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Introduction: Using satellite data to identify the planting area of summer crops is
difficult because of their similar phenological characteristics.

Methods: This study developed a new method for differentiating maize from other
summer crops based on the revised time-weighted dynamic time warping (TWDTW)
method, a phenology-based classification method, by combining the phenological
information of multiple spectral bands and indexes instead of one single index. First,
we compared the phenological characteristics of four main summer crops in Henan
Province of China in terms of multiple spectral bands and indexes. The key
phenological periods of each band and index were determined by comparing the
identification accuracy based on the county-level statistical areas of maize. Second,
we improved the TWDTW distance calculation for multiple bands and indexes by
summing the rank maps of a single band or index. Third, we evaluated the
performance of a multi-band and multi-period TWDTW method using Sentinel-2
time series of all spectral bands and some synthetic indexes formaize classification in
Henan Province.

Results and Discussion: The results showed that the combination of red edge (740.2
nm) and short-wave infrared (2202.4 nm) outperformed all others and its overall
accuracy ofmaize planting areawas about 91.77% based on 2431 field samples. At the
county level, the planting area of maize matched the statistical area closely. The
results of this study demonstrate that the revised TWDTW makes effective use of
crop phenological information and improves the extraction accuracy of summer
crops’ planting areas over a large scale. Additionally, multiple band combinations are
more effective for summer crops mapping than a single band or index input.
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1 Introduction

Identifying and monitoring the distribution of crops at high spatial resolution over large
regions can help improve food security and achieve sustainable development (Vintrou et al.,
2013; Inglada et al., 2015). Crop planting area maps can be used as a direct input to crop
production prediction models (Fu et al., 2021) and can be potentially used to predict future
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planting maps (Zhang C. et al., 2019). Operational cropland mapping
can also serve as an important input for modeling greenhouse gas
emissions in agro-ecosystems, which plays an important role in
determining regional carbon budgets (Crane-Droesch, 2018;
Mohammadi et al., 2020). At present, agricultural statistics are
collected by censuses and other sampling efforts to update the
agricultural information on a regular basis but do not provide the
detailed spatial patterns of croplands; moreover, the data collection
process is time-consuming, labor-intensive, and expensive (Carletto
et al., 2015). Therefore, more reliable and cost-effective methods are
needed to identify crop planting area over regional scales.

The prevailing identification methods based on satellite data are
machine learning methods such as supervised classifiers, including
maximum likelihood classifier (MLC) (Arvor et al., 2011), support
vector machine (SVM) (Löw et al., 2013), random forests (RF) (Chen
H. et al., 2021) and deep learning (Chew et al., 2020; Xu et al., 2020);
and unsupervised classifiers such as k-means (Hamada et al., 2019)
and gaussian mixture model (GMM) (Wang et al., 2019). It is difficult
for machine learning methods to extend classifier rules and
parameters to regions outside of the areas for which they were
trained (Rodriguez-Galiano et al., 2012) as all these methods are
region- and phase-dependent due to period and region spectral
variability. In addition, machine learning methods usually require a
large amount of training data consisting of ground-truth observations
obtained during the satellite overpass period (Millard and Richardson,
2015; Valero et al., 2016). For instance, the Cropland Data Layer
(CDL) released by the United States Department of Agriculture
(USDA) uses a decision tree classification method based on satellite
observations to provide a 30-m resolution annual map of crop types in
the United States (Boryan et al., 2011). The product relies on a large
number of ground-truth samples collected each year during the
growing season as training datasets (Boryan et al., 2011). In 2009,
Nebraska alone used 251,016 Common Land Unit (CLU) polygon
records for training (Boryan et al., 2011). Providing such large-scale
data for crop mapping is expensive and time-consuming (Carletto
et al., 2015). Also, the farm-level land use in the Farm Service Agency’s
CLU dataset can only be accessed internally and is not publicly
available. Therefore, machine learning algorithms that require as
many training samples as possible are limited because of the lack
of training datasets (Petitjean et al., 2012).

Another approach is to use a phenology-based classification
algorithm, which usually extracts the growth calendar of crops and
uses specific spectral features of the phenological period to distinguish
crops (Fan et al., 2015; Ashourloo et al., 2019; Rad et al., 2019).
Satellite-based vegetation index time-series data are commonly used to
retrieve phenological indicators, such as season length, seasonal
amplitude, and the number of effective peaks to identify crops
(Geerken, 2009; Son et al., 2014; Liu J. et al., 2018; Guo et al.,
2022). For example, Salehi Shahrabi et al. (2020) used the
normalized difference vegetation index (NDVI) to define two
parameters, i.e., the length of season and the slope from peak green
to harvest, to identify maize. Some studies use different indexes to
detect the unique phenological characteristics of crops within a certain
time period (Dong et al., 2015). Several recent studies used the time-
weighted dynamic time warping method (TWDTW) to quantify the
differences of time series of satellite-based bands or indexes to
distinguish various crops (Pan et al., 2021; Zheng et al., 2022a;
Huang et al., 2022; Shen et al., 2022). Especially, this method
requires a small volume of training samples, and it has shown

better performance than commonly used machine learning
algorithms (e.g., SVM and RF) for crop and forest classification
(Belgiu and Csillik, 2018; Cheng and Wang, 2019).

However, there are large challenges for phenology-based
classification algorithms to identify summer crops because of their
common developmental patterns and similarity in growth calendars
(Rao, 2008; Peña-Barragán et al., 2011; Vuolo et al., 2018). Among the
summer crops, maize and rice dominate the cereals produced and
consumed globally, and play an important role in ensuring food
security. According to the Food and Agriculture Organization
(FAO) of the UN, maize and rice accounted for 12% and 8% of
the global production of primary crops in 2019, respectively (FAO,
2021). China is the largest producer of rice (FAO, 2021), the second
largest producer of maize, and a major global importer of maize (FAO,
2017). Due to the very similar phenology of maize to many other
summer crops, its spectral characteristics differ little from those of
other crop types, making it difficult to ensure accurate classifications
(Zhong et al., 2014; Tian et al., 2021). Skakun et al. (2016) found that
maize and soybean share a common crop calendar and have highly
similar spectral characteristics, which led to confusion in classification.
Sibanda and Murwira (2012) used NDVI to distinguish summer crops
and found there were no significant differences in the average NDVI
among maize, cotton, and sorghum from the beginning of greening to
late senescence. Moola et al. (2021) also found that maize showed low
separability from vegetables such as peppers, tomatoes, and
cucumbers, leading to classification confusion. In addition, maize
has also been found to be indistinguishable from peanuts and
sugar beets, and may need to be identified by subtle differences in
its specific planting time and general growth patterns (Hoekman and
Vissers, 2003; Qiu et al., 2021).

It should be noticed that current studies mostly used a single
satellite-based spectral band or index input to identify summer crops
(Sun et al., 2019; Zhang S. et al., 2019; Zhong et al., 2019). A single
spectral index may not be able to characterize complex crop
development, making it difficult to distinguish differences in
summer crops (Gella et al., 2021; Shen et al., 2022). For example,
Belgiu et al. (2021) found similarities in the curves of NDVI for maize,
potatoes, carrots, cereals, soybeans, and cauliflower, leading to a large
misclassification. In recent years, the application of multi-source data
has received wide attention (Liu W. et al., 2018; Wang S. et al., 2020;
Chen H. et al., 2021). An increasing number of studies used multiple
satellite-based spectral bands or indexes to identify jointly summer
crops (Dong et al., 2015; Wang Y. et al., 2020). For example, Pan et al.
(2021) identified paddy rice by detecting a decreased signal of SAR
when paddy rice was irrigated and a decreased vegetation index during
the harvest periods. However, these methods do not adequately
account for differences between similar crops or natural vegetation
types, and quantitative measures of phenological changes are limited
(Silva Junior et al., 2020). To classify complex summer crops, it is
necessary to combine multiple bands or indexes and find important
spectral characteristics for identifying these crops.

To deal with the challenges mentioned above, here we developed a
new phenology-based method to identify the planting areas of maize,
one of the most important summer crops, by combining the
phenological characteristics of multiple spectral bands and indexes.
Specifically, we revised the TWDTWmethod by adding the rank maps
of each band or index in different phenological periods to combine
multiple bands or indexes for classifying. Therefore, the overall goals
of this study are to: 1) select different spectral bands or indexes, and
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determine their own optimal phenological period for maize
identification; 2) Based on the revised TWDTW algorithm,
combine multiple bands or indexes to extract maize planting area,
compare and select the best combination, and extend to other years.
The optimal combination will enable timely mapping of maize
planting areas with the help of a simple, robust, and automated
TWDTW algorithm and is expected to be applied to the
identification of other crops. At the same time, it also provides
ideas to further explore the use of multi-band combinations for
phenology-based classification.

2 Materials and methods

2.1 Study area

Our study area is Henan Province, one of the largest planting
areas of maize in China. Henan is located between approximately

31°N and 36°N latitude and 110°E and 117°E longitude, with an area
of 1,67,000 km2. In 2019, the planting area of maize accounted for
25.83% of China’s total area. The summer crops in Henan are
dominated by maize, peanut, rice, and soybean, with maize
occupying more than 65% of the area (Figure 1), which provides
a good opportunity to examine the method accuracy for summer
crops classification. The planting area of maize is mainly
distributed in Zhoukou, Shangqiu, Zhumadian, and Nanyang
City (Figure 2). Maize is usually planted from May to October,
and the length of the growing season is about 4 months. The
planting and harvesting times of peanut, soybean, and rice in
Henan are very similar to maize.

2.2 Data

2.2.1 Satellite data
The 30-m spatial resolution bands and indexes for the entire

study area were obtained from the Sentinel-2 (S2) TOA product.
S2 provides over 13 spectral bands with high temporal and spatial
resolution. All bands and indexes used in the study had a spatial
resolution of 30-m, with a median composite of 8-day temporal
resolution. The cloud probability product provided by the Sentinel
Hub (https://developers.google.com/earth-engine/datasets/
catalog/COPERNICUS_S2_CLOUD_PROBABILITY) was used
in the research to eliminate the impact of clouds on the
S2 product. Pixels with a cloud probability higher than 50%
were removed to obtain a cloud-free image. The data covered
the entire maize growing season (137–289 days of year) in
Henan Province from 2017 to 2020. Data filtering and gap
filling were performed according to the following procedure.
Linear equations were used to interpolate missing data based on
adjacent observations to ensure that all pixels in the study area had
the same length of time series (Zheng et al., 2022b). Then, a
Savitzky-Golay (SG) filter with order set to 2 and window size
set to 5 was applied in this study to capture the seasonal cycle of
vegetation greenness to construct a smoothed time series (Chen

FIGURE 1
Statistical area of maize, peanut, rice, and soybean from 2017 to
2020 in Henan Province.

FIGURE 2
Location of the study area and the ground truth samples. (A)Map of statistical areas at the city level. The red dots indicate maize samples. (B) The other
non-maize samples. The red, orange, and yellow triangles indicate peanut, rice, and soybean samples, respectively. Those samples collected through field
surveys in 2019.
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et al., 2004). All pre-processing was done on the Google Earth
Engine platform.

2.2.2 Field data and agriculture census data
The study used survey samples to obtain a standard curve for

maize and other summer crops, which was also used to assess the
accuracy of the distribution map. Survey samples obtained from field
surveys. In 2019, field investigations were conducted in Henan
Province, and various samples including maize, rice, peanut,
soybean, other crops, forests, shrubs, water, buildings, and sheds
were collected (Figure 2). The total number of samples was 2,481,
including 890 maize samples and 1,591 non-maize samples. The
county-level statistical data of Henan Province from 2017 to
2020 were obtained from the statistical yearbook of each city-level
city (https://data.cnki.net/Area/Home/Index/D16). The study
collected all county-level statistics that could be collected, including
acreage in 104 counties in 2017–2018, 148 counties in 2019, and
113 counties in 2020.

2.3 Method

2.3.1 Revised time-weighted dynamic time warping
In this study, the method TWDTWproposed byMaus et al. (2016)

and Dong et al. (2020) was used to generate the maize distribution
map. TWDTW is an improved method of DTW, and the original
DTW algorithm measures the dissimilarity between time series by
aligning the minimum accumulated distance of two non-linear time
series (we assume time series X is known maize pixel and series Y is
unknown land cover pixel) to adjust the time dimension by warping
the Y series to find the minimum modified path of the series X, which

indicates the degree of dissimilarity between the two series. TWDTW
is an improved method of DTW, which forces a time-weighted penalty
to dissimilarity based on DTW and performs better classification
accuracy. The logical TWDTW with open boundaries was used for
time-weighted penalty in this study, which had a low penalty for small
time warps and a significant cost for large time warps.

In this study, we created a mask based on NDVI that only the
pixels with a value of NDVI greater than .3 at any time from 137 to
289 days of year (DOY) were used to classify. Then, 50 survey samples
of maize (Figure 2) were randomly selected and averaged to obtain the

FIGURE 3
Process of the revised time-weighted dynamic time warping, using REP and NDVI as an example. The time series X is known maize pixel and the time
series Y is unknown land cover pixel. The white line in the accumulated cost matrix is the optimal warping path between two sequences.

TABLE 1 Specifications of the Multispectral Instrument (MSI) bands on the
Sentinel-2 A and B satellite systems.

Spectral band Center wavelength (nm)

S2A S2B

Blue 496.6 492.1

Green 560 559

Red 664.5 665

RE1 703.9 703.8

RE2 740.2 739.1

RE3 782.5 779.7

RE4 864.8 864

NIR 835.1 833

SWIR1 1,613.7 1,610.4

SWIR2 2,202.4 2,185.7
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standard curve for the seasonal variation of maize in Henan. The
TWDTW method was used to calculate the dissimilarity of the time
series from the standard curve for each pixel. When the dissimilarity
was low, it indicated that the time series of the pixel was more similar
to the standard curve and more likely to be planted maize. The
dissimilarity values were calculated for all the pixels, and the pixels
with dissimilarity values smaller than the threshold were identified as
maize, and the area of all identified maize pixels was the same as the
province-level statistical area (Dong et al., 2020; Zheng et al., 2022a).

On this basis, we revised the TWDTW method by combining two
or more bands or indexes to classify. The details are shown in Figure 3.
First, each identification got a distance matrix and a time weight matrix,
summed up to get the cumulative distance matrix. Then, through the
cumulative distancematrix, we calculate theminimummodified path of

the time series Y (unknown land cover pixel) to the time series X
(knownmaize pixel) to obtain theminimum distance value. The smaller
the distance value, the more likely the unknown pixel planted maize.
After all pixels were calculated, aminimumdistancemapwas generated.
Each band or index obtained a minimum distance map at their
respective optimal phenological period (see Section 2.3.2). We sorted
each minimum distance map to obtain a rank map, which can be
considered as normalized dissimilarity map. Two or more rank maps
were added together to obtain a new combined rankmap. Finally, a new
maize map identified from multiple bands or indexes was obtained
through the threshold determined by the province-level statistical area.

In this study, a total of ten spectral bands and three indexes derived
from the S2 data were selected for maize identification (Figure 4). The ten
bands of S2 included blue, green, red, red edge1 (RE1), red edge2 (RE2), red

FIGURE 4
Standard seasonal curves of (A) blue, (B) green, (C) red, (D) RE1, (E) RE2, (F) RE3, (G) RE4, (H) NIR, (I) SWIR1, (J) SWIR2, (K) LSWI, (L) REP, and (M) NDVI for
maize, peanut, rice, and soybean in Henan Province in 2019.
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edge3 (RE3), red edge4 (RE4), near infrared (NIR), short wave infrared1
(SWIR1), and short wave infrared2 (SWIR2) (Table 1). The three spectral
indexes were LSWI, red edge position index (REP), and NDVI, calculated
using the following equation:

LSWI � ρNIR − ρSWIR

ρNIR + ρSWIR
(1)

REP � 705 + 35 ×
0.5 × ρRE3 + ρRed( ) − ρRE1

ρRE2 − ρRE1
× 100% (2)

NDVI � ρNIR − ρRed
ρNIR + ρRed

(3)

where ρNIR, ρSWIR, ρRed, ρRE1, ρRE2, and ρRE3 are the top-of-
atmosphere (TOA) reflectance values of the NIR, SWIR1, red, RE1,
RE2, and RE3 of the S2 Multispectral Instrument (MSI).

2.3.2 Determination of phenology periods
We examined the key phenological periods of all ten bands and

three indexes for distinguishing maize from the other summer crops.
This study initially set the start date of the key phenological phase on
the 137th day (May 5th), and the end date on the 289th day (October
10th). We used a time-sliding approach to investigate the best
phenological periods of each band and index to classify maize with
other summer crops. For each test, based on the standard curve of each
band and index individually, we used the TWDTWmethod to identify
maize planting area (see Section 2.3.1) and compare it with the county-
level statistical area for verification. After comprehensively evaluating
the R2 and RMAE for each band or index during all potential
phenological periods, we obtained the optimal time period of each
band or index for maize mapping.

Taking REP as an example, the detailed steps are as follows
(Figure 5): The size of the initial window (window1 in Figure 5) is
8, with a total length of 64 days, and is slid from the left (DOY:
137–193) to the right (DOY: 233–289). The standard curve and the
unknown time series in the corresponding time window are used to
calculate the minimum distance value by TWDTW, and then derive a
maize map based on a dissimilarity threshold. The size of the second
window (window2 in Figure 5) is 9, with a total length of 72 days, and
the sliding steps are the same as above. The window size increases
sequentially. The size of the last window (window13 in Figure 5) is 20, a
total of 160 days, covering the entire time period (DOY: 137–289).
Each band or index experiences a total of 91 swipes, and each slide
produces a maize map. Finally, a comprehensive evaluation by county-
level validated R2 and RMAE yields the optimal identification of the
phenological period for each band and index.

2.3.3 Accuracy assessment
First, we evaluated the coefficient of determination (R2) and

relative mean absolute error (RMAE) of every band or index or
combination. The calculation equations of R2 and RMAE are as
follows:

R2 � 1 − ∑n
i�1 IAi − SAi( )2

∑n
i�1 SA − SAi( )

2 (4)

RMAE � ∑n
i�1 SAi − IAi| |
∑n

i�1SAi
(5)

where SAi and IAi are the statistical area and identified area of the ith
county, and n indicates the amount of the counties in the given
province.

FIGURE 5
Time sliding taking REP as an example. The smallest window’s size is 8 (i.e., 64 days, window1), and the largest window’s size is 20 (i.e., 160 days,
window13, DOY 137–289).
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Second, the classification accuracy was assessed based on field
survey samples from 2019. Fifty random field samples were used to
calculate the standard curve for maize, and the remaining
2,431 samples were set aside and used to calculate four accuracy
metrics, including producer accuracy (PA), user accuracy (UA),
overall accuracy (OA) and Kappa coefficient. PA represents the
percentage of maize samples surveyed that are correctly identified
as maize; UA represents the percentage of maize on the classification
map that is actually confirmed by fieldwork; OA quantifies the
overall effectiveness of the method and is calculated as the
percentage of correctly identified samples. The Kappa coefficient
(Congalton and Green, 1999) considers all samples of the confusion
matrix and is used to analyze the level of consistency between the
classification and the reference data. The four accuracies can be
calculated as:

PA � TP
TP + FP

× 100% (6)

UA � TP
TP + FN

× 100% (7)

OA � TP + TN
TP + TN + FP + FN

× 100% (8)

Kappa � Po − Pe

1 − Pe
× 100% (9)

where TP is the number of maize samples that are correctly classified.
TN is the number of non-maize samples that are correctly classified.
FP is the number of non-maize samples that are classified as maize. FN
is the number of maize samples that are classified as non-maize. Po is
the proportion of observed accuracy and Pe is the proportion of
expected accuracy.

3 Results

First, we examined the performance of a single satellite-based
spectral band or index for identifying maize. In order to detect the best
phenological periods of each band and index, we used a running
window to generate all possible phenological periods starting from
DOY 137 and ending to DOY 289 (see Section 2.3), and we compared
the performance of each band and index with all potential
phenological periods by comparing the identified areas with
statistical area at county level. The results showed that almost the
performance of all spectral bands and indexes largely varied during the

FIGURE 6
Comparison between statistical county-level maize cultivated area in 2019 with the identified area based on (A) blue, (B) green, (C) red, (D) RE1, (E) RE2,
(F) RE3, (G) RE4, (H)NIR, (I) SWIR1, (J) SWIR2, (K) LSWI, (L) REP, and (M)NDVI during the all potential phenological periods. A total of 91 potential phenological
periods for each band or index (Table 1).
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different periods (Figure 6). For example, REP containing the DOY
233–289 showed the best performance than those during other periods
(Figure 6L). Therefore, we compared the performance of each band
and index with the best phenological periods. There were large
differences in the performance of various bands and indexes
compared to the statistical area (Table 2). In all investigated
spectral bands and indexes, REP showed the best performance, and
the identified areas showed the highest correlation with statistical areas
(R2 = .810) and the lowest RMAE (.343) (Table 2). In contrast, RE2 had
the poorest performance with the R2 of .575 and the RMAE of .415
(Table 2).

We further examined if the combinations of two bands or indexes
can improve the identification accuracy compared to one single band
or index, and the phenological periods of each band and index were set
as the best phenological periods shown in Table 2. There are a total of
66 combinations of two bands or indexes. The results showed large
differences in the identification accuracy of various combinations,

such as R2 ranging from .703 to .855 (Figure 7A). Most combinations
outperformed the single band or index (Figures 7C, D). For example,
the RMAE derived by the combination of NIR and SWIR2 decreased
about 10% compared to the lower RMAE of one single band of these
two bands (Figure 7D). On contrary, incorporating some bands or
indexes will result in lower identification accuracy. It can be seen from
Figure 7 that the combinations with LSWI showed worse accuracy.
Most combinations with RE3, RE4, and NIR performed better
(Figure 7A). The highest accuracy was achieved with the
combination of SWIR2 and NIR, with R2 of .855 and RMAE of
.258; this was followed by the combination of SWIR2 and RE4,
with R2 of .853 and RMAE of .259 (Figures 7A, B).

According to the above comparisons on combinations of two
bands shown in Figure 7, the combinations with RE3, RE4, and NIR
performed better than other combinations. Therefore, we further
selected all combinations with these three bands to generate the
combinations of three bands or indexes by integrating another
band or index. The classification accuracy of most three bands or
indexes combinations was not much improved compared to the two
bands or indexes combinations (Figures 8C, D). The highest accuracy
was achieved by the combination of NIR, SWIR2, and green, with R2 of
.856 and RMAE of .266; the second was with the combination of NIR,
SWIR2, and red, whose accuracy is very close to the highest (R2 = .856,
RMAE = .273) (Figures 8A, B). Similarly, there was little improvement
in the classification accuracy of the combinations of four bands or
indexes, with a decrease in R2 for almost all combinations, and an
increase in RMAE for most combinations (Figures 9C, D). The above
results indicated that as the number of bands or indexes in the
combination increases to three or more, the accuracy (R2 and
RMAE) no longer increases.

To better verify the classification accuracy of each combination, we
calculated the UA, PA, OA, and kappa using the field survey data in
2019. The accuracies of the maize maps were not identical using
different bands or indexes. SWIR2 had the highest accuracy (OA
88.69%), followed by NDVI (OA 86.22%); while red (OA 79.68%) and
REP (OA 75.24%) had much lower accuracies (Table 3). The
combinations obtained significant improvements compared to the
basic single band or index. For example, the combination of RE4 and
SWIR2 increased OA up to 10.90% compared to RE4 and 3.08%
compared to SWIR2. Besides, with the increase of the number of bands
or indexes in the combination, the accuracy was also improved. The
average OA of the two, three, and four bands or indexes combinations

TABLE 2 Identification performance of each spectral band and index with the
best phenological periods.

Band/Index R2 RMAE Tstart Tend

Blue .703 .371 153 217

Green .792 .317 153 225

Red .771 .332 161 225

RE1 .797 .343 161 217

RE2 .575 .415 137 257

RE3 .762 .307 145 289

RE4 .788 .284 137 289

NIR .788 .288 145 289

SWIR1 .794 .289 169 225

SWIR2 .796 .302 161 217

LSWI .701 .376 161 217

REP .810 .343 217 281

NDVI .770 .308 169 225

Tstart and Tend indicate the start and end DOY, of the optimal phenological periods.

FIGURE 7
Comparisons of the accuracy of a total of 66 combinations of two bands or indexes. (A,B) The R2 and RMAE of maize planting area and statistical area on
the county-level for 2019. (C,D) The difference of R2 and RMAE between the combinations and the better single band or index in the combinations.
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FIGURE 8
Comparisons of the accuracy of a total of 109 combinations of three bands or indexes. (A,B) R2 and RMAE ofmaize planting area and statistical area on the
county-level for 2019 in Henan. (C,D) Difference in R2 and RMAE between the combinations of three and the combinations of two.

FIGURE 9
Comparisons of the accuracy of a total of 85 combinations of four bands or indexes. (A,B) The R2 and RMAE of maize planting area and statistical area on
the county-level for 2019 in Henan. (C,D) The difference of R2 and RMAE between the combinations of four and the combinations of three.
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were 89.94%, 90.75%, and 92.07%, respectively. Finally, a
comprehensive evaluation of R2, RMAE and OA showed that the
combination of RE4 and SWIR2 was the best among the
15 combinations tested in the study.

The combination of RE4 and SWIR2 was used for maize
mapping in 2017–2020. At the county level, the identified maize
area matched very well with the statistical area (Figure 10). The
scatters were close to the 1:1 line, and the R2 reached above .83 with
RMAE lower than .27. The comparison of the maize map based on
the combination of RE4 and SWIR2 with the very high-resolution
images of maize from Google Earth showed high spatial consistency
in the two regions (Figure 11) and was able to exclude buildings,
roads and other crops, and only slightly misclassified some small
areas.

4 Discussion

It has been a significant challenge to identify summer crops
because of similar phenology characteristics (de Souza et al., 2015;
Wang et al., 2022). Multitemporal scenes of one single spectral band or
index are commonly used for crop identification (Kussul et al., 2017;
Ienco et al., 2019). Our results also showed the similar phenological
characteristics among the four summer crops including maize, peanut,
soybean, and rice (Figure 4). Therefore, it is quite difficult to map
maize relying on a single band or index due to spectral confusion in
summer crops. Even when two or more bands and indexes are input
for training, phenological characteristics cannot be extracted
effectively (Abubakar et al., 2020; You and Dong, 2020; Chen Y.
et al., 2021). Previous methods usually used machine learning

TABLE 3 Confusion matrices of combinations in 2019.

Bands or indexes User (%) Prod (%) Over (%) Kappa

1 band Blue 79.75 77.38 85.40 .67

Green 78.25 81.79 85.85 .68

Red 74.37 62.86 79.68 .53

RE1 81.11 71.55 84.41 .65

RE2 80.89 69.05 83.67 .63

RE3 76.30 73.21 82.89 .62

RE4 79.16 60.60 80.87 .55

NIR 82.60 71.79 85.03 .66

SWIR1 81.11 71.07 84.29 .64

SWIR2 82.66 85.12 88.69 .75

LSWI 81.11 71.55 84.41 .65

REP 68.71 52.02 75.24 .42

NDVI 85.02 72.98 86.22 .68

2 bands NIR, SWIR2 88.36 81.31 89.84 .77

RE4, SWIR2 89.51 86.31 91.77 .82

RE3, SWIR2 89.51 80.24 89.92 .77

NIR, Red 87.23 82.98 89.92 .77

NIR, SWIR1 89.24 75.00 88.24 .73

3 bands NIR, SWIR2, Green 89.57 81.79 90.42 .78

RE4, SWIR2, Green 90.14 87.02 92.23 .83

NIR, SWIR2, Red 88.76 82.74 90.42 .78

NIR, SWIR2, Blue 88.51 83.45 90.54 .79

RE4, SWIR2, Red 87.13 83.81 90.13 .78

4 bands RE4, SWIR2, Red, NIR 88.83 82.38 90.33 .78

RE4, SWIR2, Red, Green 90.41 89.76 93.17 .85

NIR, SWIR2, Red, Green 89.01 86.79 91.73 .82

NIR, SWIR2, Blue, Green 89.43 85.60 91.53 .81

RE4, SWIR2, NDVI, NIR 91.50 89.76 93.58 .86
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methods, and limited the application capability to the other regions
(Rodriguez-Galiano et al., 2012).

In this study, a multi-band recognition attempt was conducted
based on the TWDTW algorithm. The results showed that the

combinations of two and more bands and indexes can effectively
improve the identification performance compared to one single band
or index (Figures 7–9). One of the most important theory basics is
large sensitivity differences of various crops to different spectral bands

FIGURE 10
County-level comparison of identified and statistical planting areas in (A) 2017, (B) 2018, (C) 2019, and (D) 2020 in Henan Province. The solid lines indicate
the 1:1 line, and the red dashed lines indicate the regression lines.

FIGURE 11
(A) The validation area is located in the north of Henan Province. (B1) and (C1) the very high-resolution image from©Google Earth. (B2) and (C2) presence
(red) and absence (white) of maize on the harvest map in 2019.
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or indexes (Yin et al., 2020; Zhao et al., 2020). Studies have found that
the reflectance in the red edge region is mainly affected by leaf
absorption and canopy scattering (Baret et al., 1994; Yang and van
der Tol, 2018). For the same total leaf chlorophyll content, absorption
of a maize leaf in the red edge region is the same as that of a soybean
leaf (Peng and Gitelson, 2012). But the scattering of a spherical canopy
(soybean) is higher than that of a heliotropic canopy (maize) (Nguy-
Robertson et al., 2012). Therefore, the RE4 reflectance of maize is
lower than that of soybean (Peng et al., 2011). And the leaf reflectance
of peanut in the red edge regions is very close to that of soybean
(Buchaillot et al., 2022). SWIR2, another member of the best
combination, is very sensitive to changes in soil moisture (Khanna
et al., 2007). The differences between maize and paddy rice are striking
during the irrigated period of paddy rice, with a much lower value of
SWIR2 in paddy rice than in maize (Figure 4).

The new method also highlighted the importance of selecting
phenological periods for spectral bands. In general, the classification
accuracy of the TWDTW classifiers depends on the distinguishability
of the temporal profiles of different crops (Gella et al., 2021). This
study examined the difference in the phenological periods of each
band or index for identifying maize, and only one band (RE4) showed
the best performance using the temporal variations during the entire
growing periods, whereas the other bands or indexes are better in
certain phenological stages. For example, LSWI, SWIR1 and

SWIR2 performed the best during DOY 161–225 (early and middle
growth stage) (Table 2), adding data acquired in the late period (DOY
233–289) only brings information redundancy, which has little effect
on improving classification accuracy. This phenomenon was also
observed by Jia et al. (2012) when they investigated the ability of
SAR data in the North China Plain to classify crops. They found that
the information contained in two temporal SAR datasets acquired in
late jointing and flowering periods is enough for crop classification;
Sun et al. (2019) extracted different temporal features to identify crops,
and found that the classification accuracy varies widely. In May
(flowering period), the crops obtained the best OA and kappa.
Research showed that rather than using the entire phenological
period, images of optimal time periods can achieve higher
classification accuracy (Murakami et al., 2001; Hao et al., 2015).

According to the validation using field surveys and statistical area
at county level, this study showed the good performance of the new
method for identifying maize. In addition, we also investigated the
temporal and spatial patterns of identified maize, which are another
important information for judging the method reliability (Pan et al.,
2021; Zheng et al., 2022b). The study area (i.e., Henan Province) is one
of the largest contributors of maize production in China (Shen et al.,
2022), and there are large areas to continuously plant maize (Zhang
et al., 2018). The results of the combination of RE4 and SWIR2 showed
that more than 95% of fields have been planted maize for four

FIGURE 12
The planting frequency of maize in Henan Province from 2017 to 2020 by (A) RE4, (B) SWIR2, and (C) the combination of RE4 and SWIR2. The number
1–4 means that maize planted for continuous one to four investigated years. And (D) Statistics for patches with different pixel numbers in the maize harvest
map for Henan in 2019, including the ten spectral bands, three indexes and the combination of RE4 and SWIR2.
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continuous years (Figure 12C). However, single-band RE4 and
SWIR2 could not reflect the characteristics of large-scale
continuous maize cultivation in Henan Province (Figures 12A, B).
In addition, previous studies highlighted that satellite-based
classification may result in “salt-and-pepper” noise, i.e., large
amounts of isolated single or small area patches consisted of
identified maize pixels (Zheng et al., 2022a). Our results indicated
a high proportion of isolated large patches of identified maize
(Figure 12D). Especially, compared to the classification map based
on one single band or index, there are lower proportion of small area
patches.

Nowadays, the world is in a rapid stage of agricultural modernization,
but food security remains a top priority. Maize is one of the most widely
produced cereals in the world and can be used for human food, livestock
feed, and bioenergy (Ranum et al., 2014). Accurate and timely
information of maize acreage is critical for regional and global food
security as well as international food trade. The high-resolution crop
distribution map can not only be used as a base map to predict crop
production and improve the accuracy of large-scale crop yield simulations
(Becker-Reshef et al., 2010; Franch et al., 2015; Wang S. et al., 2020), but
also be used as a reference to predict its future planting distribution (Chu
et al., 2021). Furthermore, agriculture has the unique potential to provide

a beneficial contribution to the global carbon budget. For example,
agriculture produces large amounts of nitrogen, one of the long-lived
greenhouse gases, due to the use of fertilizers such as nitrogen fertilizers
(Northrup et al., 2021; Pan et al., 2022). To better understand food
security and greenhouse gas emissions, high spatial-resolution cropland
area monitoring is necessary. Our improved method, the TWDTW
method that combines multi-source data and phenological
information, is suitable for the identification of common summer
crops and can be extended to other regions. The produced maps can
help to dynamically understand the planting distribution of summer
crops, and can greatly help policy decisions related to agriculture and
emission reduction.

Although our results showed robust classification by the new
method, there are still some uncertainties that need to be resolved in
the future. First, optical satellite remote sensing data are affected by
clouds and rain, and there were few effective images in central Henan
Province, especially in 2017 (Figure 13).While our algorithm screens for
good-quality observations, data gaps due to persistent cloud cover create
difficulties identifying crop cycles. Some fields may be mistakenly
classified as non-maize. To address this, we need more remote
sensing data with higher spatial and temporal resolution; another
approach is to rely on the fusion of multi-source remote sensing

FIGURE 13
Times of good observations of 8-day maximumNDVI composite images during the maize growing season of (A) 2017; (B) 2018; (C) 2019; and (D) 2020.
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data to produce products with high spatial and temporal resolution (Li
et al., 2017; Zhu et al., 2017). In addition, another limitation comes from
the impact of composite planting structures (Ghosh et al., 2006; Maitra
et al., 2021). The regular maize-soybean strip intercropping, originally
popularized in northern China, and maize-soybean relay-strip
intercropping extended in southwestern China (Du et al., 2018),
generating more complex phenological characteristics. A flexible
utilization of the phenological period with TWDTW may be able to
better deal with these issues.

5 Conclusion

This study developed a new phenological-based method to
identify the summer crop based on multiple bands with their
specific phenological periods. As an example, this study
examined the performance of this new method for identifying
maize in Henan Province of China. Ten spectral bands and
three synthetic indexes derived from the Sentinel-2 dataset were
used based on the revised TWDTW method. Time sliding was first
performed on all bands and indexes with different time window
sizes on 137–289 days of year to obtain the best identification
phenological periods. On this basis, the performance of the
multi-band combination TWDTW method in extracting maize
planting area was evaluated. The combination of RE4 and
SWIR2 had the best performance among all combinations, with
overall classification accuracy reaching 91.77%. A total of more
than 100 counties were selected for data accuracy assessment from
2017 to 2020, showing that the maize planting area estimated by
this combination correlated well with the statistical data, with R2

greater than .83 and RMAE lower than .27. The combined effect was
more accurate than for all single bands; with the increase in the
number of bands or indexes in the combination, the overall
classification accuracy improved with the use of up to three
bands. The results indicated a robust potential for combining
multiple bands or indexes and crop phenological information
using the TWDTW method in the application of maize planting
area monitoring.
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