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We provide insights and innovative ideas for China to achieve green development
and promote high-quality economic development by studying the impact of air
quality on enterprise productivity. This paper uses data from 2008 to 2016 for
A-share companies listed on the Shanghai and Shenzhen stock markets, as well
as the levels of particulate matter under 2.5 μm in diameter for 214 major Chinese
cities. At the same time, this paper innovatively applies regression discontinuity and
the Spatial Durbin Model for empirical testing. Considering the endogeneity, we
choose the air flow index as an instrumental variable and the generalized space two-
stage least squares method for the endogenous test. Additionally, we use dynamic
regression and different spatial weight matrix to conduct robustness tests and
reselect data from 2008 to 2012 and 2013 to 2016 as samples. Moreover, we test
corporate heterogeneity from three perspectives: pollutant type, firm equity, and an
industry’s technological level. The results show that the deterioration of local air
quality significantly inhibits firm productivity, while the spatial spillover effects of
pollution from surrounding cities also have a significant dampening effect on firm
productivity. This negative effect is transmitted through research and development
innovation capacity, human capital, and government subsidies. This empirical
evidence from listed companies can be used for evaluating air quality
management to enhance enterprise productivity, as well as to provide policy
recommendations for boosting firm productivity through improved air quality.
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1 Introduction

Due to modernization, China’s economy has shifted from a stage of high-speed growth to
high-quality development. High-quality development has become the primary task for China to
move towards Chinese-style modernization. The key to promoting high-quality development
lies in the transformation of economic momentum, which means that China must transform
from “extensive growth” to “intensive growth.” Moreover, “intensive growth” can be achieved
by increasing total factor productivity is regarded as the source of power for high-quality
development. At the same time, any development must be based on the premise of protecting
the ecological environment. Accelerating green and low-carbon development is the key link to
promoting a comprehensive green transformation of economic and social development. As one
of the main causes of environmental pollution, air pollution emission has become a matter of
concern in academia and government. Therefore, this paper analyzes the impact of air quality
on enterprise productivity, which has important theoretical value and practical significance for
China to speed up green development to achieve high-quality economic development.

Particulate matter (PM) has become increasingly prominent as regional and composite air
pollution and is one of the most significant air pollution sources threatening the health of people
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worldwide. With the intensification of air pollution, PM2.5, the
primary pollutant hazardous to human health, has been receiving
increasing attention from the public and governments1 In terms of
public health, PM2.5 seriously harms immunity and triggers
respiratory and cardiovascular diseases (Kioumourtzoglou et al.,
2016). In the urbanization process, for every 10% increase in
PM2.5, there are 2.7 outflows per 100 residents (Chen et al., 2017),
which exacerbates regional health inequalities and shifts the focus of
labor mobility decisions from urban-rural binary choices to multiple
choices of healthier zones. Moreover, it has an irreversible impact on
the inflow of regional labor and triggers the phenomenon of escaping
from “Beijing, Shanghai, and Guangzhou,” which affects the
urbanization process (Hanlon, 2016). Additionally, air pollution
seriously impacts the stock prices and financial decisions of micro-
enterprises (Lepori 2016), the cost of debt financing (Tan et al., 2022),
the accrual earnings management (Jiang et al., 2022a; Jiang et al.,
2022b), and investment efficiency (He and Lin 2022). Thus, air
pollution with PM2.5 as the primary pollutant not only seriously
affects regular life but also has a huge negative impact on
microeconomic agents in China.

With China’s comprehensive promotion of green and high-quality
development, enterprises are not only micro-entities for economic
development but also important forces of environmental protection
and the main landing point for implementing environmental
regulation policies (Lin et al., 2020; Zhang and Liu 2021). For a
long time, there have been many highly polluting, inefficient, and
energy-consuming enterprises in the urbanization process in China
(He et al., 2012) that seek benefits at the expense of air quality.
However, López (2017) pointed out that there is a non-linear inverted
U-shaped relationship between environmental pollution and income.
Aznar and Ruiz (2016) also mentioned that when environmental
pollution reaches a certain level, the economy will be difficult to
sustain growth. Thus, air quality is closely related to macroeconomic
growth; however, there is scant literature that goes deep into the
micro-enterprise level, especially the listed company level. Therefore,
the impact of air quality with PM2.5 as the primary pollutant on
enterprise productivity deserves in-depth exploration to achieve high-
quality economic growth from an ecological perspective.

Based on the above, this study empirically tests the impact of local
air quality and spillover from surrounding cities on enterprise
productivity using regression discontinuity and the spatial Durbin
model (SDM) by selecting the PM2.5 as a proxy variable for air quality,
with enterprises as micro subjects. Considering the endogeneity, we
choose the air flow index as an instrumental variable and the
generalized space two-stage least squares (GS2SLS) method for the
endogenous test. Then, a series of robustness tests are conducted using
the dynamic Gaussian mixture model (GMM) regression, using
different spatial weight matrix and reselecting data from 2008 to
2012 and 2013 to 2016 as subsamples. The impact of air quality on firm
productivity is explored from three perspectives: research and
development (R&D) innovation capacity, human capital, and
government subsidies. Furthermore, we test corporate heterogeneity
from three perspectives: pollutant type, firm equity, and the
technology industry.

This paper makes valuable contributions to the existing literature
in four aspects. First, most of the previous studies examined the impact
of air pollution from macroscopic aspects such as economic
development and human health, and few of them involved
enterprise productivity in the microscopic field. Therefore, this
research provides important perspectives and ideas for China to
promote high-quality economic development through green
development. Second, this study not only analyzes how air quality
affects enterprise productivity using regression discontinuity but also
examines the impact of spatial spillover effects brought about by air
pollution on listed enterprise productivity using the SDM and GS2SLS,
to fully understand the relationship from the spatial perspective.
Third, in terms of using data and selecting variables, most of the
existing literature has used industrial enterprise databases; this study,
however, uses micro-sample data of listed companies to measure the
response variables and the PM2.5 obtained from ArcGIS software to
measure the core explanatory variable of air quality, to avoid data
manipulation and human measurement bias. Finally, this paper
thoroughly analyzes the impact mechanism, clarifies the
transmission pathway between air quality and enterprise
productivity from the three intermediary mechanisms of R&D
innovation capability, human capital effect, and government
subsidy, and provides a useful supplement to the existing literature.

2 Literature review and mechanism
analysis

Since Grossman and Krueger (1995) proposed the theory of the
environmental Kuznets curve, many scholars have examined the
relationship between air pollution with economic development and
human health or behavior. For instance, about air pollution and
economic development, Ibukun and Omisore (2022) proved that
there is a bidirectional causal relationship between air pollution and
economic development through the data of four MINT countries.
Hu Q. et al. (2021) attributed it to the huge medical expenditure
caused by air pollution. Shang et al. (2022) found that air pollution
will also seriously restrict the development of a circular economy,
lead to the outflow of foreign direct investment (Huang and
Hsu 2022), reduce the upgrading of regional industrial structure
(Zhang et al., 2022), and exacerbate the income gap (Liu et al.,
2020).

On the other hand, air pollution seriously damages human
physical health (Hassan et al., 2021) and mental health (Hu X.
et al., 2021). For example, Hu and Guo (2021) systematically
investigated the negative impact of air pollution on human health
from the respiratory, urinary, circulatory, digestive, and nervous
systems, as well as the probability of conception and life
expectancy. Liu et al. (2021) considered human health as the
transmission mechanism through which air pollution affects
human wellbeing. Shen et al. (2021) found that air pollution
greatly increased the possibility of depression; sad emotions, poor
self-control, and comprehension are all seriously affected by air
pollution (Balakrishnan and Tsaneva 2022). At the same time, air
pollution can also have a serious impact on human behavior. Lin et al.
(2022) found that air pollution makes people get jobs nearby, and it
also makes people move away from heavily polluted residential areas
(Yang et al., 2022), and even increases people’s crime rate (Kuo and
Putra 2021).

1 PM2.5 refers to particulate matter in ambient air with an aerodynamic
equivalent diameter of less than or equal to 2.5 μm.
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However, Chang et al. (2016) showed in a study of a pear-packing
plant that PM 2.5 with high penetration capacity in outdoor air
significantly reduced the productivity of indoor workers, while
pollutants with low penetration capacity (e.g., ozone) had almost
no significant effect. Therefore, after a deep investigation, it was
found that the impact of PM2.5 seems to have more importance.

In recent years, with deeper mining of firm-level data, many
articles have delved into the micro domain to assess the impact of
air pollution on enterprise development. For example, Xue et al.
(2021) studied the relationship between air pollution and corporate
human capital and they found that people are more inclined to seek
jobs in less polluted locations. Liu et al. (2022) used human capital
as the influencing mechanism to verify the negative effect between
air pollution and corporate social responsibility. Tan et al. (2021)
proved that air pollution reduces the liquidity of corporate property
and the decision-making efficiency of operators, thus making
companies need to hold more cash to resist unknown risks. Li
et al. (2022) also found that air pollution increases the number of
zombie firms and decreases corporate investment efficiency. Cui
et al. (2021) investigated the location of enterprises’ foreign
investment and found that foreign-invested enterprises are more
willing to choose countries with good air quality to invest.

According to the literature, we can note that previous studies on
the impact of air pollution focused more on macro aspects such as
economic development and human health. Although some articles
have gone into the microscopic field to assess the impact of air
pollution on enterprise development, few have dealt with enterprise
productivity. Cao et al. (2022) only studied the impact of air
pollution on enterprises in the Yangtze River Delta region of
China, while this paper expands the research perspective to
listed companies in China, and examines the impact of spatial
spillover effects brought about by air pollution on the productivity
of listed companies. Thus, using a case study from China, we
empirically investigate the impact of air quality (PM2.5) on
listed firm productivity through the intermediate mechanisms of
R&D innovation capacity, human capital, and government
subsidies as follows.

1) PM2.5 can reduce enterprise productivity through R&D
innovation capabilities. Akpalu and Normanyo (2017) found
that mining areas will provide some environmental subsidies or
increase the amount of medical insurance to compensate people
affected by air pollution, Wang L. et al. (2021) and Lin et al. (2021)
also found that to prevent brain drain caused by air pollution,
companies will improve employee treatment, which increases the
additional cost of enterprises, resulting in the reduction of
investment funds for enterprise innovation. Wei and Liu (2022)
attributed the negative effects of air pollution and innovation
ability to labor costs, while Ai et al. (2022) subdivided this cost
into internal pollution control costs and external pollution
prevention costs. You (2022) proved by examining the structure
of the three major industries that air pollution mainly affects the
structure of the tertiary industry, thereby inhibiting the level of
urban innovation. On the other hand, Tuncel and Oktay (2022)
demonstrated that Turkish manufacturing firms improved their
productivity through increased spending on innovation. Zhu et al.
(2021) divided innovation into possibility innovation brought by
R&D and process innovation brought by information and
communication technology and proved that both innovations

can improve enterprise productivity. However, Mishra et al.
(2021) believe that product innovation and process innovation
can improve enterprise productivity, while organizational
innovation only brings negative effects. Fazlıoğlu et al. (2019)
divide innovation into innovation input and innovation output.
Since innovation input needs certain conditions and time to
transform into innovation output, the latter can promote
productivity more than the former.

2) PM2.5 reduces enterprise productivity through the human capital
effect. Balakrishnan and Tsaneva (2021) described the level of
human capital from the three aspects of basic learning skills,
academic performance, and school grades, and found that air
pollution has an adverse impact on it; Liu and Yu (2020) found
that air pollution affects the physical health, mental health, and job
satisfaction of workers, thereby reducing the willingness of
migrants to settle in cities, and causing the loss of corporate
talent, especially high-performance employees (Tan and Yan
2021). Similarly, Lai et al. (2021) found that air pollution
greatly increases the probability of college graduates going to
other cities for employment from the selection of employment
locations of college graduates, leading to the loss of higher
education talents. Chen et al. (2022) proved that air pollution
has caused a sharp increase in the number of net immigrants in
China, and people with higher education are also the main group of
population loss. Air pollution mainly affects the level of human
capital through the loss of population, especially the loss of high-
quality and higher education talents. High-quality talents have
richer management experience (Timothy 2022), and can better
exert the corporate brand value (He et al., 2020). Therefore, when
there is a shortage of high-quality talent, it will have a serious
impact on the innovation ability of enterprises and the upgrading
of industrial structure (Wang M. et al., 2021), thereby reducing
productivity (Ramirez et al., 2020).

3) PM2.5 can reduce enterprise productivity through increasing
government subsidies. Li et al. (2019) found that air pollution
will stimulate the government to actively participate in the
control of air pollution and increase government subsidies for
environmental pollution. Similarly; Zhang and Zhang (2022)
from the perspective of the iron and steel industry believe that
the iron and steel industry will cause serious air pollution, so the
government should implement active subsidy policies. It can be
seen that in order to improve air pollution, the government often
invests a lot of money (Xie and Wang 2019). However,
government subsidies may lead to information asymmetry
and adverse selection problems, leading to market failure,
since enterprises receiving government subsidies are not
entirely determined by the market but are also influenced by
the relationship between the government and the enterprise (Fox
and Heller 2000). To obtain more compensation, enterprises may
overstate the degree of air pollution, resulting in rent-seeking
behavior by some enterprises (Mao and Xu 2018). When
enterprises engage in rent-seeking activities, they will incur
corresponding costs. These non-productive expenditures will
not only reduce the compensatory effect of government
subsidies (Tassey 2004), but also not conducive to the
formation of competitive advantages for enterprises, and will
also reduce the profitability of enterprises (Ren and Zhang 2013),
thus hindering the improvement of enterprise productivity.
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Based on the above discussions, air quality has an impact on firm
productivity. Therefore, we propose the following hypotheses:

Hypothesis 1: PM2.5 (as measured by the air quality) reduces firm
productivity.

Hypothesis 2: The main channels by which PM2.5 reduces firm
productivity are (1) reducing R&D innovation capacity, (2)
reducing the number of employees, and (3) increasing
government subsidies.

3 Methods and data

3.1 Regression discontinuity

This study refers to Chen et al. (2013) and uses a quasi-natural
experiment on centralized heating policies in winter in northern
China (north of the Qinling-Huaihe River boundary) to address the
possible endogeneity problem between air pollution and firm
productivity using regression discontinuity and Stata software.
The reason for choosing the Qinling-Huaihe River is that there
is a significant difference in the average January temperature
between the south and north areas of the boundary; therefore,
the centralized heating policy in winter in the north is an exogenous
policy in a quasi-natural experiment. This study sets the following
estimating equation.

Dit � 1, Lc ≥ 0
0, Lc < 0{ (1)

TFPit � δ0 + δ1Dict + δ2f Lc( ) +∑k

n�2δn*Conit + τi + γt + εit (2)
PM2.5it � γ0 + γ1Dict + γ2f Lc( ) +∑k

n�2γn*Conit + τi + γt + εit (3)
TFPit � α0 + α1PM2.5it + α2f Lc( ) +∑k

n�2αn*Conit + τi + γt + εit (4)

where c denotes the city; the explanatory variable TFPit represents
the productivity of firm i in year t; PM2.5it is the air quality of the
city where the firm is located; Conit represents a set of control
variables; τi, γt, and εit are the individual and time dummy variables
and random disturbance terms, respectively; Lc is the driving
variable, which denotes the difference between the latitude of
the city and the Qinling-Huai River boundary2 D denotes the
indicator variable, which takes the Qinling-Huai River boundary
under the background of China’s centralized heating policy as a
discontinuity. When city c is located north of the boundary, that is,
the city is located north of the Qinling-Huai River, Lc >0 and D
takes 1. Otherwise, when city c is located south of the boundary,
that is, the city is located south of the Qinling-Huai River, Lc <0 and
D takes 0. f(Lc) is the higher-order polynomial adjustment function
of the driving variable Lc.

3.2 Spatial effects regression

Referring to Tang et al. (2017), there is a spatial autocorrelation
effect of environmental pollution in cities. Therefore, considering

that firm productivity is affected by local urban air pollution and
also by the spatial spillover effects of air pollution from other cities,
we use local pollution and pollution from surrounding areas as the
core variables to explore the total impact of local firm productivity
by local pollution and pollution spillover from surrounding areas.
Through the Moran index, it can be shown that there is a spatial
autocorrelation effect of air pollution PM2.5 in the city where the
enterprise is located, and this is consistent with the conclusions
obtained by Fan et al. (2019) through the spatial correlation of haze
pollution measurement3 Next, we add a spatial econometric model,
as shown in Equations 5, 6.

TFPit � βWPMit + β0 + β1PM2.5it +∑k

n�2βn*Conit + τi + γt + εit (5)
WPMit � ∑c�214

j�1 Wij*pmjt (6)

where WPMit represents the total impact of air pollution in the city of
other enterprise j on the city of local enterprise i, that is,
∑c�214

j�1 Wij*pmjt. W is the 214*214 spatial weight matrix, and this
study uses MATLAB software to calculate the distance between cities
and form the inverse geographic distance weight matrix Wij by using
the latitude and longitude data of 214 major cities. Wij denotes the
inverse geographic distance weight matrix of the city where firm i is
located and the city where other firm j is located; pmjt denotes the air
quality of the city where other firm j is located in year t, and the rest of
the variables are consistent with the previous section.

3.3 Variables

The subject of this study is firm productivity, traditionally
measured using ordinary least squares and fixed effects; however,
these two methods may cause serious bias and endogeneity problems.
There are two semi-parametric methods of OP and LP proposed by
Olley and Pakes (1996) and Levinsohn and Petrin (2003) to estimate
firm productivity. In the OP method, it is assumed that a
manufacturer’s investment is a strictly increasing function of its
own productivity, so the corresponding productivity can be
determined by deriving the inverse function of the investment
demand function. The OP method introduces survival probability
and investment amount as proxy variables to solve the problems of
selectivity and simultaneity bias, but the firm’s real investment value
must be greater than zero. Thus, samples with zero investment are not
estimated. However, as not every firm invests every year, many firm
samples are discarded in the estimation process. Meanwhile, the LP
method has lower data requirements. It does not use the amount of
investment as a proxy variable and can instead use the input indicators
of intermediate goods, which allows the researcher the flexibility to
choose data. Therefore, we measure firm productivity using the LP
method to determine the response variables in the benchmark
regression.

The core explanatory variable in this study is air quality, as
measured by the PM2.5. Air pollutants currently emitted in China
are mainly sulfur dioxide, carbon dioxide, soot, and PM. Since the

2 The Qinling-Huai River boundary covers the latitude range of 33.03°–34.25°.
Hence, referring to Chen et al. (2013), this study selects the value of 33.64 as
the latitude of the breakpoint boundary.

3 For details of the spatial autocorrelation analysis of pollution in the cities
where the enterprises are located, please refer to Supplementary
Appendix S1.

Frontiers in Environmental Science frontiersin.org04

Liu et al. 10.3389/fenvs.2022.1095393

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1095393


PM2.5 can synthetically include the above pollutants emitted from the
combustion of fuels and further chemical reactions in the air, it is
useful for the analysis of gaseous pollutants emitted from production
enterprises and suitable for measuring air quality. Owing to the short
time span and difficulty in obtaining pollution data in China, there
may be problems such as data manipulation and falsification.
Therefore, we used the world PM2.5 density map from 1998 to
2016, publicly available at the Data Center of the Astronaut Earth
Observing System Data and Information System hosted by Columbia
University4 Then, we positioned each raster to municipal
administrative units by ArcGIS software, and then averaged the
raster data falling in the municipal administrative units as the
value of PM2.5 emission concentration of cities. Unlike ground-
observed air pollution data, satellite-extracted data are better able
to match mobile population data in time and space while avoiding
problems such as data manipulation and human measurement bias
(Ghanem and Zhang 2014).

Based on the mechanism analysis, we select the number of patent
applications, number of enterprise employees, and government
subsidies as mediating variables to represent the enterprise R&D
innovation effect, human capital effect, and policy spillover effect,
respectively, to test the mechanism of the effect of air quality on
enterprise productivity. Among them, enterprise patents include three
types of invention patents, utility model patents, and design patents.
We choose the sum of three types of patent applications plus one to
take the logarithm to measure the number of enterprise patent
applications (Hall and Harhoff 2012); to narrow the data
differences and obtain smoother data, the number of enterprise
employees and government subsidies are logarithmically processed
in this study.

In addition to the required variables to estimate air pollution and
firm productivity, we include the following control variables. (1) Firm
size. As the size of the firm increases, the firm will have a higher scale
effect, stronger finances, a more standardized management system,
and usually higher firm productivity (Lucas 1978; Majumdar 1997).
(2) Return on total assets. We choose the ratio of the firm’s net profit
for the year and total assets at the end of the period to measure the
return on total assets. The more profitable a firm is, the more likely it is
that sufficient funds will be available for R&D innovation and high-
quality production activities (Bogliacino and Pianta 2013). (3) Fixed
assets ratio and capital expenditure ratio. Fixed assets are a category of
assets formed when capital expenditure is capitalized. When the fixed
assets ratio or capital expenditure ratio is lower, the liquidity of the
enterprise’s assets is faster and the capital operating capacity is
stronger (Wang 2002). (4) Current gearing ratio and gearing ratio.
Both reflect a firm’s financing constraint ability to a large extent.When
the current gearing ratio is lower, the firm may face higher financial
risk, which reduces productivity (Ayyagari et al., 2010). (5) Cash flow.
In general, cash flow has a positive effect on firm productivity, and
firms maintain a certain amount of cash flow to avoid the shortage of
funds (Chen and Guariglia 2013). (6) Firm age: There may be two
effects of firm age on firm productivity. On the one hand, as firms age,
they accumulate more technical information, beneficial to firm
productivity (Farinas and Moreno 2000). On the other hand, new

market entrants may be more dynamic; in this case, firm productivity
decreases as firms age (Brandt et al., 2012). Therefore, we add firm age
and the squared terms of firm age as control variables. The specific
expressions are shown in Table 1.

3.4 Data

Considering that the data on listed companies in China before
2007 are missing and/or inadequate, the sample period selected for this
study is 2008–2016. Our sample includes A-share companies listed on
the Shanghai and Shenzhen stock markets by securities code and year
identifier. We processed the data by removing the following: (1)
missing control variables, (2) enterprises established after the
listing time, and (3) and financial and insurance services and
enterprises containing ST, ST*, and PT categories5 Then, the
filtered data were matched with the PM2.5 level for 214 major
cities. Next, most of the variables were logarithmically processed,
resulting in a final sample of 8,594 observations from the
1,829 enterprises listed. Table 2 reports the descriptive statistics of
all variables. To determine the viability of the variables, we performed
multicollinearity and heteroscedasticity tests; the results showed that
we did not need to worry about multicollinearity and
homoscedasticity among the variables6

4 Empirical results

4.1 Regression discontinuity results

Before conducting regression discontinuity estimation, it is first
observed whether air pollution and firm productivity show
discontinuity change and the results are shown in Figure 1.
Figure 1 shows that regardless of whether the fit is linear or
quadratic, both the productivity and PM2.5 of enterprises jump
significantly at the discontinuity, that is, the PM2.5 emissions in
the northern region are significantly higher than those in the
southern region, this conclusion agrees with the findings of Chen
et al. (2013). While the enterprises in the southern region have
significantly higher productivity, indicating that relatively good air
quality is beneficial to enterprise productivity. In addition, to
accurately identify the causal relationship between variables, we
also perform an endogeneity test in the 5.3 section.

The results of this estimation are reported in Table 3; column (1)
shows that the central heating policy has a significant impact on
enterprise productivity, that is, the central heating policy makes the
enterprise productivity in the southern region significantly higher than

4 Sourced from http://beta.sedac.ciesin.columbia.edu. These data cover earth
pollution information from 70° N to 60° S, with an observation accuracy of.5
° × 0.5 °.

5 If a listed company experiences losses for two consecutive years, loss for
1 year and its net assets fall below par, or if there is amajor violation of the law
in the course of the company’s business, the exchange will give special
treatment to the company’s stock, also known as the ST system. For ST
companies, if further problems arise, such as continued losses in the
following year, thus reaching the limit of three consecutive years of
losses as stipulated in the Company Law, the company will be subject to
PT treatment. The asterisk (*) after ST is the delisting risk warning, and ST*
stocks will be suspended if they continue to lose money the following year.

6 For the results of the multicollinearity and homoscedasticity tests, please
refer to Supplementary Appendix S2.
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that in the northern region at the level of 1%. When control variables
and fixed effects are added in columns (2) and (3), the regression
results do not change significantly. Similarly, the results in column (4)
show that the central heating policy has a significant impact on air
pollution. After introducing control variables and controlling for fixed
effects in columns (5) and (6), the central heating policy makes the
average PM2.5 concentration in the southern region about 0.23 µg/m3

lower than that in the northern region. The estimation results in
column (7) show that air pollution significantly reduces the
productivity of enterprises. Columns (8) and (9) gradually add the

corresponding control variables and fixed effects, and the regression
results are all significant at the 1% level, that is, with every 1% increase
in PM2.5 concentration, firm productivity decreases by 0.32%.

In addition, we consider the air quality index (AQI) as a surrogate
indicator of air pollution PM2.5 for robustness testing, which
monitors six pollutants: sulfur dioxide, nitrogen dioxide, PM10,
PM2.5, carbon monoxide, and ozone. We take the natural
logarithm of AQI, and the regression results are reported in
column (10) of Table 3. The results show that after adding a series
of control variables and fixed effects, AQI still significantly reduces
enterprise productivity, which is consistent with the explanatory
variable PM2.5, showing the robustness and reliability of the
conclusions.

4.2 Dynamic regression

Considering that firm productivity may be affected by its own lags,
the model is constructed to examine its dynamic effects, as expressed
in Equation 7.

TFPit � β0 + β1TFPi,t−1 + β2PM2.5it +∑k

n�3βn*Conit + τi + γt + εit.
(7)

Eq. 7 indicates that the productivity of firm i in year t-1 will affect
that in year t. As indicated in column (1) in Table 4, the coefficient of
PM2.5 is −0.01, which is highly significant. In addition, the coefficient
of TFPi,t-1 is significantly positive. This result implies that the higher a
company’s productivity in the previous year, the higher its
productivity in the second year; that is, it has a certain “inertia.”

Considering unobservable individual effects, this may lead to
inconsistent estimation results and endogeneity problems. In
dynamic regression, GMM tests are generally used to solve the
endogeneity problem, but compared to the systematic GMM, the
instrumental variables of differential GMM are often weak.

TABLE 1 Expression of variables.

Variables Definition Expression

Response variables Enterprise productivity (TFP) Business productivity estimated by the LP method

Intermediate variables R&D Innovation (Patent) Natural logarithm of the number of patent applications

Human Capital (Num) Natural logarithm of the number of employees in the company

Government Subsidies (Gov) Natural logarithm of the number of government subsidies

Explanatory variables Air Quality (PM2.5 Indicator) PM2.5 emission concentration values obtained by ArcGIS software

Control variables Company size (Size) Natural logarithm of total corporate assets

Return on total assets (RoA) Ratio of the enterprise’s net profit to its total assets at the end of the year

Percentage of fixed assets (PPE) Ratio of enterprise fixed assets to total assets

Current gearing ratio (Liq) Ratio of current assets to current liabilities of an enterprise

Gearing ratio (Lev) Ratio of total liabilities to total assets of the enterprise for the year

Cash flow (CF) Ratio of enterprise monetary capital to total assets

Capital expenditure ratio (Cap) Ratio of enterprise capital expenditure to total assets

Company age (Age) Current year minus year of incorporation

Source: Compiled from regression results.

TABLE 2 Descriptive statistics.

Variables Obs Mean Std. Dev Min Max

TFP_LP 8,594 16.600 1.045 12.255 21.874

PM2.5 8,594 12.634 1.018 9.178 15.170

Num 8,594 7.651 1.225 3.664 13.165

Gov 8,594 7.039 1.564 −1.595 15.432

R&D 8,594 17.528 1.472 5.094 25.025

Size 8,594 12.647 1.264 9.871 19.294

RoA 8,594 .051 .061 −.762 1.202

PPE 8,594 .212 .148 .001 .920

Liq 8,594 3.456 5.757 .075 190.872

Lev 8,594 .380 .209 .008 2.024

CF 8,594 .224 .168 .001 .960

Cap 8,594 .056 .050 .001 .412

Age 8,594 3.024 .229 2.197 4.159

Age2 8,594 9.198 1.395 4.828 17.296

Source: Compiled from regression results.
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Therefore, we use the systematic GMM method to re-estimate this
model to solve the endogenous problem of fixed effects (Blundell
and Bond 1998), as presented in column (2) of Table 4. The
regression results of the systematic GMM show that the first-
order lagged terms of the explanatory variables pass the
significance test, and this result is consistent with the fixed
effects regression results, which indicate that an increase in
PM2.5 effectively reduces firm productivity, further
strengthening the reliability of our results.

In addition, at the theoretical level, the systematic GMM test needs to
satisfy two hypotheses. First, the validity of the instrumental variables used
is tested by the Sargan or Hansen overidentification constraint test, based
on the original assumption that the instrumental variables are
uncorrelated with the error term. The p-value of the Hansen test is
greater than 0.1 in column (2) of Table 4, indicating that the null
hypothesis is accepted; that is, the instrumental variables of the
systematic GMM model are valid. Second, the second-order serial
correlation of the random error terms of the difference equation is

FIGURE 1
Discontinuity diagram of enterprise productivity and PM2.5 at the Qinling-Huai River boundary. Source: Compiled from regression results.

TABLE 3 Regression Discontinuity test.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

TFP_LP PM2.5 TFP_LP TFP_LP

North −.49*** −.16*** −.16*** .187*** .181*** .216***

(.098) (.052) (.052) (.023) (.023) (.023)

PM2.5 −.31** −.47*** −.32*** −.40**

(.137) (.122) (.094) (.173)

LR chi2 −8.52 −16.88 −13488.8 −8,586.4

(p-value) .000 .000 .000 .000

F 65.074 61.075 90.117 296.23

(p-value) .000 .000 .000 .000

Observations 8,594 8,594 8,594 8,594 8,594 8,594 8,594 8,594 8,594 6,054

FE No No Yes No No Yes No No Yes Yes

Controls No Yes Yes No Yes Yes No Yes Yes Yes

Source: Compiled from regression results.

Note: Values in parentheses are standard errors, and ***, **, and * indicate variables at the 1%, 5%, and 10% significance levels, respectively.
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tested by the Arellano-Bond autocorrelation test, where the original
hypothesis is that there is no second-order serial correlation in the
random error terms of the first-order difference equation. If the
original hypothesis is not rejected, it implies that the instrumental
variables are valid and the model is set up correctly. Therefore, we
need to focus on the p-value of the second order autoregressive model
(AR (2)). The p-value of the AR (2) test in column (2) of Table 4 is greater
than 0.1, indicating that the null hypothesis is accepted; that is, there is no
second-order autocorrelation problem in the residual term of the
systematic GMM model difference, and the model setting is reasonable.

4.3 Adjusting the sample period

Owing to the global financial crisis in 2008, China’s economic
growth rate has dropped significantly since 2013 and has entered a
new normal mode. Therefore, we reselect the data from 2008 to
2012 and from 2013 to 2016 as samples to eliminate exogenous
effects and shocks caused by the financial crisis and new economic
normal. Table 4 presents the regression results, with air pollution still
having a significant inhibitory effect on corporate productivity,
consistent with previous empirical findings.

5 Spatial econometric regression results

5.1 SDM regression results

Table 5 shows the selection process of the spatial effectsmodel and the
corresponding regression results. First, from the log-likelihood function
values, the SDM has greater values than the spatial lagged model (SLM)
and the spatial errormodel (SEM), which indicates that the SDMmodel is
the best fit. Second, we test whether the SDMmodel degrades to the SLM
or SEM model, and the likelihood ratio (LR) and Wald statistics both
reject the original hypothesis at the 1% level, indicating that the SDM
model cannot degenerate into an SLM or SEM model. Therefore, the
SDM is determined to be most suitable for this study.

Based on the existence of spatial autocorrelation of pollution in the
city where the firm is located, column (3) of Table 5 reports the
regression results of PM2.5 in the city where the firm is located and
pollution spillover from surrounding cities on firm productivity under
the SDM. The results show that both PM2.5 in the firm’s city and
pollution spillover from surrounding cities significantly reduce firm
productivity, indicating that firm productivity is not only negatively
affected by local air pollution but also by PM2.5 spillover from
surrounding cities.

TABLE 4 Robustness test.

(1) (2) GMM (3) 2008–2012 (4) 2013–2016

Variables TFP_LP TFP_LP TFP_LP TFP_LP

L.TFP_LP .808*** .724***

(.006) (.064)

PM2.5 −.010*** −.029*** −.019*** −.020***

(.003) (.009) (.009) (.007)

Constant 1.567*** 2.145*** 8.572*** 7.598***

(.333) (.648) (1.138) (.645)

AR (1) .000

AR (2) .744

Hansen test 78.15

Control variables Yes Yes Yes Yes

Enterprise Yes Yes Yes Yes

Year Yes Yes Yes Yes

Industry Yes Yes Yes Yes

Province Yes Yes Yes Yes

Obs 6,308 6,308 2,726 5,868

R2 .944 .789 .755

Source: Compiled from regression results.

Note: Values in parentheses are standard errors, and ***, **, and * indicate variables at the 1%, 5%, and 10% significance levels, respectively.
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5.2 Considering different regions and spatial
weight matrix

China’s regional development is unbalanced and the terrain
system is extremely complex; we should not ignore the differences
in different regions. Therefore, this paper divides enterprises into
11 eastern enterprises such as Beijing, eight central enterprises such as
Shanxi Province, and 12 western enterprises such as Sichuan Province
according to the provinces where the enterprises are located7 and
investigates the impact of PM2.5 on enterprise productivity in
different regions. Meanwhile, purely distance-based spatial weights
cannot effectively capture spatial relationships, especially if the
phenomenon is environmental in nature. Therefore, in addition to
the inverse distance spatial weight matrix W1 calculated by latitude
and longitude, we also select the economic distance type spatial weight
matrix W2 constructed by urban per capita GDP and the economic-

geographic distance type spatial weight matrix W3, constructed by
multiplying the two and normalizing the result.

According to the regression results in Table 6, under the three
spatial weight matrix settings, the productivity of enterprises in the
eastern, central, and western regions will be negatively affected by
PM2.5. Poor air pollution will have a greater negative effect on the
productivity of eastern enterprises, indicating that enterprises in
eastern provinces are more sensitive to air pollution. In addition,
the WPM2.5 coefficient is significantly negative at the levels of 1%,
5%, and 10%, indicating a significant spatial correlation between air
pollution at similar geographical locations or similar levels of
economic development. Pollution spillover from surrounding
areas has a negative spillover effect on the productivity of
enterprises in the central area, and enterprises in the central and
western regions are more affected by PM2.5 in surrounding cities.

5.3 Endogeneity test with GS2SLS

Although regression discontinuity can effectively solve the
endogeneity problem, it can only be locally random (near the
discontinuity), resulting in weak external validity. We have to
further consider the endogeneity of the air pollution question.
Specifically, on the one hand, air pollution may drag down
enterprise productivity by affecting the human capital, government
subsidies, and R&D innovation capabilities; on the other hand,
enterprise productivity itself may also affect air pollution levels
through factors such as economic activities and population
aggregation. Therefore, in order to solve the endogeneity problem,

TABLE 5 Spatial Durbin Model Regression test.

(1) SLM (2) SEM (3) SDM

PM2.5 −.037*** −.032** −.038**

(−2.63) (−2.24) (−2.27)

WPM2.5 −.070***

(−4.963)

Observations 8,594 8,594 8,594

FE Yes Yes Yes

Controls Yes Yes Yes

Log-likelihood −470.417 −469.893 −391.255

R2 .778 .779 .778

LR test 158.325***

(H0: SLM nested in SDM) (.000)

LR test 157.275***

(H0: SEM nested in SDM) (.000)

Wald test for SLM 4,521.263***

(p-value) (.000)

Wald test for SEM 3,344.845***

(p-value) (.000)

Source: Compiled from regression results.

Note: Values in parentheses are standard errors, and ***, **, and * indicate variables at the 1%, 5%, and 10% significance levels, respectively.

7 According to the statistical method of the National Bureau of Statistics, the
eastern region is divided into Beijing City, Tianjin City, Hebei Province,
Liaoning Province, Shanghai City, Jiangsu Province, Zhejiang Province,
Fujian Province, Shandong Province, Guangdong Province, and Hainan
Province; the central region is divided into Shanxi Province, Anhui
Province, Jilin Province, Heilongjiang Province, Jiangxi Province, Henan
Province, Hubei Province, and Hunan Province; the western region is
divided into Inner Mongolia Autonomous Region, Guangxi Zhuang
Autonomous Region, Chongqing City, Sichuan Province, Guizhou
Province, Yunnan Province, Tibet Autonomous Region, Shaanxi Province,
Gansu Province, Qinghai Province, Ningxia Hui Autonomous Region, and
Xinjiang Uygur Autonomous Region.
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referring to Broner et al. (2012); Hering and Poncet (2014), we use
the air flow coefficient (Airflow) as an instrumental variable of
air pollution. The reason for this is that air mobility is correlated
with air pollution, and the air mobility coefficient depends on
wind speed and atmospheric boundary layer height, which is not
directly related to enterprise productivity, thus satisfying the
validity and exogenous assumptions of instrumental variables
(Broner et al., 2012; Hering and Poncet 2014). Meanwhile, we use
GS2SLS to effectively control for endogeneity and spatial spillover
effects.

The regression results are shown in Table 7. We still conduct
inspections from the east, middle, and west, and report the GS2SLS
two-stage estimation results based on the economic-geographical
weight matrix (W3)8. All the regressions control for the control
variables presented above and the fixed effects of year and city.
According to the first-stage regression results, air flow is
significantly negatively correlated with PM2.5 concentration,
indicating that stronger air flow is more conducive to alleviating
air pollution. The LM statistic and p-value at the 1% significance
level rejected the null hypothesis of “no endogeneity in explanatory
variables,” indicating that air pollution is an endogenous variable and
that the endogeneity issue must be addressed in this paper.
Furthermore, the F statistic is much greater than 10, indicating
that air flow and PM2.5 are highly correlated, and thus rejecting
the null hypothesis of “instrumental variables are weak instrumental
variables.”

In the regression results of the second stage, PM2.5 significantly
inhibited enterprise productivity. In terms of spatial latitude, the
coefficient estimation result of the spatial lag variable

WPM2.5 based on the nested weight matrix W3 of economic-
economic-geographical distance is significantly negative at
the levels of 1%, 5%, and 10%, indicating that air pollution in
surrounding cities has a significant negative spatial spillover
effect on the productivity of firms located in central cities. It is
consistent with the basic regression results, indicating that
the conclusions are still reliable after dealing with the endogeneity
issue.

6 Analysis of heterogeneity

6.1 Distinguishing investigation based on
pollutant type

Different air pollutants may have different impacts on firm
productivity. In this study, we match existing data with the newly
released environmental research data of listed companies in the
CSMAR database to obtain information such as emissions of listed
companies by subdivision. However, after distinguishing the
subsamples of two air pollutants, sulfur dioxide and soot
emissions, only a small amount of data remains, as shown in
columns (1) and (2) of Table 8. The regression results show that
the coefficients of both air pollutants are negative, but neither is
significant. To compensate for the above lack of sample size, this
study collects sulfur dioxide and soot emissions from each city to
match the existing data, as shown in columns (3) and (4) of Table 8.
From the regression results, it can be seen that the data collected
from each city and the data from the CSMAR database of
environmental studies of listed companies are consistent, that is,
the coefficients of sulfur dioxide and soot emissions are both
negative, but neither is significant. This indicates that these two
air pollutants bring much less inhibitory effect on firm productivity
compared to PM2.5, which reflects the importance of choosing
PM2.5 as the core variable in this study.

TABLE 6 SDM Regression test: Considering different region and spatial weight matrix.

Eastern areas Middle areas Western areas

(1) W1 (2) W2 (3) W3 (4) W1 (5) W2 (6) W3 (7) W1 (8) W2 (9) W3

PM2.5 −.058*** −.062*** −.060*** −.032*** −.041*** −.039*** −.028** −.034*** −.035**

(−3.47) (−4.05) (−3.81) (−4.58) (−4.27) (−3.36) (−2.17) (−3.58) (−2.24)

WPM2.5 −.024* −.037** −.031** −.045** −.058*** −.049*** −.078*** −.065*** −.071***

(−1.88) (−2.16) (−1.97) (−2.15) (−4.57) (−3.82) (−5.57) (−4.19) (−5.33)

ρ .247*** .318** .283*** .284** .275*** .344** .318*** .359*** .335***

(13.28) (2.21) (5.05) (2.17) (12.05) (1.98) (10.81) (5.49) (6.14)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6,170 6,170 6,170 1,245 1,245 1,245 1,179 1,179 1,179

Log-likelihood −304.586 −486.512 −289.647 −499.057 −415.218 −384.274 −352.108 −328.511 −305.749

R2 .845 .816 .858 .749 .758 .762 .827 .836 .844

Source: Compiled from regression results.

Note: Values in parentheses are standard errors, and ***, **, and * indicate variables at the 1%, 5%, and 10% significance levels, respectively.

8 Table 6 shows that both the likelihood and R2 values are higher than W1 and
W2, indicating that the goodness of fit of the economic-geographic spatial
weight matrix is better. Hence, we report only the regression results of W3 in
5.3 section.
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6.2 Distinguishing investigation based on
equity and technical level

By the end of 2020, the total assets and operating income of state-
owned enterprises (SOEs) in China reached 218.3 and 59.5 trillion
yuan, respectively, and their average annual growth rate during the
“13th Five-Year Plan” period was 12.7% and 7.4%, respectively. After
years of reform and development, SOEs have laid a solid foundation
for China’s new stage of development. Simultaneously, the rapid
development of the non-public sector has played a pivotal role in
labor employment, technological innovation, national taxation, and
economic development. Compared with SOEs, the vitality of non-
SOEs is more affected by external policies and the environment.
Meanwhile, compared with non-SOEs, the factor market price
distortion of SOEs is more serious. Therefore, what is the
difference in the impact of air quality on the productivity of SOEs
and non-SOEs? For a better comparative analysis, columns (1) and
(2) of Table 9 report the results of these two types of samples. The
results show that the coefficient of PM2.5 is significantly negative at
the 1% level, indicating that air pollution reduces productivity in
SOEs and non-SOEs, with a greater impact on SOEs. Possibly, in
China, the central and local governments control or invest in SOEs,

which are not as sensitive as non-SOEs with respect to the cost
pressure caused by air pollution control and the green innovations
required to improve air quality. In addition, compared with non-
SOEs, SOEs have insufficient information on the improvement of air
quality, since the free flow of production factors is not flexible
enough and the efficiency of resource reallocation is not high
enough, which causes air pollution to have a greater impact on
the productivity of SOEs.

Further, innovation is the first driving force for development.
Generally, high-tech enterprises have a strong sense of innovation and
carry out R&D activities continuously to enhance their core
independent intellectual property rights. Columns (3) and (4) of
Table 9 report the regression results of dividing the total sample
into high-tech and non-high-tech companies, according to their
industry category. The results indicate that the coefficients of
PM2.5 are all significantly negative. Specifically, the former
coefficient is −0.014, and the absolute value is smaller than the
latter’s coefficient of −0.031. This shows that air pollution reduces
the productivity of enterprises in all industries. Compared with
enterprises in high-tech industries, air pollution has a higher
negative impact on enterprises in non-high-tech industries, which
is contrary to the research of Cao et al. (2022). One possible reason is

TABLE 7 Endogeneity test with GS2SLS.

(1) Eastern areas (2) Middle areas (3) Western areas

GS2SLS TFP_LP

PM2.5 −.145*** −.116*** −.381***

(−4.15) (−4.33) (−4.73)

WPM2.5 −.082* −.175*** −.164**

(−1.86) (−5.17) (−2.08)

ρ .176** .286*** .367***

(2.18) (4.52) (4.83)

Controls Yes Yes Yes

FE Yes Yes Yes

Observations 6,170 1,245 1,179

R2 .857 .806 .834

Second−stage TFP_LP

PM2.5 −.417*** −.395*** −.373***

(−2.94) (−4.27) (−5.19)

R2 .480 .307 .339

First-stage PM2.5

Airflow −.032*** −.099*** −.020***

(−4.49) (−5.37) (−3.19)

Kleibergen-Paap 24.994*** 34.746*** 32.827***

rk LM statistic [.000] [.000] [.000]

Kleibergen-Paap rk Wald F statistic 20.154*** 28.859*** 21.421***

R2 .561 .349 .458

Source: Compiled from regression results.

Notes: ***, **, and * denote 1%, 5%, 10% significance levels, respectively; t-values in parentheses; p-values or Stock-Yogo critical value at the 10% level in or brackets.
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that human capital capabilities and contribution to corporate
productivity of high-tech companies are greater. Therefore, in the
face of air pollution, companies will try to make up for the
environmental requirements of high-quality labor, and the
productivity of high-tech enterprises will not be hit as badly as that
of non-high-tech enterprises.

7 Analysis of influence mechanism

Based on the influence of air quality on enterprise productivity,
this study analyzes how air quality affects enterprise productivity.
According to a previous analysis, a mediation effect model was
constructed. As expressed in Equations 8, 9,

TABLE 8 Heterogeneity: Pollutant type.

(1) (2) (3) (4)

Variables TFP_LP TFP_LP TFP_LP TFP_LP

SO2 −.019 −.018

(.031) (.058)

dust −.021 −.032

(.023) (.048)

Constant 14.626*** 14.692** 7.859*** 7.366***

(3.570) (6.403) (.575) (.569)

Control variables Yes Yes Yes Yes

Enterprise Yes Yes Yes Yes

Year Yes Yes Yes Yes

Industry Yes Yes Yes Yes

Province Yes Yes Yes Yes

Observations 142 74 8,459 8,463

R-squared .849 .880 .769 .766

Source: Compiled from regression results.

Note: Values in parentheses are standard errors, and ***, **, and * indicate variables at the 1%, 5%, and 10% significance levels, respectively.

TABLE 9 Heterogeneity: Equity and technical level.

(1) State-owned enterprise (2)Non-state-owned enterprise (3) High-tech (4) Non-high-tech

Variables TFP_LP TFP_LP TFP_LP TFP_LP

PM2.5 −.048*** −.017*** −.014** −.031**

(.012) (.006) (.006) (.013)

Constant 5.067*** 9.098*** 8.400*** 6.428***

(1.092) (.648) (.578) (1.389)

Control variables Yes Yes Yes Yes

Enterprise Yes Yes Yes Yes

Year Yes Yes Yes Yes

Industry Yes Yes Yes Yes

Province Yes Yes Yes Yes

Obs 2,820 5,774 6,437 2,157

R2 .769 .716 .769 .736

Source: Compiled from regression results.

Note: Values in parentheses are standard errors, and ***, **, and * indicate variables at the 1%, 5%, and 10% significance levels, respectively.
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Med varit � β0 + β1PM2.5it +∑k

n�2βn*Conit + τi + γt + εit, (8)
TFPit � β0 + β1Med vari,t + β2PM2.5it +∑k

n�3βn*Conit + τi + γt + εit,
(9)

where Med_var represents the mechanism test variable, including
the human capital (Num), number of patent applications (R&D),
and government subsidies (Gov). Table 10 reports the results of the
mechanism tests. Columns (1), (3), and (5) report the regression
results of formula (8); columns (2), (4), and (6) report the
regression results of formula (9). In the test with R&D as the
mediating variable, in column (1), R&D is negatively significant
with respect to PM2.5 at the 1% level, indicating that R&D
investment is negatively correlated with air pollution; in column
(2), R&D and TFP_LP are positively significant at the 5% level,
indicating that R&D investment is positively correlated with
enterprise productivity; PM2.5 is negatively significant with
respect to TFP_LP at the 1% level, indicating that air pollution
will reduce TFP_LP by reducing R&D. R&D investment partially
mediates air pollution and firm productivity. Similarly, in the tests
in columns (3) and (4) with the Num as the mediating variable,
Num is significantly negative with respect to PM2.5 and TFP_LP at
the 1% level, and PM2.5 is significantly negative for TFP_LP at the
5% level; in columns (5) and (6) in the test with Gov as the
mediating variable, Gov is significantly positive with respect to
PM2.5 at the 1% level and significantly negative with respect to
TFP_LP at the 5% level. Further, PM2.5 is significantly negative

with respect to TFP_LP at the 1% level. The above results also show
that air pollution can hamper productivity by reducing the number
of employees and increasing government subsidies.

To test the possibility that highly skilled people are reluctant to
work in highly polluted areas, this study uses the ratio of people
employed in the three types of highly skilled industries to the city
population from the China Urban Statistical Yearbook as an
explanatory variable. We use the regression discontinuity
model to test the effect of air quality on highly skilled people9

The results show that air pollution leads to loss of highly skilled
people10.

8 Conclusion and policy implications

We selected 8,594 samples from 1,829 A-share companies listed
on the Shanghai and Shenzhen stock markets from 2008 to 2016 to
analyze the impact of air quality on firm productivity. We used

TABLE 10 Mechanism test.

(1) (2) (3) (4) (5) (6)

Variables R&D TFP_LP Num TFP_LP Gov TFP_LP

PM2.5 −.067*** −.014*** −.058*** −.013** .057*** −.018***

(.013) (.005) (.007) (.005) (.013) (.006)

R&D .072**

(.004)

Num .097***

(.008)

Gov −.009**

(.005)

Constant 11.737*** 7.461*** −1.941** 8.173*** −6.280*** 8.002***

(.298) (.551) (.168) (.554) (.332) (.559)

Control variables Yes Yes Yes Yes Yes Yes

Enterprise Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

Industry Yes Yes Yes Yes Yes Yes

Province Yes Yes Yes Yes Yes Yes

Obs 8,594 8,594 8,594 8,594 8,560 8,594

R2 .314 .776 .674 .773 .440 .769

Source: Compiled from regression results.

Note: Values in parentheses are standard errors, and ***, **, and * indicate variables at the 1%, 5%, and 10% significance levels, respectively.

9 In the China Urban Statistics Yearbook, three categories of industries can be
considered high technology industries: information transmission and
computer services and software; financial intermediation; and scientific
research and technical service.

10 We validate the impact of air quality on highly skilled people with regression
discontinuity; please refer to the specific empirical results in Supplementary
Appendix S3.
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regression discontinuity to address the possible endogeneity of air
pollution and firm productivity and a quasi-natural experiment on
centralized heating policies in winter in northern China (north of
the Qinling-Huai River boundary). As per the results,
PM2.5 emissions in the northern region are significantly higher
than those in the southern region, while enterprise productivity in
the southern region is higher than that in the northern region, and
air pollution significantly reduces firm productivity. Then,
considering the possible spatial autocorrelation effect of
environmental pollution in cities, we used local pollution and
pollution from surrounding areas as the core variables in our
analysis. The results showed that firm productivity is not only
negatively affected by local air pollution but also by PM2.5 spillover
from surrounding cities. Further, considering that China’s terrain
system is extremely complex, purely distance-based spatial weights
cannot effectively capture spatial relationships. Therefore, we
divide the eastern, central, and western regions into three
regions and changed the spatial weight matrix for SDM test.
Meanwhile, we use the air flow coefficient as an instrumental
variable along with the GS2SLS method for endogeneity tests.
The results show that poor air pollution has a significant
negative effect on the productivity of enterprises, and pollution
spillovers from surrounding areas dampen local firm productivity
in the eastern, central, and western regions. The conclusions of this
paper are still reliable after addressing the endogeneity problem.
Furthermore, we used dynamic GMM regression, and reselected
data from 2008 to 2012 and 2013 to 2016 as samples for robustness
tests. The results showed that regardless of the model, method, or
sample employed in the estimations, deterioration of air
quality significantly inhibits firm productivity. This conclusion is
caused by reducing firms’ R&D innovation capacity and labor
force, while eliciting them to receive more government subsidies.
Using heterogeneity analysis, we also found that pollution
emissions of sulfur dioxide and soot emissions have much
weaker inhibitory effects on firm productivity than PM2.5.
Meanwhile, deterioration in air quality leads to lower firm
productivity in all equity properties and technology industries.
In particular, the effect of air quality on SOEs and non-high
tech industries is greater compared to non-SOEs and high tech
industries.

While making policy recommendations, we must recognize that
environmental protection and economic growth are not mutually
exclusive, which provides important guidance for China to achieve
high-quality economic development by accelerating green
transformation in the future. The basic research in this paper
concludes that severe air pollution has greatly reduced enterprise
productivity. Therefore, the government should accelerate the
improvement of the air quality regulatory system and develop
environmental regulations of appropriate intensity. It is also necessary
to increase investment in environmental protection, actively guide
enterprises to cleaner production, and provide funding or financing
channels for measures necessary to reduce environmental pollution.
For enterprises, it is necessary to abandon overly polluting enterprises,
regulate the factor endowment structure of enterprises, and promote the
transformation and upgradation of enterprises.

This paper also finds that air pollution reduces firm
productivity by affecting firm innovation levels and human
capital effects. To this end, we can actively enhance the
innovation capacity of enterprises, increase the investment in
science and technology innovation, accelerate the transformation
and upgradation of enterprises and green development; focus on
the working environment of the workforce, and create a good
working environment for the labor force, and increase
investment in talent training and health insurance to prevent
loss of highly skilled personnel. In addition, in the spatial
measurement test, it is found that air pollution has a greater
negative impact on the productivity of enterprises in the east. It
can be because high energy-consuming and high-emission
industries in the east coastal areas may be transferred to some
central cities, inhibiting the productivity of local enterprises.
Therefore, central cities need to combine their characteristics
and competitive advantages and implement active talent
introduction policies, avoid undertaking overly polluting
enterprises, and implement clean and efficient production.
Finally, in the heterogeneity test, it is found that the impact of
air quality on non-high-tech industries is greater than that on high-
tech industries. Thus, it is more relevant for enterprises in non-
high-tech industries to consider possible environmental pollution
problems, which fundamentally lie in regulating the factor
endowment structure of enterprises and accelerating the
transformation of the leading industrial structure from labor-
intensive to capital- and technology-intensive.

It should be noted that owing to limited availability of data, our
sample only contains A-share companies listed on the Shanghai and
Shenzhen stock markets from 2008 to 2016; the data for
2017–2021 and a large number of unlisted companies are not
included, resulting in a substantial reduction in the sample size.
The findings can be empirically tested in future studies using more
comprehensive data. In addition, air quality may affect corporate
productivity through other areas of corporate finance, such as
corporate investment and capital attraction, as well as
corporate executive behavior, which can be investigated in future
research.
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