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Dissolved oxygen (DO) is crucial for the health of aquatic ecosystems, and plays

an essential role in regulating biogeochemical processes in inland lakes.

Traditional measurements of DO using the probe or analysis in a laboratory

are time-consuming and cannot obtain data with high frequency and broad

coverage. Satellites can provide daily/hourly observations within a broad scale

and have been used as an important technique for aquatic environments

monitoring. However, satellite-derived DO in waters is challenging due to its

non-optically active property. Here, we developed a two-step model for

retrieving DO concentration in Lake Taihu from Moderate Resolution

Imaging Spectroradiometer (MODIS) Aqua images. A machine learning

model (eXtreme gradient boosting) was developed to estimate DO from

field water temperature, water clarity, and chlorophyll-a (Chla) (root-mean-

square error (RMSE) = 0.98 mg L−1, mean absolute percentage error (MAPE) =

7.9%) and subsequently was validated on MODIS-derived water temperature,

water clarity, and Chla matchups with a satisfactory accuracy (RMSE =

1.28 mg L−1, MAPE = 9.9%). MODIS-derived DO in Lake Taihu from 2002 to

2021 demonstrated that DO ranged from 7.2 mg L−1 to 14.2 mg L−1, with a mean

value of 9.3 mg L−1. DO in the northern region was higher than in the central and

southern regions, and higher in winter than in summer. We revealed that DO in

this decade (2010–2021) was considerably lower than that in the last decade

(2002–2009). Meanwhile, annual mean of DO increased in 2002–2009 and

decreased from 2010 to 2021. The spatial distribution of DO in Lake Taihu was

related to Chla andwater clarity, while seasonal and interannual variations in DO

resulted from air temperature primarily. This research enhances the potential

use of machine learning approaches in monitoring non-optically active

constituents from satellite imagery and indicates the possibility of long-term

and high-range variations in more water quality parameters in lakes.
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1 Introduction

Lakes provide human beings critical living resources, such as

water, food, transportation, and recreation (Zhang et al., 2022).

Under the influences of climate changes and human activities,

lake environments have been altered, and some ecological effects

were induced, such as lake warming (O’Reilly et al., 2015),

intensified cyanobacterial scums (Huisman et al., 2018; Fang

et al., 2022; Hou et al., 2022), loss of aquatic vegetation (Zhang

et al., 2017), and water deoxygenation (Jane et al., 2021). Among

water quality indicators, dissolved oxygen (DO) is defined as the

amount of free and non-compound oxygen dissolved in water

(Wetzel 2001), which is one of the most critical factors for water

quality and health ecosystem. DO supports aquatic life and basic

oxygen demands (e.g., decomposition of organic matter) and

frequently regulates biodiversity (Schindler 2017), nutrient

biogeochemistry (North et al., 2014), greenhouse gas

emissions (Encinas Fernández et al., 2014), and drinking

water quality (Michalak et al., 2013). However, a number of

studies have reported a decline in DO and even the occurrence of

hypoxia and anoxia in coastal and inland lakes (Breitburg et al.,

2018; Chi et al., 2020; Jane et al., 2021). The monitoring and

understanding of spatial variations and long term trends of DO

in lakes is anticipated to support lake management efficiently

under global change.

Traditional measurements of DO using the probe or analysis

in a laboratory are time-consuming and unable to obtain high

frequency and broad coverage data, considerably restricting the

understanding of DO changes in lakes (Stanley et al., 2019).

Satellites can provide daily/hourly observations within a broad

scale, and they have been used as a crucial technique for

monitoring aquatic environments (Kravitz et al., 2021). In

general, the changes in optical active constituents (OACs),

including chlorophyll-a (Chla), suspended particulate matter

(SPM), and colored dissolved organic matter (CDOM), can be

directly related to the variations in water-leaving radiance

(Gordon 1983). Hence, numerous models have been

developed for deriving OACs and applied to ocean color

missions, such as the Moderate Resolution Imaging

Spectroradiometer (MODIS) onboard Terra (1999–present)

and Aqua (2002–present) (Song et al., 2014; Mouw et al.,

2015; Palmer et al., 2015). Despite these successful ocean

color applications, studies with respect to monitoring water

quality parameters with non-optical properties (e.g., DO and

nutrients) remains lacking (IOCCG 2018).

Several recent studies have tried to use empirical relations

between water quality and band combinations to achieve remote

sensing of non-optical parameters. For example, Shi et al. (2020)

found that the reflectance of the red and near-infrared bands was

useful for mapping particle phosphorus. Xiong et al. (2022) used

machine learning models to estimate total phosphorus from

MODIS reflectance data. Batur and Maktav (2019) employed

principal component analysis to estimate several water qualities,

including DO. Although these models worked satisfactorily in

regional waters, empirical relationships were difficult to transfer

to other areas owing to varying lake properties. In addition, the

following indirect models have been proposed: 1) the use of in

situ data to establish relations between OACs and non-optical

water quality, and 2) the retrieval of selected OACs from satellite

imagery and the estimation of non-optical substances in waters

(IOCCG 2018). Thereinto, Guo et al., 2021 and Kim et al. (2020)

used water temperature (WTR) and Chla to predict DO in coastal

and inland lakes successfully. In essence, DO is regulated by

multiple factors, including physical properties, biochemical

processes, and hydrological processes in lakes (Hutchinson

and Edmondson 1957; Jankowski et al., 2006; North et al.,

2014), which is quite complex. Machine learning models have

shown strong and robust performance in retrieving water

qualities in complicated waters from remote sensing

reflectance (Sagan et al., 2020; Kravitz et al., 2021; Cao et al.,

2022c), providing an alternative strategy to estimate DO in lakes

(Guo et al., 2021).

The goal of the current research is to monitor and

understand long-term variations in DO through MODIS

images. Lake Taihu, a shallow, turbid, and eutrophic lake in

China, was selected as the study area. Specifically, we aim to 1)

analyze the relations between DO and OACs and other

properties could be retrieved by remote sensing, including

Chla, Secchi-disk depth (SDD), and surface water temperature

in Lake Taihu, 2) develop a machine learning model for

estimating DO from MODIS images and validate its

performance, and 3) generate long-term variations in the DO

of Lake Taihu from 2002 to 2021 and reveal its spatiotemporal

patterns and corresponding driving forces. The results are

expected to support the monitoring of non-optical water

quality through satellite remote sensing and provide references

for evaluating the ecological health of Lake Taihu.

2 Material and methods

2.1 Study area

Lake Taihu is the third largest freshwater lake in China

(Figure 1), with a water area of 2,338 km2 and an average

depth of 1.9 m (Wang and Dou 1998). It is located in a

subtropical area that is warm and wet in summer but cold

and dry in winter. Lake Taihu is found on the lower reach of

the Yangtze River, and the area around it is one of the most

developed regions in China. Excessive human activities have

intensified eutrophication and cyanobacterial blooms since the

1980s (Qin et al., 2007). The lake supplies water to approximately

10 million residents of surrounding cities, including Wuxi,

Suzhou, and Huzhou. Thus, the water quality of Lake Taihu is

essential for local human activities and needs, such as drinking,

tourism, fishing, and shipping. Lake Taihu is usually divided into
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seven subregions: Zhushan Bay (ZSB), Meiliang Bay (MLB),

Gonghu Bay (GHB), West, Center, South, and East. Some

areas in the MLB, GHB, and East regions are frequently

covered by macrophytes, affecting the retrieval of Chla and

SDD (Shi et al., 2017), and thus, these areas are not included

in the analysis.

2.2 Field dataset

Monthly/seasonal surveys from 2007 to 2015 were

conducted by the Taihu Lake Laboratory Ecosystem

Research (TLLER) Station to collect water quality parameters

(Min et al., 2019) (Figure 1). A total of 847 data samples were

collected here after excluding the outliers, e.g., stations covered

with cyanobacterial scums and macrophytes. These data

included DO, water temperature (WTR), Chla, and SDD.

The WTR and DO at each station were measured using a

well-calibrated YSI probe (Yellow Springs, OH

45387 United States) (Table 1). A standard 30 cm diameter

Secchi disk was used to measure SDD. At each station, water

samples at the surface layer (0.5 m) were collected and stored in

pre-cleaned 1 L high-density polyethylene bottles. The water

samples were strained through glass fiber filters (0.70 μm pore

size, Whatman GF/F), and Chla concentration was

spectrophotometrically determined using a Shimadzu

UV2700 spectrophotometer after the extraction of pigments

by using 90% ethanol (Jeffrey and Humphrey 1975).

In addition, daily mean temperature (°C) and wind speed (m

s−1) at Dongshan meteorological station near Lake Taihu

(Figure 1) from 2002 to 2021 were downloaded from the

National Meteorological Information Center, China (http://

data.cma.cn). These data were further aggregated into

monthly and annual mean values from 2002 to 2021.

2.3 Satellite images and products

Two types of satellite data were used in this study: 1) MODIS

Aqua Level 1 A data for retrieving Chla and SDD in Lake Taihu,

and 2) MODIS land surface temperature (LST) (MYD11A1)

products.

FIGURE 1
Geographical locations of Lake Taihu and sampling stations. Lake Taihu is divided into seven subregions, such as Zhushan Bay (ZSB), Meiliang
Bay (MLB), Gonghu Bay (GHB), West, South, Center and East. Note that some areas in GHB and East region with a lot of macrophytes affecting the
retrievals of dissolved oxygen were not included in this study. Note that the land use data was derived from the Landsat eight OLI data in 2021.
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2.3.1 MODIS data acquisition and preprocessing
MODIS Aqua Level 1 A data over Lake Taihu from July

2002 to December 2021 were downloaded from the NASA

Goddard Space Flight Center (https://oceancolor.gsfc.nasa.gov/

). These MODIS data were calibrated and processed using the

SeaWiFS Data Analysis System (SeaDAS, version 8.1)

(reprocessing v2018). The full atmospheric correction in

SeaDAS 8.1 failed in most pixels in Lake Taihu, possibly

related to three reasons: 1) the assumption of black-pixel at

the NIR bands failed in the turbid waters (Siegel et al., 2000), 2)

the low signal-to-noise ratio in the shortwave infrared (SWIR)

induced large uncertainty in deriving aerosol scattering in visible

bands (Wang and Gordon 2018), 3) the existing aerosol models

might not characterize the absorbing aerosols which was

frequently in cities and towns (Wang and Jiang 2018).

Alternatively, a partial atmospheric correction was employed

to remove gaseous absorption (e.g., water vapor and ozone) and

Rayleigh scattering to calculate Rayleigh-corrected reflectance

(Rrc, dimensionless) (Hu et al., 2004). Note that the concurrent

ancillary data, including air pressure and ozone, were used to

generate Rrc in SeaDAS.

Rrc data at three MODIS bands (645, 555, and 469 nm) were

used to generate red–green–blue (RGB) composite images at a

resolution of 250 m. Note that the data of 469 nm and 555 nm

with 500-m resolution were sharpened to a 250 m resolution by

using the resample tool in SeaDAS. The RGB images were

visually examined to exclude images which were largely

contaminated by cloud and Sun glints. Among more than

7,000 granules of MODIS data over Lake Taihu, 1935 scenes

were selected finally (Table 2). Furthermore, cloud-

contaminated pixels were removed via a threshold set on the

shortwave infrared reflectance (Aurin et al., 2013). The cloud

mask strategy might recognize turbid pixels as clouds and

wrongly remove them. Given that this threshold worked well

for most cases, this study did not manually remove clouds scene

by scene. Surface scums are often presented in Lake Taihu;

hence, the pixels with Floating Algae Index more

than −0.004 was recognized as algal blooms and excluded

(Hu et al., 2010). To eliminate the potential impact of land

adjacent effects on DO retrievals, we excluded three pixels

around the land following the suggestion of Feng and Hu

(2017).

A concurrent dataset of MODIS/Aqua Rrc data and in situ

water quality measurements was constructed to validate the

performance of the model on DO retrievals. We used a time

window of ±3 h between MODIS/Aqua data and in situ

measurements to screen the data first. MODIS pixels with

viewing zenith angles >60° and contaminated by clouds and

cyanobacterial scums were also excluded (Bailey and Werdell

2006). The mean value with a coefficient of variation <10% in 3 ×

3 element windows of MODIS was regarded as the matched Rrc

values. Finally, we obtained 58 matching pairs in Lake Taihu.

2.3.2 Chla and secchi-disk depth estimates
We used an empirical algorithm proposed by Shi et al. (2017)

to estimate Chla from MODIS Rrc data in Lake Taihu. Shi et al.

(2017) found that a normalized spectral index that used Rrc (645)

and Rrc (859) could be satisfactorily related to Chla (N = 125,

root-mean-square error (RMSE) = 15.1 μg L−1, mean absolute

percentage error (MAPE) = 27%) (Eq. 1).

TABLE 1 Statistics (mean ± standard deviation) of monthly water quality in Lake Taihu from 2007 to 2015. Note that SDD is the Secchi-Disk Depth m), WTR is
water temperature (°C), Chla is chlorophyll-a (μg L−1), DO is dissolved oxygen (mg L−1).

Month N SDD WTR Chla DO

Jan 72 0.47 ± 0.27 4.32 ± 2.11 11.72 ± 9.38 11.86 ± 1.17

Feb 71 0.52 ± 0.27 6.89 ± 2.57 14.94 ± 12.76 11.33 ± 1.77

Mar 72 0.44 ± 0.19 10.56 ± 2.54 13.35 ± 8.87 10.54 ± 1.4

Apr 72 0.47 ± 0.3 16.28 ± 3.09 11.48 ± 10.05 8.98 ± 1.3

May 70 0.32 ± 0.18 22.4 ± 1.6 20.39 ± 40.23 8.17 ± 1.37

Jun 70 0.5 ± 0.21 24.83 ± 1.57 30.06 ± 48.19 8.07 ± 1.37

Jul 69 0.32 ± 0.14 29.01 ± 1.7 53.45 ± 68.93 7.69 ± 2.02

Aug 71 0.31 ± 0.14 29.85 ± 2.33 57.66 ± 65.01 8.23 ± 2.15

Sep 69 0.29 ± 0.11 25.16 ± 2.32 56.15 ± 59.00 7.78 ± 2.07

Oct 68 0.27 ± 0.12 20.31 ± 1.69 47.11 ± 71.79 7.87 ± 1.42

Nov 70 0.36 ± 0.13 13.05 ± 3.23 30.14 ± 25.89 9.13 ± 1.44

Dec 72 0.37 ± 0.2 6.97 ± 1.52 16.79 ± 12.74 10.58 ± 1.13

All 846 0.38 ± 0.21 17.37 ± 8.95 30.01 ± 46.45 9.21 ± 2.13
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Chla � −1454.3 × α + 69.35

α � (EXP(Rrc,645) − EXP(Rrc,859))/(EXP(Rrc,645)
+EXP(Rrc,859)) (1)

Shi et al. (2018) demonstrated that Rrs (645) can be effectively

utilized for retrieving SDD in Lake Taihu. Given the

unavailability of Rrs (645) in Shi et al. (2018), Rrc (645)–Rrc

(2,130) was used as the alternative of Rrs (645) (Feng et al., 2018).

To eliminate the difference between reflectance, the empirical

equations were recalibrated using the aforementioned matchups

(Eq. (2), RMSE = 0.15 m, MAPE = 36%).

SDD � 0.0062 × Rrs 645( )−1.622 (2)

2.3.3 MODIS LST data
We used the LST from the MODIS Aqua (MYD11A1)

products (1 km) to represent WTR, which has been proven to

obtain consistent spatial and temporal thermal behavior in Lake

Taihu (Liu et al., 2015; Qi et al., 2020). MYD11A1 products

exclude low-quality pixels (e.g., cloud, cloud shadow, and Sun

glint). To be consistent with the spatial resolution of MODIS Rrc

data, MYD11A1 data were resampled to 250 m and

geographically aligned to MODIS Rrc data.

2.4 Machine learning models for
estimating DO

Three machine learning models, namely, random forest

(RF), eXtreme gradient boosting (XGB), and support vector

regression (SVR), which have been used for retrieving water

quality parameters (Sagan et al., 2020; Cao et al., 2022c), were

utilized for retrieving DO in Lake Taihu. Given the various

predicting mechanism among the three models, which one

exhibited the best performance remained unknown. First, we

used 864 in situ data to train and validate the models for

comparing and selecting the optimal one. Then, we examined

TABLE 2 Temporal distribution of MODIS Aqua images used in this study. Each row represents the images number in each year while the column is the that of
each month.

Year J F M A M J J A S O N D All

2002 0 0 0 0 0 0 12 8 13 14 15 3 65

2003 8 6 8 7 7 8 8 2 11 10 9 12 106

2004 5 10 6 9 4 6 12 1 8 12 12 7 102

2005 4 4 6 9 8 9 8 5 8 10 6 12 89

2006 4 3 9 9 8 10 7 9 6 11 6 10 92

2007 7 5 10 11 9 2 6 13 7 10 9 4 93

2008 5 10 8 5 7 4 11 11 11 6 10 14 102

2009 7 1 9 13 12 8 6 8 10 7 4 8 93

2010 6 4 8 6 5 8 7 12 6 7 10 14 93

2011 11 8 10 12 8 3 5 4 7 7 5 10 90

2012 5 2 7 6 10 4 7 9 8 12 9 8 87

2013 8 4 5 8 8 2 7 8 9 12 9 11 91

2014 10 4 11 4 7 5 9 5 7 16 8 19 105

2015 11 8 8 8 4 3 7 5 8 10 2 9 83

2016 7 15 9 6 7 4 8 14 8 0 7 11 96

2017 9 6 6 11 8 3 9 11 5 7 5 13 93

2018 5 8 9 9 6 6 9 14 8 13 8 5 100

2019 5 2 6 9 7 10 9 15 15 10 14 10 112

2020 2 10 11 12 8 5 1 11 10 12 15 13 110

2021 12 12 8 7 11 7 10 12 9 12 12 21 133

All 131 122 154 161 144 107 158 197 174 198 175 214 1935
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the performance of the optimal model in retrieving DO from

58 matched MODIS samples.

Compared with the use of WTR and Chla in DO estimates in

previous studies (Kim et al., 2020; Guo et al., 2021), the input to

the models included WTR, Chla, and SDD. The output variable

was DO concentrations. WTR alters thermal properties and

affects the solubility of DO (Jankowski et al., 2006), while

Chla reflects primary productivity, which is closely related to

photosynthesis and respiration. SDD is a crucial factor for

quantifying light attenuation in a lake column, possibly

regulating the lake mixing and vertical distribution of DO

(Zhang et al., 2015; Liu et al., 2020). It has also been utilized

to estimate carbon dioxide in lakes (Qi et al., 2020). The field data

suggested that these variables exhibited considerable correlations

with DO during different seasons in Lake Taihu (Figure 2).

Following our experiments, all three models trained with the

three inputs outperformed the models with two inputs (i.e., WTR

and DO).

We randomly chose approximately 70% (n = 499) of the

matchups for training, and the remaining 30% of data (n =

265) were used to test model performance. All the input and

output data were log-transformed and standardized using the

mean and standard deviation within the 0–1 range before

training the models. The hyperparameters of the RF, XGB,

FIGURE 2
The relationship between water temperature (WTR), Secchi-Disk Depth (SDD), chlorophyll-a (Chla) and dissolved oxygen (DO) for different
seasons in Lake Taihu.
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and SVR models were determined using a grid search

method.

2.5 Performance statistics

The well-validated machine learning model was used to

retrieve DO from cloud-free MODIS Rrc and LST images. The

annual and monthly mean DO values from 2002 to 2021 were

further aggregated from the daily DO series. ThemeanDO values

for each subregion were calculated from the clipped images by

using specific boundaries. Pearson correlation was utilized to

explain the relations between two variables, i.e., air temperature

and DO. The correlation was significant at p < 0.05. We used the

determination coefficient (R2), RMSE, MAPE, median symmetric

accuracy (MdSA), and the symmetric signed percentage bias

(SSPB) (Morley et al., 2018) to evaluate the performance of the

models (Eqs. 3–5). All statistics were collected in Python

3.8 environment.

MAPE � 100 ×
1
N
∑N
i�1

Ei −Mi| |
xi

, (3)

MdSA � 100 × 10ζ − 1( ), ζ � Median log10
Ei

Mi
( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (4)

SSPB � 100 × sgn(Q)(10 Q| | − 1), Q � Median(log10Ei/Mi)
(5)

where N is the number of data pairs; the subscript i denotes

individual data points; and E and M represent measured and

estimated values, respectively.

3 Results

3.1 Characteristics of DO in Lake Taihu

The field dataset from 2007 to 2015 (Table 2) indicated

that Lake Taihu had a mean DO of 9.21 ± 2.13 mg L−1

(mean ± standard deviation) ranging from 2.3 mg L−1 to

16.9 mg L−1. Seasonal variation in DO was apparent, and

exhibited lower in winter than in summer, which was

highest in January (11.86 ± 1.17 mg L−1) and lowest in July

(7.69 ± 2.02 mg L−1). The relations of DO to the related

indicators during different seasons are illustrated in

Figure 2. Generally, the seasonal distribution of DO was

FIGURE 3
The performance of XGBoost [XGB, (A)], Random Forest [RF, (B)], and Supporting Vector machine Regression [SVR, (C)] models based on in situ
data on DO estimates for the independent testing dataset (N = 265).

FIGURE 4
The validation of XGBmodel on retrievals of dissolved oxygen
(DO) in Lake Taihu using MODIS-derived water temperature,
chlorophyll-a, and Secchi-disk depth (N = 58).
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reversed with that of WTR and similar to that of SDD and

Chla. DO exhibited a significantly negative correlation with

WTR (p < 0.05) except in summer, which showed a slightly

positive correlation (r = 0.17, p < 0.05). The positive relation

in summer might resulted from the contributions of WTR

and other factors. SDD was positively correlated with DO but

only significant during summer (r = 0.13, p < 0.05). In terms

of Chla, we found it had a significant positive correlation with

DO, except during autumn. This analysis indicated that

WTR, SDD, and Chla presented significant relations to the

seasonal variation of DO, and the effect of SDD on DO during

summer is peculiar. The relations provided the foundation

for estimating the DO concentration through the above three

parameters.

3.2 Validation of algorithm on
retrieving DO

The performance of the XGB, RF and SVR models on the

265 in situ samples is presented in Figure 3. Notably, the inputs of

these samples (i.e., WTR, Chla, and SDD) are in situ

measurements. The three machine learning models performed

satisfactorily with the <1.1 mg L−1 RMSE and <10% MAPE.

Moreover, these data pairs were distributed evenly along the

unity for DO ranging from 2 mg L−1 to 15 mg L−1 in Lake Taihu

and did not present evident deviations. Among the three models,

XGB (R2 = 0.77, RMSE = 0.98 mg L−1, MAPE = 7.9%) slightly

outperformed RF (R2 = 0.77, RMSE = 0.99 mg L−1, MAPE =

8.2%) and SVR (R2 = 0.77, RMSE = 1.1 mg L−1, MAPE = 9.4%).

The XGB model was further examined on the 58 MODIS-

derived WTR, SDD, and Chla points to determine its integrity in

estimating DO from satellite images (4.8–16.0 mg L−1) (Figure 4).

MODIS-derived DO performed a satisfactory consistency with

the measured values (RMSE = 1.28 mg L−1, MAPE = 9.9%). It

should be noted that a slight underestimation for points with DO

more than >15 mg L−1 was observed. The XGB model was

inferred to be robust and suitable for mapping DO in Lake

Taihu from MODIS images.

3.3 Long-term variations in DO

The well-validated XGB model was utilized to generate the

DO series in Lake Taihu from 2002 to 2021. Overall, Lake

Taihu had an average DO of 9.3 ± 1.8 mg L−1 over the past

FIGURE 5
Spatial distributions of mean MODIS-derived dissolved oxygen [DO, (A)], surface water temperature [WTR, (B)], chlorophyll-a [Chla, (C)], and
Secchi-Disk Depth [SDD, (D)] in Lake Taihu from 2002 to 2021, respectively.
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20 years (Figure 5A). DO in the northern three bays (9.8 ±

1.9 mg L−1) was higher than in the central (9.2 ± 1.7 mg L−1)

and southern (9.1 ± 1.8 mg L−1) regions. Notably, DO covered

with macrophytes were omitted here. We also generated the

WTR, Chla, and SDD in Lake Taihu since 2002 (Figures 5B-

D). The spatial pattern of DO was similar with Chla and

inversely related to that of SDD. Meanwhile, it did not exhibit

specific relations with WTR.

The annual variations in DO from 2002 to 2021 are

mapped in Figure 6, and the corresponding statistics are

illustrated in Figure 7. The interannual DO variations of Lake

Taihu were divided into two stages (Figure 7A): 1)

significantly increased from 2002 to 2009, with a slope of

0.16 mg L−1 (R2 = 0.63, p < 0.05); and 2) slightly declined

from 2011 to 2021, with a slope of −0.04 mg L−1 (R2 = 0.30,

p < 0.05). The annual variations in DO of different

subregions also presented similar trends (Figure 7B). The

annual mean DO was different in various stages. For

example, ZSB had the highest DO before 2010, while DO

in MLB was the highest after 2010. DO in central and

southern Lake Taihu was lowest all the time. We observed

that annual mean air temperature decreased from 2002 to

2010 (slope = −0.07 °C, R2 = 0.20, p < 0.05) and exhibited a

dramatic increase since 2010 (slope = 0.21 °C, R2 = 0.83,

p < 0.05, Figure 7C). The annual air temperature was

significantly negatively correlated with DO in Lake Taihu

(R2 = 0.21, p < 0.05). In addition, wind speed showed a

continuous decline and was not significantly correlated with

DO (Figure 7D).

Figure 8 presents the monthly mean DO in Lake Taihu from

2002 to 2021. We found that DO in winter was higher than that

in summer. DO was highest in January (11.9 mg L−1) and lowest

in August (7.7 mg L−1) (Figure 9A). This finding was consistent

with the aforementioned analysis based on the field dataset

(Table 1). The monthly variations in DO were negatively

correlated with air temperature (R2 = 0.80, p < 0.05), while

wind speed was not significantly associated with it (p > 0.05,

Figures 9C,D).

FIGURE 6
Climatological annual mean dissolved oxygen (DO) derived fromMODIS images in Lake Taihu from 2002 to 2021. Note that MODIS images did
not include data in the period of January-June in 2002.
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4 Discussion

4.1 Accuracy and uncertainty of the
machine learning model

A two-step model was developed to estimate DO from

MODIS images in Lake Taihu (Figures 3, 4). The model was

established on the theoretical relations between thermal and

optical properties and DO in lakes (Kim et al., 2020; Guo

et al., 2021). Such an idea for estimating non-optically active

matters have been employed in other studies (IOCCG 2018;

Chen et al., 2019; Qi et al., 2020). The current work developed a

machine learning model to determine the relations between DO

and the aforementioned three indicators rather than the

regressions (Kim et al., 2020). In general, their relations in

eutrophic lakes are complicated and exhibit spatiotemporal

heterogeneity (Figure 2) (Wetzel 2001; Jankowski et al., 2006;

Breitburg et al., 2018). The input variables had various

contributions to the DO in different seasons (Figure 2) and

regions for Lake Taihu. The properties of water in norther

regions were mainly influenced by algal while central and

south regions were turbid. Compared with traditional

regressions such as linear/non-linear regression and step-wise

regression, machine learning models are particularly efficient for

solving complicated non-linear regression (Sagan et al., 2020).

The model was developed using 864 samples that spanned

different seasons across 8 years in Lake Taihu, suggesting that

the model was suitable for most cases in Lake Taihu.

Although machine learning models demonstrate the nature

of a “black box,” the relative contributions of input variables to

DO prediction can be useful for understanding the mechanism of

a model. We calculated the decrease in the accuracy score of the

models for each variable to interpret the contribution of each

variable to Chla (Cao et al., 2022a). The decrease in accuracy

score was defined as the difference between the baseline metric

from permutating the feature column, which was implemented in

the scikit-learn package of Python. Figure 10 reveals that WTR

makes the highest contribution to DO estimation while Chla and

SDD have low contributions. Thus, the model still estimated

satisfactory DO in Lake Taihu even though the retrievals of Chla

and SDD suffered from fair uncertainty (−30%) (Figure 4). The

retrieval of Chla in turbid waters frequently depends on the red

edge band near 700–710 nm (Gitelson 1992; Gilerson et al., 2010;

Gurlin et al., 2011), which is not equipped with MODIS

instrument.

Despite the satisfactory DO retrievals fromMODIS images in

Lake Taihu, several limitations must be improved. First, Rrc used

for retrieving Chla and SDD in Lake Taihu did not remove the

FIGURE 7
(A) Annual variations in dissolved oxygen (DO) for entire Lake Taihu from 2002 to 2021 (not including macrophytes regions). (B) Annual
variations in DO for different subregions of Lake Taihu. (C) and (D) is the annual mean air temperature and wind speed, respectively.
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signals of aerosol contributions, which might limit the accuracy

of DO estimations. For turbid waters, including Lake Taihu, the

elevating water-leaving radiance suggested that Rrc can be

utilized to retrieve water quality (Hu et al., 2004; Cao et al.,

2020; Seegers et al., 2021). We also found that the XGB model

underestimated DO slightly in the high range (Figure 4), possibly

resulting from insufficient samples in the extremely high DO

data (Stock 2022). It is anticipated to improve by adding more

high DO values (Cao et al., 2020). The surface temperature

products of MODIS had a resolution of 1 km, which was

lower than Chla and SDD. The pixels were not changed,

although we resampled it to 250 m. Since water is frequently

homogenous, WTR between adjacent pixels may exhibit slight

differences. In addition, DO in shallow lakes might change fast

due to wind-induced reoxygenation and diurnal variations in air

temperature. Thus, it would be efficient to improve the

observations of DO in lakes through the Geostationary

satellites (IOCCG 2012), such as Geostationary Ocean Color

Imager (GOCI), GOCI-II, and Himawari-8. Our model was

developed for MODIS instruments; however, the MODIS

mission operation has exceeded its anticipated lifetime and is

nearing its end. In the future, the model is expected to be

extended to the Visible Infrared Imaging Radiometer Suite

(VIIRS) onboard SNPP and NOAA-20/21 and Ocean Land

Color Instrument (OLCI) onboard Sentinel-3 for continuing

observations (Cao et al., 2022b).

4.2 Potential forces of DO changes in Lake
Taihu

The factors that regulate DO in lakes include the physical

processes induced by light, WTR, and lake mixing, and

biochemical factors, such as the photosynthesis-induced increase

FIGURE 8
Climatological monthly mean dissolved oxygen (DO) derived from MODIS images in Lake Taihu from 2002 to 2021.

Frontiers in Environmental Science frontiersin.org11

Liu et al. 10.3389/fenvs.2022.1096843

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1096843


of DO concentration, the respiration of aquatic organisms, the

bacterial oxidation of organic matter, and the consumption of

DO by other reduced inorganic substances (Zhang et al., 2015).

In addition, some anthropogenic modifications of the environment,

such as eutrophication (Müller et al., 2012), salinization, and

hydrological management (Carpenter et al., 2011) can reduce DO

in lakes.

We found that the temporal (interannual and seasonal)

variations in the DO of Lake Taihu were related to the

variability of air temperature (Figure 7). First, air temperature

determined the solute of oxygen in lakes by influencing the WTR

indirectly (Jane et al., 2021). The general narrative is that climate

warming induces widespread deoxidation in waters (Jankowski

et al., 2006; Perron et al., 2014; Zhang et al., 2015; Jane et al., 2021).

In deep waters, surface temperature warming can further intensify

thermal stratification, reducing water circulation and preventing

deep water DO replenishment (Jankowski et al., 2006; North et al.,

2014; Kraemer et al., 2015). In Lake Taihu, a shallow lake, such an

effect should mostly occur during summer (Yang et al., 2018). In

addition, wind speed in Lake Taihu over the past 20 years has

declined (Figure 7D), suggesting that turbulence should be

weakening (Macintyre 1993; Fernández Castro et al., 2021),

possibly reducing DO replenishment.

The spatial distribution of DO in Lake Taihu is consistent

with that of Chla (Figure 5). Higher Chla reflects high primary

productivity that releases plenty of oxygen via photosynthesis.

FIGURE 9
(A) Monthly variations in dissolved oxygen (DO) for entire Lake Taihu from 2002 to 2021 (not including macrophytes regions). (B) Monthly
variations in DO for different subregions of Lake Taihu. (C) and (D) is the monthly mean air temperature and wind speed, respectively.

FIGURE 10
Sensitivity of the XGBoost model developed in this study to
each input variable.
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The higher water clarity in northern areas facilitated the growth

of phytoplankton in lakes (Liu et al., 2020). In addition, wind

direction might regulate the spatial variations in the DO of Lake

Taihu. The wind direction for Lake Taihu was usually southwest

each year, suggesting that the stronger mixing process induced

higher DO concentration (Zhang et al., 2014).

4.3 Implications for lake monitoring and
management

This research successfully tracked the long-termDO variations

of Lake Taihu, allowing us to reveal its trends and elucidate its

potential driving factors. In the past, the monitoring of DO in lakes

was mostly based on field surveys (Jane et al., 2021). Operational

surveys have been conducted on some well-studied lakes, such as

Lake Taihu and Lake Erie. However, most lakes cannot be well

monitored, which should largely limit our understanding of

aquatic health and ecology (Plisnier et al., 2022). Our approach

provides a practical idea of employing satellite images to monitor

DO in lakes. This idea can be easily extended to other lakes,

although the model’s coefficients should be recalibrated using the

local dataset. By contrast, the methodology can be utilized to

estimate other non-optical water quality parameters, such as total

nitrogen, total phosphorus, and the permanganate index. With the

relations between OACs and meteorological data and the non-

optical parameters, it would be possible to estimate more water

qualities in lakes. The MODIS-derived DO of Lake Taihu in the

past 2 decades demonstrated declining trends compared with the

first decade of this century due to climate warming, which is

consistent with the conclusion of previous studies (Jankowski et al.,

2006; North et al., 2014; Jane et al., 2021). Climate warming was

also regarded as a primary regulator that affected cyanobacterial

blooms in Lake Taihu (Qin et al., 2019). The warming climate will

continue in the future (Woolway and Merchant 2019), and it is

crucial to formulate scientific strategies to prevent the negative

ecological effects of deoxidation in lakes.

5 Conclusion

This study developed a machine learning model for

generating the long-term DO variation of Lake Taihu from

MODIS Aqua. With the collected in situ data in Lake Taihu

from 2007 to 2015, we found that DO in Lake Taihu was

correlated with WTR, Chla, and SDD. Then, we established

the XGB model to estimate DO from in situ temperature,

Chla, and SDD by using 864 field data samples. The XGB

model was applied to 58 MODIS-derived WTR, Chla, and

SDD, and satisfactory DO retrievals were obtained. The

MODIS-derived DO series in Lake Taihu suggested that Lake

Taihu had higher DO in the northern region than in the other

regions. Meanwhile, summer had lower DO than the other

seasons. Annual variations in the DO of Lake Taihu revealed

that DO in this decade declined relative to that in 2002–2009. We

analyzed the potential driving forces of the spatial and temporal

changes in the DO of Lake Taihu. We found that climate

warming possibly reduced DO in Lake Taihu. Our results

propose the idea of using remote sensing to obtain non-

optical water qualities and provide practical references for lake

management in the warming future.
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