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Achieving “peak carbon” and “carbon neutrality” and designing energy

conservation and emission reduction policies in China require giving full play

to the effect of green technology innovation. This paper uses annual data from

1993 to 2020 in China, including the number of green invention patents and

green utility model patents, and tests the long-term and short-term effects of

green innovation on carbon emission intensity by constructing an ARDLmodel.

The results show that the effect of green invention patents and green utility

model patents on CO2 emission intensity is different. Specifically, green

invention patents contribute to reducing carbon emission intensity in the

short term but act as a barrier in the long term. Green utility model patents

suppress carbon emission intensity in the short and long terms. In addition,

adjustment of the industrial structure characterized by “shrinking the secondary

sector and developing the tertiary sector” has the most excellent effect on

reducing carbon emission intensity in the short term. The relative energy price’s

carbon emission reduction effect is weaker than the industrial structure. Foreign

direct investment and non-fossil energy consumption increase carbon

emission intensity in the short term. In the long term, increasing the

proportion of non-fossil energy is crucial to reducing carbon emission

intensity. The carbon emission reduction effect of energy price is

insignificant, and foreign direct investment is not conducive to carbon

emission reduction. Finally, this paper analyzes the policy implications of the

empirical results and proposes recommendations for reducing China’s CO2

emission intensity accordingly.
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Introduction

With the deepening urbanization level, China’s economy has completed leapfrog

development. Its prosperity comes at the expense of large amounts of fossil energy inputs

and environmental resources, which has led to a dramatic increase in CO2 emission

intensity. China’s energy consumption-related carbon emissions were only 29.1% of those
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of the United States in 1980. However, in 2007, China surpassed

the United States to become the world’s largest CO2 emitter.

According to the Global Carbon Project (https://www.

globalcarbonproject.org/index.htm), China accounts for 30.7%

of global CO2 emissions in 2020. Such high-carbon emissions

have led China to face the problem of domestic ecological

support, the complex negotiation of a new international

framework for greenhouse gas emission reduction, and the

game of political diplomacy between different interest groups.

In 2020, the Chinese government proposed a dual carbon

reduction target of “30–60” at the 75th session of the UN

General Assembly. It means that China needs less than

10 years to achieve “peak carbon” and another 30 years to

achieve “carbon neutrality.” In other words, a rapid decrease

in carbon emissions after reaching the peak and the task of

reducing emissions to achieve the dual-carbon target in China is

extremely arduous. Reducing CO2 emissions per unit of GDP,

i.e., reducing CO2 emissions intensity, is undoubtedly one of the

most important ways to achieve carbon emission reduction and

ultimately achieve “peak carbon” and “carbon neutrality.”

China’s 14th Five-Year Plan proposes to “implement a system

based on carbon intensity control, supplemented by total carbon

emission control” and aims to reduce CO2 intensity by 18%.

In this context, many scholars have devoted themselves to

researching the factors influencing CO2 intensity and have

achieved fruitful results. According to the analytical methods,

the most widely applied ones are mainly factor decomposition

and econometric regression. Among them, the LMDI method

proposed by Ang and Liu (2001) can effectively avoid the residual

problem and deal with zero and negative values. Therefore,

scholars in China widely use the LMDI method for

CO2 emission problems. Mousavi et al. (2017), Chong et al.

(2019), Chang et al. (2018), and Hasan and Chongbo (2020)

studied the drivers of CO2 emissions in Iran,Malaysia, Japan, and

Bangladesh, respectively. Moreover, the LMDI method is also

widely applied to the CO2 emission problem in China, Xie et al.,

2019, Song et al. (2019), and Quan et al. (2020) studied the

drivers of CO2 emissions in the power sector, transportation

sector, and logistics industry in China, respectively. Econometric

modeling, including VAR models, cointegration theory, and

error correction models, is also one of the mainstream

research methods in this direction. For example, Munir et al.

(2020), Cerqueira et al. (2020), and Wasti and Zaidi (2020)

applied the econometric regression approach to the study of

CO2 emissions in Tunisia, ASEAN-5, United Kingdom, and

Kuwait, respectively, while Wang and Lin, (2017), Ouyang

et al. (2020), Xie et al. (2020), and Xie et al. (2022) used

econometric models to investigate the factors influencing CO2

emissions in the commercial sector, heavy industry, and power

sector, respectively, in China.

Based on the existing literature, we find the following points.

Some scholars have achieved many results on the factors

influencing CO2 emission intensity in China. However,

technological innovation, especially green technology

innovation, has rarely been examined in depth. Innovation is

the fundamental driving force that leads to the economic

development of a country or region. It is considered the most

critical core factor, determining the sustainable and high-quality

growth of China’s economy in the future (Liu et al., 2019). At the

same time, science and technological innovation can bring both

energy saving and emission reduction and have a positive effect

on environmental management. Therefore, it is considered one

of the ways to effectively solve environmental pollution (Xu and

Zhang, 2021). Patents as the outcome of innovation output are an

essential indicator of innovation capability. Intellectual property

rights, at their core, have surpassed traditional elements such as

natural resources and capital as a strategic resource as a source of

international low-carbon competitive advantage (Zhou and Nie,

2013). Since the official promulgation of the Patent Law of the

People’s Republic of China in 1984, the number of patent

applications and grants in China has shown explosive growth,

and China became the world’s top patent-filing country in

2012 and has maintained it since then. Since the development

and dissemination of patented technologies are often not

synchronized and are subject to rebound effects. It can have a

positive or negative practical effect on CO2 emission intensity

(Weina et al., 2016); Su and Moaniba, 2017; Du et al., 2019).

Therefore, it is necessary to conduct further research on the

substantial effect of China’s technological innovation in reducing

CO2 emission intensity. In particular, green science and

technology innovation analyze the direction and degree of

influence of green technological innovation on CO2 emission

intensity to comprehensively understand the strategic value of

scientific and technological innovation for China to achieve

“carbon peak” and “carbon neutrality.”

In recent years, autoregressive distributed lag (ARDL)was a new

cointegration test. The ARDL model is often used by scholars,

especially in empirical research on CO2 emissions (Xie et al., 2021)

analyzed power dependence with ARDL (Mehmood, 2021). The

link between globalization and carbon dioxide emissions is explored

in Singapore using data from 1970 to 2014 (Ahmad and Du, 2017).

The relationship between energy production, carbon dioxide

emissions, and economic growth is investigated in Iran, and the

results showed that CO2 emissions were positively correlated with

economic growth (He F et al., 2020). The ARDL method is used to

test the relationship between trade, foreign direct investment (FDI),

and carbon dioxide emissions in BRICS countries (Kashif Raza and

Festus Fatai, 2021). The ARDL simulationmethod is used to analyze

the positive and negative changes in energy consumption, industrial

growth, urbanization, and carbon emission on economic growth in

Pakistan (Abbasi and Adedoyin, 2021). A novel dynamic ARDL

simulationmodel is used to study the effects of energy use, economic

policy uncertainty, and economic growth on carbon dioxide

emissions in China during 1970–2018. In conclusion, the ARDL

model is a favorable tool to study the influencing factors of

CO2 emissions and the long-term and short-term relationships
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between variables, but at present, few scholars use ARDL to analyze

the impact of technological innovation on carbon emissions.

Considering that green patents can better reflect the green

technology innovation ability and technology development level

and the global competition of intellectual property rights

represented by patents in the low-carbon field. This paper uses

green invention patents and green utility model patents as proxy

variables of green technology innovation. It investigates the short-

term impact and long-term effect of green patents on China’s CO2

emission intensity by establishing ARDL long-term and short-term

effect estimation models. A reference for promoting “peak carbon”

and “carbon neutrality” is provided by promoting the change in the

China’s patent system.

In comparison with the existing references, the contribution

of this paper mainly lies in the following two points: 1) In terms

of research perspective, this paper selects green invention patents

and green utility model patents as proxy variables for green

science and technology innovation, incorporates them into the

same analytical framework, and analyzes the differences in the

dynamic effects of different types of green patents on the

reduction of CO2 emission intensity and their policy

implications in both the short and long terms. 2) In terms of

research methodology, we adopt the marginal cointegration test

based on the ARDL model. The model has unique advantages in

testing the long-term equilibrium and short-term dynamic

relationships between variables under small sample data. It

makes the measurement results more reliable.

Model building

Baseline model

In this paper, we first derive the energy consumption

function equation from the general firm cost function

equation, which draws from Fisher-Vanden et al. (2004) and

Yao and Yu (2012). The decision model of energy CO2 emission

intensity is then derived. In general, we can write the cost

function of the firm as follows:

C � c Q, A, PK, PL, PE( ), (1)

where C is the cost input factor, P is the price input factor,K is the

capital input factor, L is the labor input factor, E is the energy

input factor, Q is the gross output, and A is the production

technique level. Assuming that the production function is

Cobb–Douglas production function with the Hicks-neutral

effect, we can write the cost production function as follows:

C � αK + αL + αE( ) ααKK ααL
L ααEE( ) −1

αK+αL+αE A−1QPαK
K PαL

L PαE
E( ) 1

αK+αL+αE ,

(2)
where αi is the output elasticity of factor i. According to Shephard’s

lemma, the demand for a given factor of production is the partial

derivative of the cost of the production function concerning the price

of such a production factor. Thus, for a determined total output and

other factors of production, the equation for the energy

consumption function is

E � αEA
−1PαK

K PαL
L PαE

E Q/PE. (3)

Equation 3 shows that the total output value, production

technology level, energy price, and total factor input price jointly

determine the energy consumption in actual production.

Assumption:

PQ � PαK
K PαL

L PαE
E , (4)

where αK + αL + αE � 1. Substituting Eq. 4 into Eq. 3 yields a

more intuitive equation for the energy consumption function:

E � αEA
−1Q RP( )E/Q � αEA

−1 RP( ), (5)

where RP � (PαK
K PαL

L PαE
E )P−1

E denotes the price of energy relative

to the price of all factors.

Since fossil energy consumption is the primary source of

CO2 emissions, that is, CO2 emissions are related to energy

consumption and energy structure, we further obtain the

determining equation of CO2 emission intensity according to

Eq. 5.

CI � αEA
−1 RP( ) ES( ), (6)

where CI is the CO2 emission intensity and E.S. is the energy

consumption structure.

Therefore, Eq. 6 shows that under constant returns to scale,

the output elasticity of energy and other factors, production

technology level, energy structure, and the relative price of energy

determine the CO2 emission intensity of enterprises.

As mentioned earlier, this paper mainly examines the effect of

green technology innovation onCO2 emission intensity. At the same

time, in the analysis of factors influencing macro CO2 emission

intensity, in addition to scientific and technological innovation,

industrial structure and the foreign direct investment have a

non-negligible effect on total factor productivity and CO2

emission. Therefore, we interpret the production technology level

in Eq. 6 as the generalized productivity, including scientific and

technological innovation, industrial structure, and the foreign direct

investment. Among them, to distinguish the difference between the

effect of green invention patents GINV and green utility model

patentsGUTY on CO2 emission intensity, both of them are included

in the analysis framework at the same time, so the formula is

A � A0 exp δlnGINV + τlnGUTY + ηlnIS + λlnFDI( ), (7)

where A0 represents the initial value of the technology level,

which is a constant. GINV is the green technology innovation

level expressed by green invention patents. GUTY is the green

technology innovation level expressed by green utility model

patents. I.S. represents the industrial structure, and FDI

represents the foreign direct investment. δ, τ, η, and λ is the
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impact coefficients, respectively. Combining Eqs 6, 7, the

benchmark model used in the analysis of this paper can be

determined as follows:

lnCIt � α0 + α1lnGINVt + α2lnGUTYt + α3lnISt + α4lnFDIt+α5lnRPt + α6lnESt. (8)

Empirical models

In order to test the long-term cointegration and short-term

dynamic relationship between green invention patentGINV, green

utility model patent GUTY, industrial structure I.S., foreign direct

investment FDI, relative energy price R.P., energy consumption

structure E.S., and CO2 emission intensity CI, this paper uses the

ARDL model proposed by Charen and Deadman (1997) and

developed by Pesaran and Pesaran, 1997; Pesaran and Shin,

1999, to analyze. The method does not require the variables to

be homogeneous and single integers, and the analysis model can

contain a single integer I (0) of order 0 or I (1) of order 1. This

method can still obtain unbiased estimates for small samples or

endogenous variables. Combinedwith the benchmarkmodel Eq. 8,

the ARDL (m0, m1, m2..., m6) model is as follows:

Δ lnCIt � ψω t +∑m0

j�0
β0jΔ lnCIt−j +∑m1

j�0
β1jΔ lnGINVt−j

+∑m2

j�0
β2jΔ lnGUTYt−j

+∑m3

j�0
β3jΔ ln ISt−j +∑m4

j�0
β4jΔ lnFDIt−j

+∑m5

j�0
β5jΔ lnRPt−j +∑m6

j�0
β6jΔ lnESt−j + μt.

(9)

In the aforementioned equation, ωt is a deterministic variable

including constant, time, and time trend. Furthermore, the lag order

(m0,m1,m2, ..., m6) is obtained based onAIC, SIC,H.Q., andAdj-R
2.

Based on Eq. 9, the conditional error correction model

(conditional error correction model) is as follows:

Δ lnCIt � ϕω t +∑m0

j�1
α0jΔ lnCIt−j +∑m1

j�0
α1jΔ lnGINVt−j

+∑m2

j�0
α2jΔ lnGUTYt−j

+∑m3

j�0
α3jΔ ln ISt−j +∑m4

j�0
α4jΔ lnFDIt−j

+∑m5

j�0
α5jΔ lnRPt−j +∑m6

j�0
α6jΔ lnESt−j

+δ0 lnCIt−1 + δ1 lnGINVTt−1 + δ2 lnGUTYt−1 + δ3 ln ISt−1

+ δ4 lnFDIt−1 + δ5 lnRPt−1 + δ6 lnESt−1 + μt.

(10)

Based on Eq. 10, two methods, the Wald test and the t-test,

can be applied to examine the cointegration relationship between

variables. Among them the Wald test is suitable to examine the

joint significance level of each lagged variable with the original

hypothesis H0: δ0 � δ1 � δ2 � / � δn � 0, while the t-test is

applied to examine the significance of the lagged terms of the

explained variables with the original hypothesisH0: δ0 � 0. Both

indicate that there is no cointegration relationship between the

variables. Pesaran et al. (2001) gave two sets of critical values for

all variables obeying I (0) or I (1), respectively: lower and upper

critical values. In the specific test, if the value of the F-statistic (or

t-statistic) obtained using Eq. 10 is greater (or less) than the

upper critical value, it indicates that there is a cointegration

relationship between the variables; if it is less (or greater) than the

lower critical value, then there is no cointegration relationship.

If the test results show a cointegration relationship, the

corresponding long-run elasticity coefficients for each

influencing factor can be available via Eq. 10:

ϕ′ � ϕ/ 1 −∑m0

j�1
β0j⎛⎝ ⎞⎠, ρi � ∑m0

j�0
βij/ 1 −∑m0

j�1
β0j⎛⎝ ⎞⎠

i � 1, 2, ..., 6( ).
(11)

This equation leads to the long-run cointegration equation

between CO2 emission intensity and each explanatory variable:

ecm t � lnCIt − ϕ′ωt + ρ1 lnGINVT t + ρ2 lnGUTY t(
+ρ3 ln IS t + ρ4 lnFDIt + ρ5 lnRP t + ρ6 lnES t). (12)

Furthermore, a linear transformation of Eq. 9 yields the

ARDL-ECM model for short-term effects estimation.

Δ lnCIt � ϕω t + ∑m0−1

j�1
λ0jΔ lnCIt−j + ∑m1−1

j�0
λ1jΔ lnGINVt−j

+ ∑m2−1

j�0
λ2jΔ lnGUTYt−j + ∑m3−1

j�0
λ3jΔ ln ISt−j

+ ∑m4−1

j�0
λ4jΔ lnFDIt−j + ∑m5−1

j�0
λ5jΔ lnRPt−j

+ ∑m6−1

j�0
λ6jΔ lnESt−j − θecmt − 1 + μt. (13)

The coefficient θ error correction term ecmt−1 reflects the

strength of the adjustment of CO2 emission intensity to its

deviation from the long-term equilibrium.

Variables and data sources

In this paper, green invention patents (GINV), green

utility model patents (GUTY), industrial structure (IS),

foreign direct investment (FDI), relative energy price (RP),

and energy consumption structure (ES) are selected as factors
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affecting CO2 emission intensity (EI). At the same time, the

data source of this paper is the EPS data platform (http://

www.epsnet.com.cn/). The time frame is 1993–2020. The

specific treatment of indicators and variables in each year

is as follows:

1) CO2 emission intensity (CI): CO2 emission intensity is equal

to CO2 emissions divided by the gross domestic product

(GDP). They considered the relatively small amount of

CO2 emissions from agricultural activities and waste

disposal due to statistical data. Our calculations take into

account the CO2 emissions due to energy activities and

industrial production activities.

The formula for calculating CO2 emissions from energy

activities is: CO2 � ∑ACi × EFi × (44/12), where ACi (i =

1,2,3) are the average amounts of three fossil energy sources

of primary energy consumption, coal, oil, and natural gas,

respectively; EFi (i = 1,2,3) are the corresponding carbon

emission factors, which are 0.7329, 0.5574, and 0.4226,

respectively (Hu et al., 2008), and the gross domestic product

(GDP) is the actual GDP obtained by calculating the base period

of the year 2000.

2) Green invention patents (GINV) and green utility model patents

(GUTY): China’s patents include three types of inventions, utility

models, and designs. The environmental effects of green

technological innovation are mainly transmitted by

technology applications, while design patents are less

innovative, so they are not included in the analysis. Patent

data mainly includes the number of patent applications

received and the number of patent applications granted, but

not all patent applications are granted, and in comparison, the

number of patent applications granted better reflects the results

of technological innovation. In a word, the number of patent

applications can better reflect the achievements of scientific and

technological innovation, while the number of patent grants has

more legal effect. Therefore, referring to the practice of Xu and

Zhang. (2021), we select the number of patent grants to represent

the level of technological innovation. Data on the number of

patents granted comes from the State Intellectual Property

Office. Then, drawing on the practice of Wang et al., 2020,

this paper uses the Green List of International patent

classification to search the relevant patent information

practices of environment-friendly technologies and identifies

the annual green invention patent GINV and green utility

model patent GUTY.

3) Industrial structure (IS): The secondary industry share at each

regional scale has a significant positive effect on carbon

emissions and energy consumption (Li et al., 2018; Chen

et al., 2019). However, the tertiary industry is relatively low in

energy consumption and high in output compared to the

secondary industry, so the “energy saving and consumption

reduction” policy has become one of the main tools of local

governments (Zhong, Weizhou, et al., 2015). Accordingly,

this paper uses the ratio of the value added of the tertiary

industry to the value added of the secondary industry to

characterize the industrial structure of China, to examine the

role of the “shrinking the secondary sector and developing the

tertiary sector” policy in reducing CO2 emission intensity.

4) Foreign direct investment (FDI): With the further deepening

of the reform and opening up policy, the scale of foreign direct

investment shows a growing trend. Although foreign direct

investment promotes our economic growth to a certain

extent, it also brings about environmental and other

problems, so the impact of our dependence on foreign

direct investment on economic growth needs further study.

Therefore, this paper selects FDI dependence as a proxy

indicator, that is, the proportion of FDI flow to the year’s

GDP; we convert FDI to RMB using the current year’s average

exchange rate as a benchmark.

5) Relative energy price (R.P.): Regarding theory, energy prices

in a market economy effectively optimize resource allocation

and improve energy use efficiency (Li et al., 2020). However,

there are some distortions in Chinese energy prices, and their

role in reducing carbon emission intensity needs further

empirical testing. In this paper, we use the relative energy

price index to calculate the energy price index and social retail

price ratio.

6) Energy Structure (E.S.): Since 2007, China has increased its

investment in new energy sources, and the share of coal

consumption in China’s overall energy structure has

decreased from 72.5% in 2007 to 57.7% in 2019, while the

share of clean energy consumption, such as hydropower,

nuclear power, and wind power has increased from 7.5%

to 15.3%. This paper selects the share of non-fossil energy to

measure the energy structure.

Empirical results and analysis

Unit root test

Although the ARDLmethod does not require the variables to be

of the same order, we can analyze either the zeroth order I(0) or the

first order I(1). However, for series I(2) and above, the F-statistic and

t-statistic of the boundary cointegration test may be deviated

(Pesaran et al., 2001). Therefore, carrying out a unit root test for

each variable is necessary before using the ARDL method for the

cointegration test. Since the sample number of this paper is only

28 years, considering that the DF-GLS (GLS transformed

Dickey–Fuller) unit root test method can overcome the defects of

low efficacy of commonly used ADF(augmented Dickey–Fuller)

unit root test method and P.P. (Phillips–Perron) unit root test

method in the small sample unit root test. Therefore, the DF-GLS

unit root testmethod is adopted, and the null hypothesis is that there
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is a unit root in the sequence. The results in Table 1 show that the lag

order selection is based on SIC criterion (Schwarz Information

Criterion) and AIC criterion (Akaike Information Criterion), and

the maximum lag order is 5.

As can be seen from Table 1, all variables adopted in this

paper are first-order integrated I(1) processes, so the ARDL

model can be further used to analyze whether there is a long-

term cointegration relationship among variables.

TABLE 1 Results of the serial unit root test of each variable based on the DF-GLS method.

Variable No trend Trend Variable No trend Trend

lnCI −0.7238 (2) −2.6230 (2) ΔlnCI −2.6623***(1) −2.9262*(1)

lnGINV 0.1863 (1) −1.6926 (0) ΔlnGINV −4.5014***(0) −4.7949***(0)

lnGUTY −1.1615 (5) −2.2639 (0) ΔlnUTY −5.1779***(0) −6.0101***(0)

lnIS −0.2102 (1) −2.2493 (1) ΔlnIS −3.0122***(0) −3.2243**(0)

lnFDI −0.5688 (1) −1.7656 (1) ΔlnFDI −2.8879***(0) −4.8875***(0)

lnEP −1.1360 (1) −1.1152 (1) ΔlnEP −2.9990***(0) −3.5682**(0)

lnES 0.5469 (0) −2.0512 (0) ΔlnES −5.6079***(0) −5.8521***(0)

***, **, and *, respectively, indicate that the null hypothesis of the corresponding method is rejected at the significance level of 1%, 5%, and 10%; The values in parentheses represent the

optimal lag order selected according to the SIC or AIC criteria.

TABLE 2 ARDL model estimation results.

Variable No trend Trend

Coefficient Std. error T-statistic Coefficient Std. error T-statistic

lnCI(−1) 0.6916*** 0.1815 3.8097 0.7223*** 0.1556 4.6432

lnCI(−2) −0.5751*** 0.0763 −7.5352 −0.5651*** 0.0677 −8.3432

lnGINV 0.0399*** 0.0105 3.8166 0.0356*** 0.0091 3.9097

lnGINV(−1) 0.0176 0.0125 1.4091 0.0183 0.0120 1.5327

lnGINV(−2) 0.0785** 0.0235 3.3488 0.0652** 0.0196 3.3235

lnGUTY 0.0002 0.0158 0.0129 −0.0093 0.0133 −0.7022

lnGUTY (−1) −0.0070** 0.0145 −0.4863 −0.0201 0.0108 −1.8627

lnGUTY (−2) −0.0671*** 0.0211 −3.1785 −0.0573** 0.0188 −3.0457

lnIS −0.7489*** 0.1469 −5.0983 −0.7674*** 0.1425 −5.3846

lnIS(−1) 0.5254*** 0.1074 4.8914 0.5031*** 0.1016 4.9495

lnIS (−2) −0.0618 0.0745 −0.8285

lnFDI 0.1090* 0.0490 2.2269 0.0818 0.0516 1.5855

lnFDI (−1) 0.1682** 0.0561 2.9974 0.1162* 0.0500 2.3247

lnFDI (−2) 0.0556 0.0513 1.0844

lnRP −0.4642*** 0.0951 −4.8805 −0.4266*** 0.0868 −4.9159

lnPR (−1) 0.4031*** 0.0679 5.9374 0.3726*** 0.0564 6.6096

lnES −0.1025 0.0580 −1.7673 −0.1248** 0.0479 −2.6032

lnES (−1) −0.1564 0.1105 −1.4151 −0.1333 0.1024 −1.3023

lnES (−2) −0.1558*** 0.0418 −3.7304 −0.1264** 0.0461 −2.7408

constant 1.2791** 0.4943 2.5876 1.5789*** 0.3547 4.4517

t −0.0031 0.0040 −0.7725

Ad-R2 0.9996 0.996

F-statistic 2988.59*** 3324.56***

AIC −7.5471 −7.5223

SC −6.5793 −6.6029

HQ −7.2684 −7.2576

***, **, and * denote significance at 1%, 5%, and 10% significance levels, respectively.
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ARDL model selection and boundary
cointegration test

Before using Eq. 10 for the cointegration test, we should

first calculate the optimal lag order of Eq. 9. We choose the

maximum final order as 2, through the empirical sample size

of this paper, and then according to AIC, SIC, and H.Q.

criteria, the optimal ARDL models without and with trend

terms are ARDL (2,2,2,2) and ARDL (2,2,2,1,1,1,2),

respectively. Table 2 shows the corresponding estimation

results.

According to Table 2, the trend term of ARDL with trend

term (2,2,2,1,1,1,2) is not significant. Meanwhile, based on

statistical indicators such as AIC and H.Q., it is found that

TABLE 3 Boundary cointegration test results.

Test type Wald test t-test

Range of critical values Lower bound I (0) Upper bound I (1) Lower bound I (0) Upper bound I (1)

10% 2.457 3.797 −2.570 −4.040

5% 2.970 4.499 −2.860 −4.380

1% 4.270 6.211 −3.430 −4.990

Statistics F: 18.9062*** T: −5.8329***

*** indicates that it is significant at the significance level of 1%. The critical value of the F-statistic in the table is the corresponding value of k = 7 and n = 35 calculated by Narayan and Smyth,

2005.

TABLE 4 Estimation results of a long-term relationship and short-term dynamic coefficients.

Variable Coefficient Std. error t-statistic Prob.

Long-term estimation results

lnGINV 0.1541*** 0.0182 8.4672 0.0000

lnGUTY −0.0837*** 0.0293 −2.8554 0.0098

lnIS −0.3229*** 0.1446 −2.2323 0.0372

lnFDI 0.3768*** 0.1170 3.2194 0.0043

lnEP −0.0692 0.0422 −1.6405 0.1165

lnES −0.4693*** 0.1440 −3.2595 0.0039

C 1.4478*** 0.4466 3.2414 0.0043

Short-term estimation

Variable Coefficient Std. error t-Statistic Prob

ΔlnCI(−1) 0.5752*** 0.0336 17.1069 0.0000

ΔlnGINV 0.0400*** 0.0032 12.5966 0.0000

ΔlnGINV(−1) −0.0785*** 0.0064 −12.3296 0.0000

ΔlnGUTY (−1) 0.0670*** 0.0056 12.0004 0.0000

ΔlnIS −0.7490*** 0.0508 −14.7362 0.0000

ΔlnIS(−1) 0.0623*** 0.0273 2.2788 0.0402

ΔlnFDI 0.1088*** 0.0177 6.1337 0.0000

ΔlnFDI (−1) −0.0559*** 0.0139 −4.0274 0.0014

ΔlnEP −0.4641*** 0.0307 −15.0989 0.0000

ΔlnES −0.1026*** 0.0151 −6.7763 0.0000

ΔlnES (−1) 0.1560*** 0.0170 9.1992 0.0000

Ecm (−1) −0.8831*** 0.0510 −17.3277 0.0000

C 1.2785*** 0.0737 17.3461 0.0000

Diagnostic testing Normality test Serial correlation test Heteroskedasticity test Ramsey REST test

2.8982 (0.2348) 2.2553 (0.1511) 0.1135 (0.7392) 0.5563 (0.4701)

***, **, and * indicate significance at 1%, 5%, and 10% significance levels, respectively. The model diagnosis uses the F-statistic and the corresponding probability values within ().
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ARDL without a trend term (2,2,2,2,2) is better than the

model with a trend term. Therefore, we analyzed the ARDL

(2,2,2,2,2) model without trend term as the basis for

analysis.

Table 3 shows the results of the ARDL (2,2,2,2,2)

cointegration test without a trend term. Considering that the

critical value of F-statistic provided by Pesaran et al. (2001) is

calculated based on large samples, and the number of samples

in this paper is only 28, the critical value obtained by random

simulation of six explanatory variables and 30 samples in

Narayan and Smyth, 2005 is adopted for F-statistic. The

results show that the null hypothesis is rejected at a 1%

significance level for both F- and t-statistics. Therefore, in

the sample period, there is a long-term stable relationship

between CO2 emission intensity (CI) and green invention

patents (GINV), green utility model patents (GUTY),

industrial structure (I.S.), foreign direct investment (FDI),

relative energy price (R.P.), and energy consumption

structure (E.S.).

Long-term relationship and short-term
dynamic coefficient estimation

Based on the boundary cointegration test results, the long-

term relationship coefficients between variables are estimated

using Eq. 11 with electricity dependence as the

explanatory variable. We estimate the short-term dynamic

coefficients between variables using Eq. 13; Table 4 shows the

results of the long-term and short-term coefficient

estimates and diagnostic tests. The results show that the

model residuals satisfy the normal distribution and

eliminate the phenomena of serial autocorrelation and

heteroskedasticity. In contrast, the results of the Ramsey

RESET test for the model form misspecification show that

the model is correctly set.

Table 4 shows that the error correction term ecm (−1) is

significant at the 1% significance level with a negative sign. The

larger the absolute value of this coefficient, the faster the system

returns to equilibrium after a shock. The regression result of the

error correction term is −0.8831, which indicates that China’s

CO2 emission intensity deviates from the long-run equilibrium

level; it is corrected by 88.31% in the following year.

For green invention patents (lnGINV), in the long and short

terms, green invention patents increased by 1%, China’s CO2

emission intensity increased by 0.1541%, and decreased by

0.0385% [0.0400 + (−0.0785)] accordingly, and both are

significant at the 1% level. It shows that the increase in the

number of patents for green inventions, although contributing

to the reduction of carbon emission intensity in the short term,

inhibits the reduction of carbon emission intensity in the long

term, and the long-term effect is stronger than the short-term

one. The possible reason is that green invention patents reduce

carbon emission intensity in the short term due to their high

technology content. However, since the patents for high

technology content inventions are usually in the hands of

large and high technology enterprises, they may create

higher barriers to market access in the long run and,

eventually, have a dampening effect on improving carbon

emission performance.

On the contrary, green utility model patents (lnGUTY)

increased by 1%, leading to a 0.067% increase in China’s CO2

emission intensity in the short term but a 0.0837% decrease in the

long term. The reason for this is that, compared with invention

patents, utility model patents are lower in content, and there is a

significant patent “bubble” phenomenon, which makes it difficult

for them to play a positive role in the short term. Even the

negative part is more significant than the positive one. However,

due to the strong practicality and easy imitation of green utility

model patents, they are conducive to promoting the diffusion and

upgrading of green technologies in the long run, thus reducing

carbon emission intensity.

The industrial structure (lnIS), measured by the ratio of

tertiary to secondary industries, contributes to reducing

carbon emission intensity in the short and long terms.

However, its long-term effect (−0.3229) is weaker than the

short-term effect (−0.7490 + 0.0623 = −0.6967), which

indicates that to utilize better the positive effect of industrial

restructuring in improving carbon emission performance, it is

necessary to further optimize the internal structure of the tertiary

industry while promoting the “retreat from two to three.” It

indicates that while promoting “shrinking the secondary sector

and developing the tertiary sector,” it is necessary to optimize the

tertiary sector’s internal structure further to utilize better the

positive effect of industrial restructuring in improving carbon

emission performance. As the foreign direct investment (lnFDI),

measured by FDI dependence, increases (1%), the CO2 emission

intensity increases correspondingly by 0.0529%

[0.1088+(−0.0559)] in the short term and by 0.3768% in the

long term. It indicates that the larger the share of FDI flows in the

GDP of the year, the less favorable it is to improve carbon

emission performance. It also reminds us that when introducing

foreign investment, the focus should be on setting up more long-

term investment attraction programs. Full advantage of the

technology spillover is taken from foreign investment

introduction rather than just pursuing scale as the goal.

In the short term, as the relative price of energy (lnRP)

increases (1%), there is a corresponding decrease in carbon

emissions intensity of 0.4641%. In the long run, the strength of

its effect is negative (−0.0692) but not significant. It suggests

that while raising energy prices is an effective means of reducing

carbon emissions, in the long run, there are still some

distortions in China’s energy prices, resulting in an energy

price mechanism that does not yet play an effective role in

allocating resources in the long run. The energy mix measured

by the share of non-fossil energy (lnES) fails to play a positive
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role in effectively reducing carbon emission intensity in the

short term (its short-term impact is −0.1026 + 0.1560 = 0.0534),

which may be related to China’s coal-dominated resource

endowment. Although increasing the share of non-fossil

energy helps reducing carbon emissions in the short term,

the negative impact on economic development is relatively

more significant. It may be related to China’s coal-based

resource endowment. However, in the long run, as the share

of non-fossil energy increases (1%), the corresponding

reduction in carbon intensity −0.4693% plays the strongest

role in reducing carbon intensity relative to the other effects

examined in this paper. Therefore, increasing the share of non-

fossil energy use is crucial for China to achieve the strategic

goals of “peak carbon” and “carbon neutrality” in the long run.

Parameter stability test

When using time series data for cointegration estimation,

generally assumed estimated parameters are time-invariant;

therefore, further parameter stability tests are required to

avoid breakpoints in the time series data and thus affect

the stability of the parameters. To this end, this paper

applies cumulative sum of recursive residuals (CUSUM)

and cumulative sum of squares of recursive residuals

(CUSUMQ) based on recursive residuals for parameter

stability testing. Figure 1 shows the results. The figure’s

upper and lower straight lines are the boundary intervals at

a 5% significance level, and the test results indicate that the

parameters in the model are stable.

FIGURE 1
(A) Test result of CUSUM. (B) Test result of CUSUMQ.
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Robustness test

We used FMOLS, DOLS, and CCR to test the robustness of the

long-term relationship between variables, and the results are

shown in Table 5.

Similar to the long-term results of ARDL, DOLS, FMOLS,

and CCR estimates give the same direction of changes in green

invention patents, green utility model patents, industrial

structure, foreign direct investment, and energy structure as

ARDL. Therefore, the results of this study are robust.

Conclusion and policy implications

Based on the boundary cointegration test of the ARDL

model, we examine the long- and short-term effects of green

technology innovation, industrial structure, degree of foreign

investment introduction, the relative price of energy, and energy

consumption structure on CO2 emission intensity measured by

the number of green invention patents granted and green utility

model patents granted, using annual data of China from 1993 to

2020. The empirical results show that

1) The increase in the number of green invention patents granted can

only help reduce carbon emission intensity in the short term but

play an obstacle role in improving carbon emission performance

over a long time. This conclusion indicates severe problems in the

conversion efficiency and industrialization of China’s green patent

inventions. Many innovative products become laboratory samples

and exhibits, which are difficult to transform into real productivity.

This seriously restricts the role of green invention patents in

achieving a “carbon peak” and “carbon neutral.” Therefore, when

formulating green technology innovation development strategies

and related measures, special attention should be paid to the

essential role of innovation networks in promoting the diffusion

and upgrading of green invention technologies. We should

strengthen the innovation cooperation between “

industry–university–research ” and pay close attention to the

market demand for innovative results. While promoting the

continued growth of the number of green invention patents

and effectively transforming them into real productivity.

2) The increase in the number of green utility model patents

granted inhibits carbon performance in the short term, but helps

reduce carbon intensity in the long term. The technological

content of utility model patents is relatively weaker than that

of invention patents. But they are characterized by short

application cycles, low application difficulty, high practicality,

and easy imitation in the process of use. In the long run, it is

conducive to promoting the proliferation and upgrading of green

technology, thus helping to achieve “carbon peak” and “carbon

neutrality.” Therefore, on the one hand, we should continue to

support and encourage enterprises to invest in the R&D of green

utility model patents. On the other hand, we should improve the

evaluation system of innovation activities to avoid the “innovation

illusion” and “patent bubble” in green utility model patents.

3) The policy of “retreating two into three” contributes significantly

to the reduction of carbon emission intensity in both the short

and long terms. But its long-term effect (−0.3229) is weaker than

the short-term effect. In contrast, the degree of foreign

investment introduction, measured by FDI dependence, has a

significant inhibitory effect on reducing carbon emission

intensity in the short and long terms. This finding suggests

that the carbon emission reduction benefits achieved through the

volume increase of the China’s tertiary sector, which accounts for

more than half of GDP, are significant. Therefore, when

formulating policies for attracting foreign investment, it is

necessary to consider them in an integrated manner with the

upgrading of the industrial structure. Regional or industry-

specific preferential policies are used to attract relevant

foreign investment into high value added and low-energy

areas of the tertiary industry in a targeted manner to increase

the upgrading of the industry.

4) Increasing the relative price of energy is beneficial to reduce

carbon intensity in the short term, but the long-term effect is

not significant. Increasing the share of non-fossil energy sources to

reduce carbon emissions is not easy to achieve in the short term,

TABLE 5 Long-term estimates of FMOLS, DOLS, and CCR.

DOLS FMOLS CCR

Variable Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic

lnGINV 0.3960*** 75.2830 0.1075*** 13.1243 0.1117*** 10.0218

lnGUTY −0.2349*** −15.2354 −0.1358*** −10.7619 −0.0961*** −6.0953

lnIS −1.2659*** −20.5126 −0.1882*** −3.0253 −0.2060*** −3.4578

lnFDI 0.4178*** 16.7217 0.1791*** 5.1554 0.4564*** 10.5450

lnEP −0.6638*** −57.1370 0.4893*** 13.5704 0.6022*** 19.1032

lnES −0.0143 −0.2542 −0.3740*** −10.3910 −0.2909*** −5.3102

***, **, and * are significant at the significance level of 1%, 5%, and 10%, respectively.
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but it is a crucial measure, that is, highly effective in the long

term. This conclusion suggests that to achieve “peak carbon” and

“carbon neutral,” we must continuously improve the energy

price mechanism and establish a market-based energy pricing

mechanism that reflects market supply and demand and

environmental costs. We should make the most of

environmental regulation, taxation, and price policies. The

development of new energy industries increased, the

proportion of non-fossil energy to meet the energy demand

of economic development continuously increased, and carbon

emission intensity simultaneously reduced.

In this paper, the green patent index represents the green

technology innovation ability and analyzes the impact of

green technology innovation on carbon emissions.

However, the ARDL model can only analyze aspects of the

symmetry effect, and we study from the angle of asymmetry

using the NARDL model in the future. Meanwhile, the data at

the national level cannot reflect regional and industrial

differences, so we conduct subsequent research by region

and industry. The relationship between green technology

innovation and local carbon emissions and its influencing

factors continues to be explored, combined with scenario

prediction and other relevant methods, to provide an

effective way for the green patent field to contribute to

China’s environmental quality and economic growth.
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