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With the continuous progress of social production, it has brought huge benefits, but
also led to an increasingly prominent global warming problem. Therefore, energy
conservation and emission reduction has become an important direction of national
industrial development. In order to promote the effective promotion of China’s
carbon emission reduction action, the study adopted the improved STIRPAT model
and Granger test to analyze the factors affecting China’s energy consumption carbon
emissions, combined with Johan equation and GFI decomposition to decompose
the factors affecting China’s energy consumption carbon emissions, excavated the
key influencing conditions of China’s energy consumption carbon emissions, and put
forward policy recommendations on energy consumption carbon emissions
reduction. The results show that economic growth has the greatest impact on
China’s per capita carbon emissions, followed by urbanization, industrial structure
and energy structure. At the same time, industrial energy intensity has an inhibitory
effect on per capita carbon emissions growth. From 2019 to 2021, Shanghai, Tianjin,
Guangdong and other 10 provinces will achieve good emission reduction results.
Therefore, in the analysis of energy conservation and emission reduction, it is of great
value to understand the influencing factors of carbon emissions, which can provide
direction and guidance for exploring an effective low-carbon development path, and
play an important role in promoting the realization of the “double carbon” goal.
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Introduction

In the face of the severe global climate and environmental situation, countries have taken
corresponding countermeasures to jointly cope with the climate global crisis. In this context, a
green and low-carbon transformation of society and economy is necessary. China has also made
a major strategic decision of “double carbon economy,” proposing the goal of carbon peaking
and carbon neutrality. It is required to control the rate of global warming by reducing carbon
emissions (Yu and Li, 2021). The human activities that lead to the increase of CO2 emissions are
mainly the use and consumption of carbon-related substances. Especially, the industrialized
production and daily use consume a large amount of fossil energy such as oil and coal, which
has caused a serious problem of excessive greenhouse gas emissions, thus causing a global
warming crisis (Sharif et al., 2019). Controlling CO2 emissions from the source of energy use is
an important realistic path to implement the dual carbon economy strategy. In order to curb the
excessive carbon emissions caused by unreasonable energy consumption, it is necessary to
analyze the characteristics of energy consumption, grasp the relevant influencing factors of
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carbon emissions from energy consumption, and take measures based
on this as the starting point. In order to effectively implement the
“double carbon” target orientation, the overall green transformation of
social economy is necessary.

Many scholars have conducted in-depth studies on carbon
emissions, expecting to understand the influencing conditions of
carbon emissions from multiple perspectives. Dey B K and his
partners studied waste and carbon emissions in product
manufacturing systems and proposed an autonomous inspection
system based on green technology. The experimental results
showed that this technology could reduce carbon emissions by
2.81%, while the product production cycle and installation costs
were also reduced by more than 10% (Dey et al., 2022). Blenkinsop
S and his group have responded to the UK’s institutional climate
change policy by proposing to reduce patient visits and associated
pollutant emissions through virtual clinics and telemedicine
(Blenkinsop et al., 2021). Ma X et al. constructed a carbon
emission decomposition model to analyze the driving factors of
carbon emissions in China. The results showed that China’s rapid
economic development hindered the reduction of carbon emissions
and the reduction of energy consumption intensity could significantly
reduce urban carbon emissions (Ma et al., 2019). However, the testing
model and tools of this study are relatively simple, and the scientific
nature of analysis needs to be improved. Yuping L et al. used
econometric methods to find that the consumption of renewable
energy reduced carbon emissions, starting from the change of
carbon emissions in Argentina, and used this to make relevant
recommendations, expecting to reduce the total global carbon
emissions (Li et al., 2021). However, this study only explored the
relationship between renewable energy and carbon emissions, and
lacked further exploration of specific factors affecting carbon
emissions from energy consumption. Pan X and other scholars
started with the carbon emissions of OECD countries, analyzed the
factors affecting the carbon emission intensity of 34 OECD countries
from 1995 to 2014 using the symbolic regression method, and
explored the internal functional structure of the influencing factors
through the symbolic regression method based on genetic planning.
The results show that GDP is the most important factor (Pan et al.,
2019). However, the research data used in this study is relatively old,

and lacks the support of the latest data. Xue LM and his team analyzed
the influencing factors of China’s carbon emission intensity from the
provincial perspective, and analyzed the driving mechanism of the
reduction of carbon emission intensity from the provincial perspective
using the spatial Dubin model. The results show that economic and
energy related emission reduction measures have the greatest impact
(Xue et al., 2020). However, the study lacks in-depth analysis of
China’s overall carbon emissions, and analysis and suggestions on
emission reduction from an overall perspective. The literature review
of previous studies is shown in Table 1.

To sum up, in recent years, there have been many studies on the
factors related to carbon emissions, but the analysis is not deep enough
to provide more in-depth research support and suggestions for China’s
carbon emissions impact analysis. And the past research has a single
analysis method, which can not provide data reference for China’s
energy conservation and emission reduction actions from multiple
perspectives. Therefore, the study takes energy consumption as the
starting point, analyzes the influencing factors of China’s energy
consumption carbon emissions by using the multi combination
method, and analyzes the provincial carbon emission conditions
from the perspective of spatial heterogeneity, evaluates the regional
emission reduction achievements and performance, hoping to provide
information reference for the ecological economic transformation
under the guidance of the “dual carbon” goal, and promote the
realization of China’s “dual carbon” strategic goal.

Analysis of energy consumption and
carbon emission characteristics in China

Carbon emission and related concepts

Carbon emissions are greenhouse gas emissions represented by
carbon dioxide. In terms of sources, carbon emissions can be divided
into renewable and non-renewable categories (Marian et al., 2021;
Sabǎu et al., 2021). Renewable carbon emissions are mainly the normal
carbon cycle in natural and social activities, including carbon
emissions caused by environmental biological metabolism, and
carbon emissions from the consumption of renewable energy

TABLE 1 Literature review.

Author Time Main research contents Research results

Dey B K, Park J, Seok H 2022 The waste and carbon emissions in the product manufacturing
system are studied, and an autonomous detection system based on
green technology is proposed

This technology can reduce 2.81% of carbon emissions, and reduce
the production cycle and installation cost by more than 10%

Blenkinsop S, Sisodiya S
M, Foley A, et al.

2021 Reduce patient visits and related pollutant emissions through virtual
clinics and telemedicine

Implementing telemedicine services for 1200 patients can reduce
35,000–40,000 kg of carbon dioxide equivalent (CO2e)

Ma X, Wang C, Dong B,
et al.

2019 Analyzing the driving factors of China’s carbon emissions using the
carbon emission decomposition model

The rapid development of China’s economy hinders the reduction of
carbon emissions, and the reduction of energy consumption intensity
can significantly reduce urban carbon emissions

Yuping L, Ramzan M,
Xincheng L, et al.

2021 Analysis of carbon emission changes in Argentina using econometric
methods

Consumption of renewable energy reduces carbon emissions

Pan X, Uddin M K, Ai B,
et al.

2019 Using the method of symbolic regression, this paper analyzes the
influencing factors of carbon emission intensity in 34 OECD
countries from 1995 to 2014

GDP is the most important factor

Xue L M, Meng S, Wang J
X, et al.

2020 Using spatial Dubin model to analyze the driving mechanism of
carbon emission intensity reduction from the provincial perspective

Economic and energy related emission reduction measures have the
greatest impact
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sources (RenY. S.Jiang et al., 2021; Shao and Wang, 2021). Renewable
carbon emissions are generally in a healthy biological cycle. Such
emissions do not break the global greenhouse gas balance and do not
have serious negative impacts on the global climate and environment.
In contrast, non-renewable carbon emissions are carbon emissions
resulting from the consumption of non-renewable energy sources such
as fossil energy, which are buried in the underground environment
with fossil energy. The non-renewable carbon emissions resulting
from the consumption of non-renewable energy sources lead to a
shock to the original state of carbon balance in the atmospheric
environment and a dramatic increase in the total amount of
greenhouse gases, which seriously threatens the global environment
and climate stability (Li et al., 2020; Chen et al., 2021). In China’s
carbon emission structure, energy consumption accounts for more
than 70%, and unreasonable energy consumption activities are the
direct culprits of non-renewable carbon emissions. Therefore, in order
to achieve “carbon neutrality” and “carbon peaking,” and mitigate the
impact of greenhouse effect on the natural atmospheric environment,
non-renewable carbon emission control is the main means.

It is worth noting that carbon dioxide emissions are a major
component of carbon emissions, but carbon emissions are not the
same as carbon dioxide emissions. The difference lies mainly in the
quantity of the two. The molecular weights of carbon and carbon
dioxide are different, so the coefficients used in the process of
compiling data on carbon emissions and carbon dioxide emissions
are different. Therefore, it is important not to confuse carbon dioxide
emissions with carbon emissions when performing data statistics and
analysis of carbon emissions (Cui et al., 2022; Shah et al., 2022). The
issue of carbon emissions that the study is concerned with is not only
carbon dioxide emissions, but non-renewable carbon emissions
caused by having fossil energy consumption, including many
greenhouse gases.

Analysis of energy consumption
characteristics in China

In recent years, China has experienced rapid economic growth,
and the income level and quality of life of the people have been
continuously improved. However, what behind the rapid economic

growth is a huge input of resources and energy, and a series of
environmental problems have gradually come to the fore (Das
et al., 2022; Lqbal et al., 2022). The study obtained data from the
China Statistical Yearbook. From the perspective of energy
consumption in China in the past 10 years, the total energy
consumption has always kept rising. By 2021, it has exceeded
500 million tons of standard coal, with a year-on-year growth rate
of 5.23%. The total energy consumption and growth in China from
2012 to 2021 are shown in Figure 1. In China’s energy consumption
activities, the dominant source of consumption is the secondary
industry, and industry has the highest percentage of energy
consumption, which is the main industry of energy consumption
in China. According to the analysis of the types of energy consumption
in China, coal is the main consumption type in energy consumption.
Although the proportion of coal consumption has declined in recent
years, but always occupy a dominant position. Crude oil consumption
and other types of consumption accounted are climbing year by year.

Analysis of China’s carbon emission levels

The total carbon emission is an important indicator to measure the
carbon emission status of a country or region. The change of China’s
total carbon emission from 2012 to 2021 is shown in Figure 2. In the past
10 years, China’s carbon emissions from energy consumption have
generally maintained an increase. There was a small decline in 2015,
which was mainly related to the national economic situation at that
time. However, since 2016, China’s total carbon emissions have grown
rapidly. The carbon emissions reached 11.05 billion tons in 2021, with a
year-on-year growth rate of 2.41%. The rapid socio-economic
development has driven the rapid increase in energy consumption.
The rapid development of China’s economy in recent years has also led
to a faster growth trend of carbon emissions, with a year-on-year growth
rate of 3.91% in total carbon emissions in 2018. At present, China’s
energy consumption and carbon emission levels are the highest in the
world. The goal of “carbon neutrality” requires the transformation of the
existing huge fossil energy consumption system into a new energy
pattern with relatively zero emissions within 40 years, which means that
China is facing a very difficult task of carbon emission reduction. The
energy industry occupies an important strategic and fundamental

FIGURE 1
Total energy consumption and growth in China from 2012 to 2021.
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position in China’s economic system, directly affecting the pace of
China’s economic development. Therefore, how to successfully achieve
the “double carbon” target without slowing down the economic
development is a huge challenge for China’s development. Therefore,
it is important to scientifically assess the impact factors of energy
consumption in China under the guidance of the “double carbon”
target. Targeted measures are needed to transform energy consumption
to low carbon.

Decomposition of factors influencing
carbon emissions of energy
consumption in China

Combining STIRPAT model and granger test
to analyze carbon emission influencing
factors

The carbon emission of energy consumption is themain reason for the
continuous improvement of China’s carbon emission intensity. Therefore,
it is necessary to conduct an in-depth analysis of the influencing factors of
China’s carbon emission of energy consumption to provide reference for
China’s energy conservation and emission reduction. From the dual
perspectives of China’s overall carbon emissions and inter provincial
and regional spatial differences, the study conducted an in-depth
analysis of the influencing factors of China’s energy consumption
carbon emissions, combined the advantages of STIRPAT model,
Johan’s identity, GFI decomposition and GWR model in influencing
factors and difference analysis, and used multiple combination tools to
study the influencing conditions of China’s energy consumption from
multiple perspectives. STIRPAT model is an environmental impact
assessment model. It explores the impact of various influencing factors
on the environmental load through quantitative analysis. It has the
advantages of high flexibility and expand-ability and is widely used in
carbon emission impact analysis. Granger test is a common cause and
effect test method in econometrics, which can analyze and judge the cause
and effect relationship between time series variables. In order to obtain the
relevant influencing factors of carbon emissions from energy consumption

and to provide a reference for energy emission reduction, the study uses
historical data on the characteristics of energy consumption as well as
carbon emissions in China and the change trend of carbon emissions over
the years to conduct an in-depth analysis of the influencing conditions of
carbon emissions through the improved STIRPAT model. The study also
combines the D-P non-linear Granger test to further verify the intrinsic
effect relationship between the per capita carbon emission condition and
the hypothesized influencing factors in China. The analytical model of
carbon emission influencing factors is shown in Figure 3.

The IPAT model is the first model to conceptually quantify the
pressures and impacts of socioeconomic behavior on the environment.
It links the size of society’s population P, economic affluenceA, the level
of production technology T, and environmental stress I. The impact of
these three socioeconomic behaviors and environmental stress is
quantified using a mathematical function (Ravichandran and
Panneerselvam, 2022; Sadiq et al., 2022). The IPAT model function
is shown in Eq. 1.

I � PAT. (1)
The STIRPAT model is based on the IPAT model, which was

revised and proposed by Dietz et al., in 1994. It introduces the
mechanism of stochastic impact regression based on the classical
IPAT model and combines the estimated indices to analyze the non-
homogeneous relationships among the environmental influences (Sun
and Gao, 2022). The STIRPAT model expression is shown in Eq. 2.

I � aPbAcTdε. (2)
In Eq. 2, a is a constant. b, c, and d are all estimation indices, and ε

is the random error. The linear relationship between the environment
and the influencing factors is analyzed by taking logarithms on both
sides of Eq. 2, and the expression is shown in Eq. 3.

ln I � ln a + b lnP + c lnA + d lnT + ln ε. (3)
In Eq. 3, b, c, and d are the relational elasticity coefficients, which

indicate the percentage change of environmental pressure with the
growth of influencing factors. The study improves and adjusts the
STIRPAT model by combining carbon emissions from energy

FIGURE 2
Change in China’s total carbon emissions from 2012 to 2021.
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consumption, and breaks down the technology level factor in the
STIRPAT model into social industrial structure δ1, energy
consumption structure δ2 and energy consumption intensity δ3.
Economic affluence is measured by socioeconomic level δ4, and the
influence of urbanization level δ5 is introduced into the STIRPAT
model, with carbon emissions per capita θ as the dependent variable.
The non-linear function fi is introduced, i � 1, 2, 3, 4, 5. The
improved STIRPAT model expression is shown in Eq. 4.

ln θ � f1 ln δ1( ) + f2 ln δ2( ) + f3 ln δ3( ) + f4 ln δ4( ) + f5 ln δ5( ) + ε.

(4)
Combining linear and non-linear Granger tests to analyze the

specific effect relationship of the influencing factors, the linear
Granger causality test is shown in Eq. 5.

Yt � c1 +∑p

i�1αiYt−i +∑p

j�1βjYt−j + η1t,

Xt � c2 +∑p

i�1φiYt−i +∑p

j�1γjYt−j + η2t.

⎧⎪⎨⎪⎩ (5)

In Eq. 5, Yt and Xt are smooth time series. t denotes time,
t � 1, 2,/, T. α, β, φ, and γ are estimated parameters. p is the lag
order. η1t and η2t are residual series. The F-test is used to analyze
whether the variable Yt is caused by the variable Xt linear Granger,
and the expression is shown in Eq. 6.

H0: βj � 0,

j � 1, 2,/, p,

z1 � SSE0 − SSE1( )/p
SSE1/ T − 2p − 1( ) ~ F p, T − 2p − 1( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

In Equation 6, SSE1 and SSE0 are the sum of squared residuals and
the sum of squared residuals ignoring lagged variables of Eq. 5,
SSE1 � ∑T

t�1η̂
2
1t, and SSE0 � ∑T

t�1η̂
2
1t. When the statistic z1 is higher

than the critical value F, it indicates that Yt is caused by Xt

linearity. When the time series has a non-linear trend, further
analysis of the time variables is required using non-linear causality
tests based on the linearity test. The study uses the BDS test to
verify the non-linear dynamic trend and analyzes the spatial
correlation based on the association integral. The correlation
integral is shown in Eq. 7.

CV,n e( ) � 1
n
2( )∑∑

i< jI
V
ij. (7)

‖Vi − Vj‖ is the Euclidean distance between two points in the time
series. e denotes the bandwidth, n denotes the total number of samples,

and V is the m-dimensional subsample in the time series. The BDS
statistic is defined as shown in Eq. 8.

BDS m, n, e( ) �
�
n

√
CV,n,m e( ) − CV,n,1 e( )m( )

σm e( ) . (8)

In Eq. 8,CV,n,1(e)m andCV,n,m(e) denote the correlation integrals of the
1-dimensional and m-dimensional V, respectively. σm(e) denotes the
estimate of the standard deviation of the asymptotic distribution. When
the BDS statistic does not converge on the standard normal distribution, it
indicates the presence of non-linear relationships in the time series variables
(Du et al., 2021). After confirming that the time series has non-linear
variation characteristics, the intrinsic effect relationship needs to be analyzed
using non-linear causality tests. The study uses the D-P non-linear Granger
causality test to further analyze the intrinsic effect relationship of the factors
influencing carbon emissions. TheD-Pnon-linearity test introduces aweight
function based on the original hypothesis of the H-J test, combines the local
density estimation of the random vector, and establishes the Tn simplified
statistic for non-linear causality testing. TheTn(e) statistic is shown in Eq. 9.

Tn e( ) � n − 1( )
n n − 2( )∑i

f̂Xl
tX,Yl

tY,Z
K
t
xi, yi, zi( )f̂Yl

tY
yi( )−

f̂Xl
tX,Yl

tY
xi, yi( )f̂Yl

tY,Z
K
t
yi, zi( )⎡⎢⎢⎣ ⎤⎥⎥⎦. (9)

Whether Tn(e) satisfies condition An � �
n

√ (Tn(e)−q)
Sn

→d N(0, 1) is
verified. If the condition does not hold, then Tn does not converge to
a normal distribution, indicating that the variableYt is caused byXt non-
linear Granger. When the data satisfy the assumption of Gaussian
distribution, the approximate optimal bandwidth is shown in Eq. 10.

e m,n( ) � 8
m

( ) 1
m+4

1
n

( ) 2
m+4 (10)

In Eq. 10, m is the spatial point dimension and n denotes the
sample capacity.

Decomposition of carbon emission impact
factors using Johan’s constant equation
and GFI

In order to analyze the impact of energy consumption intensity and
other influencing factors on carbon emissions at the industry level, the
study uses Johan’s constant equation and Generalized Fisher Index (GFI)
to construct a decomposition model of carbon emission influencing
factors. The model explores the mechanism of influencing factors on
carbon emissions in China from the perspective of industries and
examines the intrinsic effects of changes in influencing factors on

FIGURE 3
Analysis model of carbon emission influencing factors.
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carbon emissions. The decomposition model of carbon emission impact
factors is shown in Figure 4.

Johan’s constant equation is based on the classical Kaya’s constant
equation, and the formula decomposes the influencing factors of
carbon emissions. The formula analyzes the influencing conditions
of carbon emissions from four aspects: energy consumption intensity,
consumption structure, economic level and population size. Johan’s
constant equation is shown in Eq. 11.

C � ∑
i

Ci

Ei
· Ei

E
· E
Y
· Y
P
· P. (11)

In Equation 11, C and Ci denote total carbon emissions and
emissions of energy i, respectively. E and Ei denote single energy
consumption and energy consumption of energy i, respectively. Y is
gross domestic product and P denotes population size level. The study
extends Johan’s constant equation by introducing the five influencing
factors proposed by the study, then the adjusted Johan’s constant
equation is shown in Eq. 12.

C � ∑
i
∑

j

Cij

Eij
· Eij

Ej
· Ej

Yj
· Yj

Y
· Y
P
· UP + RP

P
· P. (12)

In Equation 12,Cij and Eij denote the carbon emission and energy
consumption of the i th energy source of industry j, respectively. Ej

and Yj denote the total energy consumption and gross product of
industry j, respectively. UP and RP denote the number of urban and
rural population, respectively. The GFI decomposition is extended on
the basis of the traditional two-factor decomposition, and multi-factor
decomposition analysis is performed. Let the total indicator be W,
which is divided into n component factorsXnij, where i and j are sub-
categories, denoting energy type and industry category, respectively.
When analyzed from the perspective of structural change, the
expression of the aggregate indicator is shown in Eq. 13.

W � ∑
i
∑

j
X1ijX2ij/Xnij. (13)

Define the base of setN � 1, 2,/, n{ } as n. Let the subset ofN beZ
and the base be z′. ∅ denotes the empty subset. Define the subset
function as shown in Eq. 14.

W Z( ) � ∑∑ ∏
l∈Z

XT
l ∏m∈N\ZX

0
m( ),

W ∅( ) � ∑∑ ∏
m∈N

X0
m( ).

⎧⎪⎨⎪⎩ (14)

In Equation 14, T denotes the period. Based on the concept of
geometric mean, the decomposition function of WT/W0 is shown in
Eq. 15.

D � WT

W0
� DX1DX2/DXn. (15)

DXk is the decomposition factor term of GFI decomposition, and
the factor decomposition result is shown in Eq. 16.

DXk
� ∏

Z∈N
k∈Z

W Z( )
W Z\ k{ }( )[ ]

1
n· 1( n−1

z′−1)∏
Z∈N
k∈Z

W Z( )
W Z\ k{ }( )[ ]

z′−1! n−z′!( )
n!

. (16)

Let the per capita carbon emissions in periodT and the base period
be AVT and AV0, respectively. The change of per capita carbon
emissions is shown in Eq. 17.

D � AVT

AV0
� DX1 ·DX2 ·DX3 ·DX4 ·DX5. (17)

Then the formula of each influencing factor is shown in Eq. 18.

DXk
� ∏

Z ∈ 1,2,3,4,5{ }
k∈Z

W Z( )
W Z\ k{ }( )[ ]

z′−1! 5−z′!( )
5!

. (18)

Regional carbon emission performance
analysis combining spatial panel data
and GWR

Different regions have different characteristics in terms of
economic development and energy consumption, and there are
also differences in the effectiveness of carbon emission reduction
implementation. In order to analyze energy carbon emissions in
different regions and investigate the effectiveness of implementing
the dual carbon targets in different provinces, the study analyzes
the regional spatial performance of energy consumption carbon
emissions from the perspective of spatial correlation and
heterogeneity using spatial panel data models and
geographically weighted regression models on the basis of the
analysis of factors influencing energy consumption carbon
emissions at the general and industrial levels. The spatial panel
data model strengthens the control of spatial heterogeneity

FIGURE 4
Decomposition model of carbon emission influencing factors.
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measures on the basis of the traditional cross-sectional model,
which can obtain more data information from data variation and
provide data help for the study of dynamic changes in data on time
series (Fang et al., 2022; Li et al., 2022). The study used a spatial
Durbin panel model to analyze the factors influencing carbon
emissions, and the spatial Durbin model expression is shown in
Eq. 19.

Yt � ςWYt +Xtβ +WYtσ + μ + φ + εt. (19)
In Equation 19, Yt denotes the vector of observations of the

explanatory variable. Xt denotes the vector of observations of the
explanatory variable in the spatial cell. W is the spatial weight
matrix. ς is the spatial autoregressive coefficient. β and σ are the
coefficient variables.WYt denotes the exogenous interaction effect
of the explanatory variable. εt is the random error term. A spatial
panel data econometric model of regional carbon emissions is
established by combining the improved STIRPAT influence
factor analysis with carbon emissions as the explanatory
variable. With five influencing factors, such as social-industrial
structure, as explanatory variables, the expression of the spatial
Durbin model oriented to carbon emission research is shown in
Eq. 20.

Yt � ςWθt + δ1( )2tβ1 + δ1tβ2 + δ2tβ3 + δ3tβ4 + δ4tβ5
+ δ5tβ6 + μ + φ + εt. (20)

In Equation 20, βi is the coefficient of the explanatory
variable, i � 1, 2,/, 6. The application of the spatial panel data
model requires the introduction of a spatial weight matrix and a
time lag factor in the data time series. To enhance the portrayal of
regional spatial interactions, the study uses a functional
distance weight matrix for the analysis. The accuracy of spatial
econometric analysis is enhanced by combining the advantages of
both geographic and economic distance matrices. The
geographic distance matrix defines spatial weights with the
calculation of real geographic coordinates as the core. The
economic distance matrix analyzes the spatial interactions of
regional spaces on carbon emissions from the perspective of
regional economies by analyzing the unit interactions caused by
the differences in economic levels of spatial units. The study
introduces the gravitational model of physics in the function
distance weight matrix, and analyzes the influence of spatial
interaction from the correlation between the force between
objects and the distance and mass of objects under the law of
gravity, and the simplified spatial gravitational model expression is
shown in Eq. 21.

SEij � KQiQj

dij
. (21)

In Equation 21, SEij denotes the intensity of spatial effect
between region i and j. Qi and Qj are the scale volume of region
i and j, respectively. dij denotes the distance between two regions. K
is a constant, K � 1. According to the gravitational model, the
regional gravitational force is mainly divided into two parts: scale
volume and distance. Replace them into economic distance matrix
and geographic distance matrix respectively, the distance weight
matrix of carbon emission function can be established as shown in
Eq. 22.

WG �
0 wg11 / wg1N

wg21 0 / wg2N

..

. ..
.

1 ..
.

wgN1 wgN2 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

wgij � 1/ Ei − Ej

∣∣∣∣ ∣∣∣∣( ) 1/dij
α( ), i ≠ j,

0, i � j.

⎧⎨⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(22)

In Equation 22, Ei and Ej denote the economic development
variables of the two regions. α is usually taken as 1 or 2. Geographical
weighted regression models are used to analyze regional spatial
heterogeneity in carbon emission performance. The Geographical
Weighted Regression (GWR) model extends the general linear
regression model by combining the regression parameters with the
spatial data of the sample data. When the spatial location changes, the
regression parameters also change (Khan et al., 2019; Dong et al.,
2020). The regression equation of GWR model is shown in Eq. 23.

yi � βi0 +∑n
k�1

βikxik + εi, i � 1, 2,/, p. (23)

In Equation 23, βik denotes the value of the regression parameter
of the k th variable at the i th sampling point. The least squares method
is used to estimate the GWR model, and the objective function of the
regression sample points is shown in Eq. 24.

f βi0, βi1,/, βim( ) � min∑p
j�1
wij yi − βi0 −∑n

k�1
βikxik

⎛⎝ ⎞⎠2

. (24)

In Equation 24, wij indicates the estimated weight of sample point
j on the model of regression sample point i. When the spatial distance
between the sample point j and the regression sample point i is closer,
the wij value is larger (Shah et al., 20202020; Peng and Deng,
20212021; Tam et al., 20212021). The GWR model is a local
regression model with the spatial weight matrix as the core, and
the Gaussian function method is used as the spatial weight function of
the GWR model. The mathematical expression of Gaussian function
method is shown in Eq. 25.

wij � exp − dij/b( )2( ). (25)

In Equation 25, dij denotes the distance between the sample points
and the regression sample points. b denotes the bandwidth, which is
the non-negative decay parameter of the relationship between the

FIGURE 5
Gaussian spatial weight function.
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weight value and the distance function (Chen et al., 20202020; Du
et al., 20222022). The Gaussian spatial weight function is shown in
Figure 5. The size of the bandwidth determines the speed of weight
value decay with distance. When the bandwidth is larger, the decay of
the weight value with distance becomes slower.

Carbon emission influencing factor
validation and performance analysis

Test results of carbon emission influencing
factors

The research and analysis data source is the annual carbon
emission data released by Carbon Dioxide Information Analysis
Centre (CDIAC) of Oak Ridge National Laboratory, and the
carbon emission data generated by fossil energy is selected as the
total carbon emission data of China’s energy consumption. China’s
population data are all from the World Bank’s population database,
and the selected time period for each data is 2012–2021. A linear
Granger causality test is conducted to explore the linear influence
relationship between carbon emissions and the influencing factors
based on the smooth time series data. The results of the linear Granger
causality test are shown in Table 2.

As can be seen in Table 2, all five influencing factors proposed by
the study are linear causes of the growth of carbon emissions per capita
in China. Among them, industrial structure, consumption structure,
economic development and urbanization are not affected by the
inverse linearity of carbon emission growth, while carbon emission
per capita is the linear cause of the growth of energy consumption
intensity. The results of the linear Granger causality test show that
changes in the factors of industrial structure, consumption structure,
consumption intensity, economic development, and urbanization
have a linear effect on carbon emissions. That is, there is a linear
relationship between carbon emissions and the influencing factors,
and a linear regression model can be established. Based on the linear
Granger test, the non-linear interaction relationship between each
influencing factor and carbon emissions is further analyzed to test the

non-linear dynamic change trend between the influencing factors and
carbon emissions. Firstly, the carbon emission time series data are
tested for normal distribution, and the normal distribution QQ
diagram of total carbon emissions and per capita carbon emissions
is shown in Figure 6.

From Figure 6, the time series of total carbon emissions and per
capita carbon emissions meet normal distribution. The bandwidth is
determined by Eq. 10 to filter out the influence of linear relationship
between carbon emission and influencing factors, and then the filtered
residual series is tested by BDS. The results of the non-linear trend test
between carbon emission and influencing factors are shown in Table 3.

According to Table 3, the results of the explanatory and explained
variables tests between energy consumption intensity and carbon
emissions are not significant, and the results of the mutual
explanation test between urbanization level and carbon emissions are
also not significant, which proves that there is no non-linear trend
between consumption intensity and urbanization level and carbon
emissions growth, and there is only a linear effect on carbon
emissions without non-linear effect. The results of the mutual
explanation tests between industrial structure and economic
development and per capita carbon emissions all show significant
levels. The results of the explanatory test for the growth of carbon
emissions by consumption structure are significant and the opposite is
not significant, which proves that there is a non-linear dynamic trend
between industrial structure, economic development and consumption
structure and carbon emissions, and the next step of non-linear Granger
causality test can be performed. The results of the non-linear Granger
causality test between industrial structure, economic development and
consumption structure and carbon emission variables are shown in
Table 4.

There is no non-linear Granger causality between economic
development and energy consumption structure or carbon emissions,
there is only a one-way linear effect on the growth of carbon emissions.
Industrial structure is a non-linear cause of carbon emission changes,
and industrial structure has a long-term influence on carbon emission
growth, which is a non-linear driver of carbon emission growth per
capita in China. However, carbon emission growth does not have a
reverse non-linear causality on industrial structure change.

TABLE 2 Linear granger causality test results.

Variable relationships Lagging order F p Whether there is a causal relationship

δ1-θ 2 2.8946* .0946 Yes

θ-δ1 2 2.3648 .1358 No

δ2-θ 2 2.6975* .0549 Yes

θ-δ2 2 1.4216 .3267 No

δ3-θ 2 7.1655** .0018 Yes

θ-δ3 2 10.4698** .001 Yes

δ4-θ 2 6.1658** .0041 Yes

θ-δ4 2 1.8569 .1358 No

δ5-θ 1 3.1648* .0671 Yes

θ-δ5 1 .2751 .6103 No

Note: ** indicates 1% significant level, * indicates 10% significant level.
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Verification of carbon emission influencing
factor decomposition

The GFI decomposition is used to analyze the influence
relationship between the five influencing factors and per capita
carbon emissions, and to decompose the influencing factors of
carbon emissions from energy consumption. The carbon emission
data from 2012 to 2021 are obtained from the China Statistical
Yearbook, and the GFI decomposition results of carbon emission
influencing factors from 2012 to 2021 are shown in Table 5.

According to Table 5, the five influencing factors proposed by the
study all constitute significant effects on the change of carbon
emissions per capita. Among them, industrial structure,
consumption structure, economic development and urbanization
level have a positive pull effect on the change of carbon emissions,
while consumption intensity has a negative inhibitory effect on the
change of carbon emissions. Combined with the improved Johan
identity and GFI decomposition, explore the impact of influencing
factors on carbon emissions. Based on the carbon emissions data from
2012 to 2021 in the China Statistical Yearbook, the statistical results of
the contribution rate of influencing factors to carbon emissions from
2012 to 2021 are shown in Table 6.

Table 6 shows that in terms of the contribution of various
influencing factors to the change of carbon emissions, the
economic level has the highest contribution rate to the change of
carbon emissions per capita in China, which is 20.967%. Therefore,
economic development is the main influencing factor for the change of
carbon emissions. China is in the industrialization development stage
of developing countries, and what behind the development of national
economy is huge energy consumption investment, which leads to the
continuous increase of carbon emissions per capita in China. Energy
input is one of the main basic inputs for the economic development of
developing countries. While promoting economic growth, it inevitably
causes ecological and environmental problems such as carbon
emissions.

The second largest contributor is the level of urbanization of the
population, with 19.714%. Among the human activities that cause
carbon emissions. In addition to the necessary energy consumption for
process production, the consumption of energy in the production of
people’s lives is also an important driver of carbon emissions growth.
With the development process of urbanization of the population, the
per capita carbon emissions are rising. The energy use demand of
urban population is significantly higher than that of rural population,
which makes the per capita carbon emission increase with the
proportion of urban population. Therefore, it is necessary to raise
people’s awareness of emission reduction, establish a resource-saving
lifestyle and consumption patterns, and reduce the influence of
urbanization level on the growth of per capita carbon emissions.

The positive contribution of industrial structure influencing
factors to the growth of carbon emissions per capita in China is
19.278%. In terms of the energy consumption structure of each
industry in China, the secondary industry has the greatest impact
on the increase of energy consumption and carbon emissions.
Industrial development needs a large amount of energy. Currently
the industrial development process in China has a high percentage of
non-renewable energy consumption, which leads to a large amount of
carbon emissions. The tertiary industry with higher added value and
lower energy consumption is in the development stage, but still cannot
shake the dominant position of the secondary industry. In order to
reduce carbon emissions and promote the transformation of a green
and low-carbon society, The government should promote the
optimization of the industrial structure of energy conservation and
emission reduction, integrate resources in the field of secondary
industry, promote the improvement of energy utilization efficiency

FIGURE 6
Normal distribution QQ chart of total carbon emissions and per capita carbon emissions. (A) Total carbon emissions. (B) Carbon emissions per capita.

TABLE 3 Test results of non-linear change trend.

Variable relationships BDS test p

δ1-θ .0356** .0041

θ-δ1 .0359* .0112

δ2-θ .0158 .2763

θ-δ2 .0527** .0000

δ3-θ .0157 .1543

θ-δ3 -9.46E-05 .9714

δ4-θ .0413** .0040

θ-δ4 .0487** .0082

δ5-θ .0076 .5948

θ-δ5 -2.98E-05 .6128

Note: ** indicates 1% significant level, * indicates 5% significant level.

Frontiers in Environmental Science frontiersin.org09

Xiao and Peng 10.3389/fenvs.2022.1096650

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1096650


of secondary industry, and actively increase the proportion of low-
energy tertiary industry in the national economy.

The energy consumption structure has the fourth largest
contribution to the growth of carbon emissions, at 18.686%. The
carbon emission coefficients of different energy types are different,
which makes the carbon emissions caused by different types of energy
consumption different, so the total carbon emissions are also affected
by the change of energy consumption structure. In order to reduce the
level of carbon emissions per capita and achieve of the goal of “carbon
neutrality”, it is necessary to optimize the energy consumption
structure. The proportion of high-emission energy in the

consumption structure should be reduced, and energy consumption
should be upgraded to low energy consumption and low carbon. The
development of clean energy, such as solar energy, should be
encouraged to expand the proportion of renewable energy in the
consumption structure.

Energy consumption intensity has the lowest contribution to
carbon emission, which is 18.404%. Unlike the other four
influencing factors, consumption intensity has a negative influence
effect on carbon emissions. Due to the improvement of industrial
energy utilization technology level and utilization efficiency, energy
consumption intensity shows a decreasing trend, which has a negative

TABLE 4 Non-linear granger causality test results.

Original assumption Lagging order D-P test statistic

δ1aθ 1 −2.9466**

2 −1.9758*

3 −3.0438**

4 −6.7026**

5 −4.3675**

θaδ1 1 −.7205

2 −1.5482

3 −.3468

4 −.8132

5 −1.2515

δ2aθ 1 .0157

2 −.2687

3 −.1684

4 .1126

5 −1.5206

θaδ2 1 0

2 −.0816

3 −.1028

4 0

5 −.3158

δ4aθ 1 −.1027

2 −.3581

3 −1.3158

4 −.6015

5 −.1068

θaδ4 1 −.1067

2 −.5487

3 −.3567

4 −.9907

5 −.2218

Note: a indicates that the former is not a non-linear Granger cause of the latter, ** indicates 1% significant level, and * indicates 5% significant level.
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inhibiting effect on the growth of carbon emissions from energy
consumption. Therefore, improving energy utilization efficiency to
reduce consumption intensity is an important measure. The
government and enterprises should strengthen their R&D efforts
on energy utilization, adopt advanced equipment with low energy
consumption and low emissions to carry out production activities, and
upgrade low-carbon industries as soon as possible.

To sum up, in order to analyze the influence relationship between the
influencing factors of carbon emissions, the study conducted a linear
Granger causality test on the time series data. The results show that there
is a linear relationship between the influencing factors and carbon
emissions, and the time series of carbon emissions meet the normal
distribution, so it can enter the non-linear test. The non-linear trend test
results show that there is no non-linear change trend between
consumption intensity, urbanization level and carbon emissions
growth, and there is a non-linear dynamic change trend between

industrial structure, economic development, consumption structure
and carbon emissions, which can be used for the next non-linear
Granger causality test. Based on the results of linear and non-linear
Granger causality tests, there is only a one-way linear relationship
between energy consumption structure, economic development,
urbanization level and carbon emissions growth, a two-way linear
relationship between consumption intensity and carbon emissions
growth, and a non-linear effect between industrial structure and
carbon emissions. The results of the GFI factor decomposition of the
influencing factors show that the five influencing factors have significant
effects, among which the industrial structure, consumption structure,
economic development and urbanization level have a positive impact,
while the consumption intensity has a negative impact. The contribution
of the influencing factors to the change of carbon emissions is in the order
of economic level, population urbanization level, industrial structure,
energy consumption structure and energy consumption intensity.

TABLE 5 GFI decomposition results of carbon emission influencing factors from 2012 to 2021.

Time (year) Economy Population
urbanization

Industry
structure

Energy consumption
structure

Energy consumption
intensity

2012 .987 1.018 1.019 .954 −.951

2013 1.026 1.049 1.082 .977 −.899

2014 1.033 1.069 1.068 .985 −1.052

2015 .987 1.098 .076 .969 −.993

2016 1.026 1.030 1.093 1.035 −.964

2017 1.069 1.025 .984 1.058 −.943

2018 .932 1.034 1.099 .951 −1.058

2019 1.003 1.083 1.086 1.018 −.990

2020 1.114 1.028 1.120 .990 −1.012

2021 1.013 1.033 1.113 .949 −.966

Average 1.019 1.047 .974 .989 −.983

TABLE 6 Contribution rate of influencing factors to carbon emissions from 2012 to 2021.

Time
(year)

Economy
(%)

Population
urbanization (%)

Industry
structure (%)

Energy consumption
structure (%)

Energy consumption
intensity (%)

2012 20.14 20.13 19.54 18.72 18.62

2013 21.06 19.15 20.37 18.64 18.33

2014 21.07 18.74 18.76 19.11 18.19

2015 20.83 19.68 19.03 18.39 18.67

2016 21.45 19.77 19.15 18.91 18.25

2017 20.77 20.01 18.92 18.46 18.17

2018 21.62 19.74 18.83 18.68 18.39

2019 20.93 20.38 19.36 19.06 18.07

2020 20.62 19.36 19.65 18.64 18.91

2021 21.18 20.18 19.17 18.25 18.44

Average 20.967 19.714 19.278 18.686 18.404
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Performance analysis of regional carbon
emissions

The GWR model is used to analyze the inter-provincial regional
differences in the impact of carbon emissions. The elasticity
coefficients of the variables of the GWR model are used to estimate
the results and analyze the regional differences in the impact of the
impact factors. The elasticity coefficients of the variables are positively
correlated with the degree of impact. Inter-provincial regional
differences in the impact of the five impact factors on carbon
emissions are shown in Figure 7. All data are obtained from the
energy statistical yearbook in the China Statistical Yearbook.

From Figure 7, in terms of social-industrial structure, eight regions
including Shaanxi, Guangxi, Hunan and Chongqing have variable
elasticity coefficients over 1.2, mainly concentrated in the southern
region and some northwestern regions of China, which proves that
these regions are more influenced by the industrial structure. In
contrast, the variable elasticity coefficients of Jiangsu, Zhejiang,
Shanghai, Ningxia and Anhui are negative, which indicates that the
optimization of regional industrial structure has achieved certain
results, and the decreasing share of secondary industry and the
improvement of energy utilization efficiency have effectively
suppressed the growth of carbon emissions.

In terms of energy consumption structure factors, the positive
effect of consumption structure on Qinghai, Ningxia, Zhejiang,
Jiangsu and other northwest and east China regions is larger.
Regions with negative effects are mainly concentrated in South
China, Southwest, Northeast and North China, including Sichuan,
Hunan and Guangxi. These regions are more influenced by energy
consumption structure factors. They should reduce the proportion of

high carbon emission energy sources such as coke and coal in energy
consumption and increase the use of clean energy.

As for energy consumption intensity level, carbon emissions are
positively correlated with consumption intensity in all regions. In
general, the variable elasticity coefficients of each region are
characterized by decreasing from east to west. Heilongjiang,
Sichuan, Guizhou and Qinghai regions have smaller variable
elasticity coefficients and are less influenced by consumption
intensity. The central and eastern regions are more influenced by
consumption intensity. They should further increase the investment in
energy use R&D to curb the growth of carbon emissions.

In terms of socio-economic level, the variable elasticity
coefficients of Shanghai, Jiangsu and other eastern regions and
three eastern provinces are high, followed by Hebei, Shandong
and other northern China and surrounding regions, which
indicates that the positive influence of changes in economic
development level on the growth of carbon emissions in these
regions is stronger. They should actively change their high-
emission socio-economic development patterns, upgrade their
economic and industrial structures, and reduce the increase in
carbon emissions caused by economic development.

In terms of urbanization level, Qinghai and Gansu regions have
the largest elasticity coefficients of the variables, which is mainly due to
the small base of population size in these two regions. Northwest,
southwest and north China regions such as Shanxi, Chongqing and
Yunnan are more affected by the level of urbanization. They should
cultivate people’s energy-saving and emission-reducing lifestyle to
reduce the impact of urbanization on carbon emissions in the context
of the year-by-year urbanization process. Evaluate and analyze the
provincial emission reduction performance from 2019 to 2021, and

FIGURE 7
Inter-provincial differences of influence factors on carbon emissions. (A) Social-industrial structure. (B) Energy consumption structure. (C) Energy
consumption intensity. (D) Socio-economic level. (E) Urbanization level.
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obtain the change of carbon emissions of each province from 2019 to
2021 through the China Statistical Yearbook, as shown in Figure 8.

According to Figure 8, the total carbon emissions of each
province show different trends from 2019 to 2021. Some cities
show a gradual decrease in carbon emissions, and some cities show
a continuous increase in carbon emissions. The cities that show a
significant decrease in carbon emissions are Shanghai, Tianjin,
Guangdong, Jiangsu, Henan, Zhejiang and Hunan. The provinces
that show a year-on-year increase in carbon emissions are Inner
Mongolia, Sichuan, Ningxia, Anhui, Shandong, Guangxi, Xinjiang,
Gansu, Fujian, Liaoning, and Shaanxi. The rest of the provinces do
not show significant changes in carbon emissions. The above
results show that the cities with decreasing carbon emissions
have carried out their low-carbon actions more smoothly and
strictly complied with the green and low-carbon related policies
in their development. They have achieved certain results in the
process of achieving the double carbon target. The reasons for the
difficulty in reducing carbon emissions in the remaining provinces
are more complicated. Inner Mongolia and Shandong, as the main
resource provinces in China, have maintained a long-term
industrial primary in energy consumption, while the single
heavy industrial production has also led to an increase in their
energy consumption, which in turn has led to a gradual trend of
increasing carbon emissions.

Policy recommendations for energy
consumption and emission reduction in
China

Restructuring of energy consumption

Coal consumption is the main component of China’s energy
consumption, and has a large impact in the carbon emissions of

energy consumption. There is a certain negative correlation between
carbon emissions per capita and the share of coal consumption, so
optimizing and adjusting China’s energy consumption structure is
necessary to achieve China’s double carbon target, and it is of great
value to promote carbon emission reduction and carbon neutrality.
The main reason for the growth of carbon emissions is the large use
and consumption of non-renewable energy, so the optimal adjustment
of industrial energy structure is effective. The share of renewable clean
energy in China’s energy consumption structure should be increased,
and the country should reduce its dependence on non-renewable
resources with high carbon emission factors. Optimizing the industrial
energy consumption structure in China can guide the clean energy
utilization of industries and enterprises through relevant industrial
and energy policies. In addition, the government should strictly
control the consumption of highly polluting energy from the
system and promote the development and utilization of renewable
and clean energy according to the plan. In terms of spatial
heterogeneity of carbon emissions, regions with higher dependence
on fossil energy should strengthen the investment in science and
technology related to renewable resources and improve energy
utilization, so as to reduce carbon emissions, reach a low energy
consumption structure and reduce the pressure of achieving the
double carbon target.

Promoting industrial structure upgrading

The growth of carbon emissions in China is closely related to the
secondary industry, which is the main source of fossil energy
consumption in China. Therefore, in order to increase the
intensity of carbon removal and reduce carbon emissions from
energy consumption in China, it is urgent to promote industrial
structure upgrading and adjustment. For a long time, the secondary
industry has been the pillar industry of China’s socio-economic and

FIGURE 8
Change in Total Carbon Emissions of different Provinces.
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national development, and the high economic growth is built on the
cost of high energy consumption and high carbon emission.
However, in order to achieve sustainable development and
alleviate the ecological and environmental pressure caused by
economic growth, it is necessary to upgrade the industrial
structure and enhance the technology level through the
integration of industry resources. The aim is to reduce the
proportion of secondary industries in the industrial structure and
to raise the proportion of the development of tertiary industries with
the advantages of low energy consumption and high added value.
The upgrading and adjustment of industrial structure can greatly
reduce the dependence of China’s industrial development on fossil
energy, reduce the production of high-energy-consuming industries,
optimize the structure of national economic development, achieve
socio-economic growth under the condition of ecological balance,
and promote the “carbon peaking” and “carbon neutral” goals while
maintaining the speed of economic development. Especially for some
regions that rely heavily on the secondary industry, they should
actively develop the low-energy tertiary industry, change the existing
economic development model and mechanism, put the reliance and
focus of economic growth in the tertiary industry, limit the
development scale of the secondary industry, and develop a low-
carbon economy.

Upgrading energy utilization technology

In recent years, China’s energy consumption intensity level has
remained high. In addition to the energy consumption structure
factor, the low energy utilization efficiency is also an important
reason for the growth of carbon emissions. Improving energy
utilization technology can reduce the energy cost necessary for
economic growth while enhancing the speed of industrial
development, which has a significant positive effect on reducing
carbon emissions. Increasing investment in energy utilization-
related scientific research and encouraging the development of low-
carbon technologies is an effective path for China to achieve a peaceful
transition in energy restructuring under the constraint of double
carbon targets. The government can encourage enterprises to
actively improve their energy utilization efficiency and low-carbon
technology by improving energy technology-related policies and laws,
controlling the carbon emissions of the industry, and reducing the bad
impact of their production activities on the environment and climate.
On the other hand, the country should increase investment in research
and development of energy use technologies, strengthen energy saving
assessment and evaluation of secondary industry enterprises, establish
strict industrial energy saving standards, and urge enterprises to adopt
advanced and low energy consumption production technologies to
promote their own and industrial development driven by relevant
policy objectives. For regions with high energy consumption intensity,
the supervision and management of enterprise energy consumption
should be strengthened. Through the improvement of policy measures
and assessment mechanisms, they should be urged to replace energy-
intensive production equipment and improve energy use efficiency.
They need to change the past poor development mechanism of

exchanging environment for economy, so as to promote healthy
and sustainable economic development.

Optimize the urban development planning

Population size and urbanization level have a significant pulling effect
on carbon emissions of energy consumption. Therefore, in order to build
a resource conserving society and reduce the difficulty in achieving the
double carbon goals, it is necessary to optimize the urban development
layout planning. Under the background of the continuous increase of
urbanization level of China’s social population, people’s awareness of
environmental protection and emission reduction is improved through
education, publicity and other measures to change the past mode of high
energy consumption. Through rational and scientific urban development
planning, the pressure of population urbanization on carbon emissions
and the environment is reduced, and the goal of “carbon peak” can be
achieved as soon as possible. The over expansion of cities and towns
should be prevented, and the negative impact of urban development and
human activities on the ecological environment should be controlled. In
the planning and layout of future urban development, the concept of
emission reduction and environmental protection should be considered
as the guidance. Under the constraint of the “double carbon” goal, citizens
should make rational use of urban ecology resources and environment,
define the development orientation of urban industry, and establish a
scientific development model that focuses on both ecological
environment and economic development, so that the double carbon
goal can be realized.

Conclusion

In order to deeply understand the impact conditions of China’s
energy consumption carbon emissions, explore the development
direction of achieving the dual carbon goals based on China’s carbon
emissions national conditions, study and analyze the impact factors of
carbon emissions by using the improved STIRPAT model and Granger
test, and combine the improved Johan identity and GFI decomposition
to decompose the impact factors, and analyze the regional spatial
heterogeneity of carbon emissions based on spatial panel data and
geographical weighted regression model, Evaluate the regional emission
reduction performance. The research results show that economic
growth has the highest impact on carbon emissions, with a
contribution rate of 20.967%, followed by urbanization, industrial
structure and energy structure. The industrial energy intensity is the
lowest, and there is an inhibitory effect on per capita carbon emissions.
Shanghai, Tianjin, Guangdong, Jiangsu, Henan, Zhejiang and Hunan
have good emission reduction effects in 2019–2021, while Inner
Mongolia, Sichuan, Ningxia, Anhui, Shandong, Guangxi, Xinjiang,
Gansu, Fujian Liaoning and Shaanxi have witnessed different
increases in carbon emissions, while other provinces have seen little
change. Based on the analysis of influencing factors and their
contributions, in order to achieve the goal of energy conservation
and emission reduction, China needs to actively adjust the energy
consumption structure, vigorously promote the upgrading of
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industrial structure, improve the efficiency of energy utilization from the
perspective of energy utilization technology, optimize the urban
development planning and layout, and establish an ecological
development oriented city. From an international perspective, each
region in the world has certain commonalities in the background and
impact conditions of carbon emissions, and the response direction in
terms of energy conservation and emission reduction is also consistent.
The research is expected to provide reference and help from the choice
of entry points of influencing factors, analysis methods, and reference of
response direction.
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