), with some modifications as elaborated in the

Supporting Information (method 2).

2.3 Pot experiment

Non-metal-contaminated yellow brown soil (Alfisols) in

Jinan (China) was sampled at a depth of 0–15 cm and had the

following properties: pH 7.14; organic matter (OM), 20.4 g kg−1;

available P, 91.7 mg kg−1; available K, 236 mg kg−1, cation

exchange capacity, 14.7 cmol kg−1. The pot experiment was

performed based on the method described previously (Wang

et al., 2018), with somemodifications described in the Supporting

Information (method 3). Each pot was 32 cm in diameter ×

35 cm in height and contained 10.0 kg of soil supplemented with

0, 1.5, and 3 mg kg−1 Cd. Fifteen surface-sterilized wheat seeds

(Shandong Academy of Agricultural Sciences) were sown in each

pot in October 2019. Bacterial inoculation was performed as

previously described (Wang et al., 2022) with some

modifications. Briefly, bacterial suspensions (100 ml per pot)

were poured into the ditches (1–2 cm deep) around the roots

2 weeks post seedling emergence; non-bacterial inoculation was

considered the control. Each treatment consisted of three pots,

which were placed under open-air conditions in a completely

randomized design at the experimental station of Qilu University

of Technology (China). The plants were harvested in June 2020.

2.4 Plant and soil sample analyses

Wheat plant roots, straws, and grains were separated,

washed, dried at 80°C, ground, and digested to determine

the Cd content by ICP-OES. The rhizosphere soils that firmly

adhered to the roots were collected, and soil pH, organic

matter content and available Cd (DTPA-Cd) were determined

using previously described methods (Chen et al., 2016).

Urease and invertase activities of rhizosphere soils were

determined colorimetrically using sodium phenol sodium

hypochlorite and 3, 5-dinitrosalicylic acid, respectively

(Chen et al., 2022).

2.4.1 Cd distribution in wheat rhizosphere soils
The impacts of strainsW7 andW25 on the Cd distribution in

the soil were analyzed according to the sequential extraction

procedures (He et al., 2019), including the exchangeable Cd (EX-

Cd), the carbonate-bound (CB-Cd), the Fe-Mn oxides (OX-Cd)

and the organic matter (OM-Cd). The Cd fractions in the

extracting solutions were measured through ICP-OES.

2.4.2 Aggregate fractionation in wheat
rhizosphere soils

Soil aggregates distribution was determined using the dry-

sieving method (Blaud et al., 2017), with some modifications

described in the Supporting Information (method 4). Briefly, the

soil samples were placed in a sieve system containing a 2-mm sieve, a

0.25-mm sieve, a 0.075-mm sieve, and a 0.048-mm sieve, from top to

bottom, and vibrated at 1,000 rpm for 10 min. Subsequently, the

different aggregate sizes (>2 mm, 2–0.25 mm, 0.25–0.075 mm,

0.075–0.048 mm, and <0.048 mm) were collected and weighed.

The >0.25 mm aggregates were defined as macro-aggregates and

the 0–0.25 mm aggregates as the micro-aggregates. The available Cd

content (DTPA-Cd) in the soil aggregates was measured by ICP-

OES. Total Cd content in the different soil aggregate samples was

digested (HCl: HNO3: HClO4, 3:1:1, v/v/v) and determined by

ICP-OES.

2.4.3 Cd loading and accumulation in soil
aggregates

The grain size fraction metals loading (GSF) and the

accumulation factor (AFx) of Cd in each aggregate size

fraction were calculated using the following equations:

GSFloading %( ) � HMi × GSi( )
∑

n
i�1 HMi × GSi( ) × 100% (1)
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where GSFloading is the grain size fraction metal loading, HMi is

the heavy metal content of individual aggregate size class i (mg

kg−1), and GSi is the percentage of the weight of the individual

aggregate size class i (Sutherland, 2003).

AFx � Xfraction

Xbulk
(2)

where AFx is the accumulation factor, and Xfraction and Xbulk are

the heavy metal contents in a given fraction and bulk sample (mg

kg−1) (Acosta et al., 2009).

2.4.4 Soil relative abundance of γ-PGA-
producing bacteria and colonization of strains
W7 and W25

The screening of γ-PGA-producing bacteria was performed

as described previously (Wang et al., 2020b). Briefly, CFUs of the

suspensions of the soil samples were analyzed according to the

dilution-plate method on LB agar, and colonies were collected.

Colonies that formed a specific concentric zone (with a color

change from red to yellow) on the isolation medium were

considered γ-PGA-producing bacteria and selected for further

analysis. The colonization of both strains was analyzed as

described previously (He et al., 2009) with some modifications

described in the Supporting Information (method 5).

2.5 Quality control/quality assurance

Quality assurance/quality control (QA/QC) was performed to

test the accuracy and precision of the results. The Chinese

standardized reference materials GBW07401a for soil samples

and GBW10011 for wheat samples were used, and the measured

values were 2.523 ± 0.254 mg kg−1 (certified value 2.500 ±

0.200 mg kg−1) and 0.049 ± 0.002 mg kg−1 (certified value 0.053 ±

0.007 mg kg−1), respectively, with recoveries of 90.5% and 110.2%,

respectively. The detection limit of Cd was 0.025 mg kg−1.

2.6 Statistical analyses

One-way analysis of variance and Tukey’s test (p < 0.05) were

used to compare the treatment means. All statistical analyses

were performed using the SPSS 20.0 software (SPSS Inc,

United States).

3 Results

3.1 Cd immobilization by strains
W7 and W25

The γ-PGA production by strains W7 and W25 at different

Cd2+ concentrations in LBmedium is shown in Figure 1A. The γ-

PGA concentration increased over time. Notably, the γ-PGA
concentrations of both strains were significantly increased on

days 3, 5, and 7 at 20 mg L−1 Cd2+ compared to the treatments

without Cd2+. Particularly, the γ-PGA production of strain

W25 was higher than that of strain W7, with or without Cd2+.

In W7- and W25-inoculated solutions, the Cd concentration

significantly decreased over time by 17–36% and 21–45%,

respectively (Figure 1B). The water-soluble Cd concentration

of strain W25 was significantly lower than that of strain W7 on

days 3, 5, and 7. The total amount of Cd in LB solution was 5 mg.

After 3 days of culture, inoculation with strains W7 and

W25 decreased the Cd concentration in the supernatant by

30 and 42% through extracellular adsorption (11 and 16%),

intracellular accumulation (3 and 4%), and bioprecipitation

(16 and 23%), respectively (Figure 1C). Based on the SEM,

both strains were long rods, and some precipitates which

contained Cd, according to the EDS analysis, were found on

the surface of the two strains (Figure 2). Besides, more Cd

precipitates were found on the W25 cell surfaces than on the

W7 cell surfaces. The OD600 values of both strains increased with

time, and Cd2+ did not affect bacterial growth (Supplementary

Figure S1A). The pH value and the NH4
+ concentration of the

solutions inoculated with these two strains also increased with

time (Supplementary Figures S1B, C). These results suggest that

both strains are resistant to Cd and could immobilize Cd in the

Cd solution.

3.2 Effects of strainsW7 andW25 onwheat
biomass and Cd content

The application of Cd or bacteria had no significant effect on the

biomass of wheat tissues (Supplementary Figure S2). In highly Cd-

polluted soil, inoculation with strains W7 and W25 significantly

reduced the Cd contents of wheat roots, straw, and grains by

15–34%, 17–33%, and 24–35%, respectively. Strain W25 had a

higher ability to decrease wheat tissue Cd content than strain W7

(Figure 3). Furthermore, the Cd uptake by roots (28%), straw (27%),

and grains (22%) were significantly decreased when the soil was

inoculated with strain W25 at low Cd levels in comparison to the

controls (Figure 3). Particularly, the grain Cd content (0.19 mg kg−1)

inoculated with strain W25 met the maximum allowable

concentration set by the FAO/WHO for Cd (0.2 mg kg−1) in

wheat (FAO/WHO, 2011) in low Cd-polluted soil.

3.3 Effects of strains W7 and W25 on
DTPA-Cd content and relative abundance
of γ-PGA-producing bacteria in
rhizosphere soils

Both strains significantly reduced the DTPA-Cd contents

in high Cd-polluted rhizosphere soils by 22 and 37%,
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respectively, compared to the control (Table 1). In addition,

strain W25 had a significantly higher ability to decrease the

DTPA-Cd content than strain W7. Similarly, inoculation

with strain W25 significantly decreased the DTPA-Cd

content in low Cd-polluted soil (Table 1). Compared with

the control, inoculation with both strains significantly

increased the relative abundance of γ-PGA-producing
bacteria (27–53%) in Cd-polluted rhizosphere soils

(Supplementary Figure S3). Notably, strain W25 had a

significantly higher ability to increase the relative

abundance of γ-PGA-producing bacteria than strain

W7 at high Cd levels (Supplementary Figure S3).

Regarding the colonization by the two strains of the

rhizosphere, the cell numbers for strains W7 and

W25 were 3.3–5.7 × 104 and 4.2–6.4 × 104 cfu g−1 of fresh

soil, respectively.

FIGURE 1
γ-PGA (A) and Cd concentration (B) in the culture solution inoculated with strains W7 and W25 and extracellular adsorption, intracellular
accumulation, and bioprecipitation of Cd by strains W7 and W25 (C). Error bars are mean ± standard error (n = 3). Bars with the same letter are not
significantly different (p > 0.05) according to Tukey’s test.
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3.4 Effects of strains W7 and W25 on soil
properties and Cd fractions in wheat
rhizosphere soils

The impacts of both strains on pH value, organic matter

content and enzyme activities of rhizosphere soils are shown in

Table 1. Compared with the control, the two strains significantly

increased the pH and organic matter content (10–23%) of the

rhizosphere soils (Table 1). Also, the urease activity was

significantly increased by 32–61% after inoculating the two

strains into Cd-contaminated soils (Table 1). Moreover,

strains W7 and W25 significantly increased the invertase

activity of the rhizosphere soils at low Cd levels by 28 and

25%, respectively, compared to the control (Table 1). Table 2

shows the impacts of strains W7 andW25 on the Cd distribution

in rhizosphere soils. Inoculation with both strains significantly

decreased the available Cd content (EX-Cd) by 18–20% and

increased the unavailable Cd content (OX-Cd) by 27–31% in

high Cd-polluted rhizosphere soils compared to the control

(Table 2). A similar decrease in EX-Cd content and an

increase in OX-Cd content were also found in low Cd-

polluted rhizosphere soil in the presence of strain W25

(Table 2). Furthermore, the content of Cd, in different

chemical forms, was largest in EX-Cd (40–58%), followed by

OX-Cd (18–31%).

3.5 Effects of strains W7 and W25 on
available and total Cd in soil aggregates

Supplementary Table S1 shows the impact of strains W7 and

W25 on soil aggregate structure. The main soil particles

were >2 mm, 2–0.25 mm, 0.25–0.075 mm, and <0.048 mm.

The application of both strains did not affect soil aggregate

distribution. In low Cd-polluted rhizosphere soils, the

application of strains W7 and W25 significantly reduced the

FIGURE 2
SEM-EDS images of strains W7 and W25 with or without Cd. (A) SEM-EDS image of strain W7 in the absence of Cd; (B) SEM-EDS image of strain
W7 in the presence of 20 mg L−1 Cd; (C) SEM-EDS image of strain W25 in the absence of Cd; (D) SEM-EDS image of strain W25 in the presence of
20 mg L−1 Cd. The white circles indicate selected spots for EDS.
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DTPA-Cd content in the 2–0.25 mm soil particles by 16 and 21%,

respectively, compared with the controls (Figure 4A). The

application of strain W25 significantly reduced the DTPA-Cd

content in the >2 mm soil particles by 35%. In high Cd-polluted

rhizosphere soils (Figure 4B), inoculation with both strains

significantly reduced the DTPA-Cd content in >2 mm soil

particles by 22 and 37%, respectively, and strain

W25 significantly reduced the DTPA-Cd content in

2–0.25 mm soil particles by 26% compared to controls. In low

Cd-contaminated rhizosphere soils, inoculation with both strains

significantly increased the total Cd contents in the

0.075–0.048 mm and <0.048 mm soil particles by 29–33% and

30–46%, respectively (Figure 4C). The presence of both strains

significantly decreased the total Cd concentrations in the >2 mm

(16–18%) and 2–0.25 mm (18–21%) soil particles and increased

the total Cd concentrations in the <0.048 mm (35–46%) soil

particles in high Cd-polluted rhizosphere soils, compared to the

controls (Figure 4D).

3.6 Effects of strains W7 and W25 on Cd
loading and accumulation in soil
aggregates

The loading of Cd in different soil particles was studied to

evaluate the contribution of aggregate size fractions to total Cd

accumulation. About 40% of the total metal loading was retained

in soil particles of 2–0.25 mm (Figure 5A), indicating that Cd was

preferentially accumulated in soil fractions of this size. Strains

W7 and W25 had no significant effect on the GSF values in the

first four aggregate fractions, but significantly increased the GSF

values of Cd in the <0.048 mm soil particles (Figure 5A).

Figure 5B shows the accumulation factors (AFx) of Cd.

Inoculation with these two strains significantly decreased the

AFx values in the >2 mm soil particles in Cd-contaminated soils,

and similar decreases were found in the 2–0.25 mm aggregates in

highly contaminated soils. Also, the presence of both strains

significantly increased the AFx values in the <0.048 mm and

0.075–0.048 mm soil particles in low Cd-contaminated soils.

These results indicate that inoculation with strains W7 and

W25 reduced the AFx values of Cd in the macro-aggregates

and increased those in the micro-aggregates.

4 Discussion

Bacterial immobilization of heavy metal is an effective,

economical, and environmentally friendly strategy for

remediating heavy metal-contaminated soil (Liu et al., 2018b;

Shan et al., 2020). In the present study, the γ-PGA-producing
bacteria W7 and W25 could significantly decrease the Cd

contents in the wheat root, straw, and grain. In our pot

experiments, the Cd content (0.19 mg kg−1 of dry weight) of

wheat grains inoculated with strain W25 was lower than the

maximum permitted Cd value established by the FAO/WHO

(2011). In our previous study, we also found that these bacteria

could significantly reduce Cd uptake by lettuce (Wang et al.,

2020b). These results suggest that using of γ-PGA-producing
bacteria to immobilize heavy metals and inhibit plant Cd uptake

is a viable approach for soil remediation and the safe production

of crops in Cd-polluted soils.

Resistance to heavy metals is essential for heavy metal-

immobilizing bacteria to stabilize heavy metals. Bacteria

perform Cd resistance by biosorption, extracellular binding,

precipitation, intracellular accumulation and efflux of the

metal (Ayangbenro and Babalola, 2017; Shan et al., 2019). In

this study, strains W7 and W25 were confirmed to be Cd-

FIGURE 3
Effects of strains W7 and W25 on Cd contents of root (A),
straw (B) and grain (C) of wheat plants grown in low and high Cd-
contaminated soils. Error bars are ± standard error (n = 3). Bars
with the same letter are not significantly different (p > 0.05)
according to Tukey’s test. Dotted line corresponds to the
maximum allowable concentration of Cd in wheat grain set by
FAO/WHO (0.2 mg kg−1).
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resistant and can therefore be used for Cd stabilization in soils. In

addition, they can produce IAA and siderophores, which may

protect plants from Cd toxicity (El-Meihy et al., 2019), and γ-
PGA, which contains numerous anionic functional groups that

can bind metal ions (Inbaraj et al., 2009). These strains increased

the solution pH value, cell growth and NH4
+ production

(Supplementary Figures S1B, C), which possibly led to Cd

adsorption on the cell surface of the bacterial by competitive

adsorption between H+ and Cd2+, thereby reducing the Cd

availability in the solution. Similar changes in the cell

TABLE 1 Effects of strainsW7 andW25 on the pH, organic matter content, enzyme activities and DTPA-extractable Cd content of the rhizosphere soils of wheat
plants. The values are means ± standard error (n = 3). Mean followed by the same letters within the same column are not significantly different (p > 0.05)
according to Tukey’s test. **OM: organic matter.

Cd added
(mg kg−1)

pH OM
(g kg−1**)

Urease (mg NH4
+-N g-

124–1)
Invertase (mg glucose g-

124–1)
DTPA-extractable Cd
(mg kg−1)

0*

CK 7.26 ±
0.19b

20.6 ± 1.1b 0.32 ± 0.02ab 31.0 ± 3.0b -

W7 7.58 ±
0.03a

22.7 ± 1.0a 0.35 ± 0.01a 39.7 ± 0.6ab -

W25 7.69 ±
0.03a

23.0 ± 1.1a 0.39 ± 0.02a 37.7 ± 2.6ab -

1.5*

No bacteria 7.22 ±
0.11b

20.5 ± 1.0b 0.26 ± 0.02bc 36.1 ± 2.8b 0.94 ± 0.11d

W7 7.65 ±
0.08a

23.2 ± 0.3a 0.34 ± 0.04a 46.3 ± 5.4a 0.75 ± 0.17de

W25 7.74 ±
0.01a

24.4 ± 0.1a 0.36 ± 0.06a 45.1 ± 3.3a 0.61 ± 0.02e

3*

No bacteria 7.16 ±
0.09b

19.9 ± 0.1b 0.22 ± 0.05c 32.8 ± 2.2b 2.49 ± 0.19a

W7 7.63 ±
0.09a

22.8 ± 1.2a 0.33 ± 0.02a 38.4 ± 4.0ab 1.93 ± 0.04b

W25 7.70 ±
0.02a

24.5 ± 0.6a 0.36 ± 0.00a 37.9 ± 6.8ab 1.57 ± 0.12c

TABLE 2 Effects of strainsW7 andW25 on Cd distributions of the rhizosphere soils of wheat plants grown in low and high Cdcontaminated soils. The values are
means ± standard error (n = 3). Mean followed by the same letters within the same column are not significantly different (p > 0.05) according to Tukey’s test.

Cd added (mg kg−1) EX-Cd (mg kg−1) CB-Cd (mg kg−1) OX-Cd (mg kg−1) OM-Cd (mg kg−1)

1.5*

No bacteria 0.87 ± 0.09a 0.25 ± 0.02a 0.28 ± 0.04b 0.06 ± 0.01a

W7 0.70 ± 0.04ab 0.24 ± 0.03a 0.37 ± 0.02a 0.05 ± 0.01a

W25 0.66 ± 0.08b 0.25 ± 0.02a 0.40 ± 0.01a 0.05 ± 0.01a

3*

No bacteria 1.51 ± 0.09a 0.45 ± 0.02a 0.72 ± 0.09b 0.11 ± 0.01a

W7 1.23 ± 0.09b 0.43 ± 0.05a 0.91 ± 0.03a 0.11 ± 0.02a

W25 1.21 ± 0.13b 0.44 ± 0.04a 0.94 ± 0.08a 0.10 ± 0.01a
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numbers of both strains were found with and without Cd

(Supplementary Figure S1A), suggesting that Cd had no

distinct influence on bacterial growth. These findings

indicated that the two strains survived and reduced the Cd2+

availability by increasing the solution pH value and producing γ-
PGA to adsorb Cd2+. Furthermore, strains W7 and

W25 immobilized Cd by precipitation (Figure 2). The cell wall

anionic functional groups of both strains may be involved in the

binding of Cd in solution (Xu et al., 2019), leading to increased

Cd adsorption. In particular, strain W25 produced more γ-PGA
and formed more Cd precipitate on its cell surface than strain

W7, resulting in W25 having higher abilities to resist Cd and

reduce the availability of Cd.

Soil pH plays an important role in the distribution,

transformation, and bioavailability of heavy metals (Lin

et al., 2019). Heavy metal availability is influenced by soil

pH; a higher pH increases the precipitation of insoluble

complexes and lowers metal availability because of

competition between H+ and metal ions (Li et al., 2017; Ma

et al., 2020b). Previous studies have shown that inoculation

with bacteria can increase the soil pH, thus decreasing the

metal availability in the soil (Li et al., 2017; Wang et al.,

2020a). Organic matter improves soil quality and function. It

also significantly impacts the bioavailability of heavy metals in

soil (Kwiatkowska-Malina, 2018). Organic matter can form

insoluble complexes with metal ions and effectively affect the

transport and transformation of metal speciation in soil

becuase of its multitudinous composition and abundant

functional groups, such as hydroxylic (-OH) (Li et al.,

2019). Soil urease plays an important role in soil nitrogen

transformation because it can hydrolyze urea into NH4
+, NH3,

and CO3
2− which increases soil pH and form carbonate

precipitation of cations, thus reducing heavy metal

bioavailability (Achal and Pan, 2011). In the present study,

inoculation with the γ-PGA-producing strains W7 and

W25 significantly increased the pH value, organic matter

content, and urease activity of wheat rhizosphere soil

(Table 1), leading to the decrease in DTPA-extractable Cd

in wheat rhizosphere soils (Table 1), and consequently a

decreased Cd uptake by wheat (Figure 3). Moreover, the

presence of these two strains significantly decreased the

content of EX-Cd and increased that of OX-Cd in wheat

rhizosphere soils (Table 2), suggesting that these γ-PGA-
producing bacteria could promote the transformation of Cd

chemical forms from phytoavailable to invalid in wheat

rhizosphere soil. This is consistent with the results

observed previously (Wang et al., 2018).

Soil aggregates are the basic structural factors of soil and

can affect the migration and accumulation of heavy metals in

soil (Xiao et al., 2016). In this study, strains W7 and W25 did

not influence the structure and composition of soil particles

(Supplementary Table S1), most likely because the

interaction time between these bacteria and soil was too

short. The total content of Cd in soil aggregates was

analyzed to study the impacts of γ-PGA-producing
bacteria on Cd migration in soil aggregates. After

inoculation with strains W7 and W25, the total Cd

content in the macro-aggregates of wheat rhizosphere soil

decreased, whereas that of micro-aggregates increased

(Figure 4). Loading is strongly linked to the mass

percentage and Cd content of each aggregate size fraction

and is an important index for assessing the Cd distribution in

FIGURE 4
Effects of strains W7 and W25 on DTPA-extractable Cd
contents (A,B) and total Cd contents (C,D) of soil aggregates in low
and high Cd-contaminated rhizosphere soils of wheat. Error bars
are ± standard error (n = 3). Bars with the same letter within
each treatment are not significantly different (p > 0.05) according
to Tukey’s test.
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soil aggregates (Sutherland, 2003). In this study, strains

W7 and W25 increased the GSF values in micro-

aggregates (Figure 5A). The accumulation factor (AFx)

was used to estimate the enrichment of Cd in each particle

size (Acosta et al., 2009). Both strains decreased the AFx

values in macro-aggregates and increased those in micro-

aggregates (Figure 5B). Currently, it is generally believed that

micro-aggregates have a higher ability to retain Cd because of

their large surface areas and numerous adsorption sites

(Huang et al., 2020). The above results indicate that

inoculation with the γ-PGA-producing bacteria W7 and

W25 decreased the available Cd in macro-aggregates and

promoted the migration of Cd from macro-to micro-

aggregates, which may contribute to a decreased Cd

availability in rhizosphere soils and, consequently, a

reduced Cd content in wheat tissues.

5 Conclusion

Our results demonstrated that the γ-PGA-producing bacteria
Bacillus subtilis W7 and Bacillus amyloliquefaciens W25 could

immobilize Cd by increasing the pH value as well as extracellular

adsorption, intracellular accumulation, and bioprecipitation in

solution. Both strains reduced the Cd uptake of wheat tissues

(grain, straw, and root) by decreasing soil Cd availability through

increasing the pH value, OM content, and urease activity and by

promoting the migration of total Cd from macro-to micro-

aggregates, and transforming Cd from available into unavailable

forms. The grain Cd content of W25 strain-inoculated wheat

plants in Cd-polluted soil was below the threshold established

by the FAO/WHO. Overall, these findings provide a new idea and

basis for exploring the uptake of Cd by wheat plants inoculated

with γ-PGA-producing bacteria. They also suggest an efficient,

FIGURE 5
Effects of strains W7 andW25 on the GSFloading (A) and AFx (B) values of soil aggregates in low and high Cd-contaminated rhizosphere soils of
wheat. Error bars are ± standard error (n = 3). Bars with the same letter within each treatment are not significantly different (p > 0.05) according to
Tukey’s test.
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cost-effective, and environmentally friendly remediation technique

for the safe production of wheat in Cd-polluted soils. However,

further studies should be conducted to elucidate the mechanisms

involved in Cd uptake of wheat inoculated with γ-PGA-producing
bacteria and the possibility of using these bacteria for in situ

remediations in metal-contaminated soils under field conditions.
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