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Reducing agricultural carbon emissions is an important aspect of achieving

China’s carbon peak and neutrality goals. Different agricultural centrality result

in different agriculture status and role in different regions, affecting agricultural

carbon emissions. In this study, agricultural centrality is introduced from the

perspective of social network analysis. Spatial autocorrelation analysis,

geographically and temporally weighted regression (GTWR) and other

methods are used to empirically explore the effect of technological progress

and agricultural centrality on the spatiotemporal heterogeneity of agricultural

carbon emissions. The moderating effect of agricultural centrality on the

relationship between technological progress and agricultural carbon

emissions is further explored. The results show that 1) during the research

period (2001–2019), the agricultural carbon emissions first increased and then

decreased, with remarkable spatial agglomeration characteristics, revealing a

significant spatial autocorrelation of carbon emissions among provinces; 2)

provinces have distinctly uneven characteristics in the social network of

agricultural carbon emissions, while the same province shows relative

consistency in terms of location centrality and betweenness centrality. Areas

with high centrality are themajor grain producing areas, and they invariably play

an important role in the spatially linked network of agricultural carbon

emissions; 3) technological progress has an inhibitory effect on agricultural

carbon emissions, and the regression coefficient decreases from western to

eastern regions, demonstrating a spatial gradient distribution. The location

centrality has a negative effect on agricultural carbon emissions, with

significant spatial heterogeneity. The effect of betweenness centrality on

agricultural carbon emissions has increased from positive to negative over

time, and the promotion of each province’s intermediary role has inhibited the

increase of agricultural carbon emissions; 4) both agricultural location centrality

and betweenness centrality have significant positive moderating effects on the

relationship between technological progress and agricultural carbon emissions.

With the increase of location centrality and betweenness centrality,

technological progress has an increasingly strong inhibitory effect on

agricultural carbon emissions. We put forward targeted suggestions based

on different agricultural centrality in order to reduce agricultural carbon

emissions and provide directions for achieving the China’s carbon peak and
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neutrality goals and the Sustainable Development Goals of the United Nations’

Agenda 2030.
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1 Introduction

With the global attention to climate change and environment

protection, agricultural carbon emissions have received more

attention. According to the latest data of United Nations’ Food

and Agriculture Organization, China’s total agricultural carbon

emissions in 2019 amounted to 667.45 million tons, accounting

for 25.73% and 11.20% of Asia’s and world’s total agricultural

carbon emissions, respectively. Agriculture is one of the

important sources of global greenhouse gas emissions (FAO,

2022). The increase in agricultural carbon emissions not only

affects the climate and environment, but also threatens the

security of agriculture itself (IPCC, 2021). Promoting carbon

neutrality in agriculture is a critical aspect of accelerating the

construction of a sustainable agro-ecological civilization and an

important consideration for comprehensively addressing climate

change. Agriculture is affected by natural conditions, climate

change and human activities (Carlson et al., 2017), with the

characteristics of large regional differentiation and complex

sources of carbon emissions. Therefore, considering China’s

carbon peak and neutrality goals, it is of great significance to

reasonably measure agricultural carbon emissions, explore

agricultural carbon emissions reduction measures based on

China’s conditions and accelerate the pace of low-carbon

transformation of agricultural production.

To advance more effective and expedient low-carbon

development of agriculture, many scholars have focused on

the agricultural carbon emissions (Carlson et al., 2017; Zhao

et al., 2018; Liu Z. et al., 2021; YangH. et al., 2022). At present, the

main focus of agricultural carbon emission reduction research is

emission characteristics and its influencing factors

(Bhattacharyya et al., 2012; Zhang et al., 2019; Xiong et al.,

2021; Zhou et al., 2021). In terms of the characteristics of

agricultural carbon emissions, agricultural carbon emissions in

China generally show a downward trend (Yang H. et al., 2022),

and they mainly concentrated in major agricultural provinces,

with remarkable spatial aggregation. In addition, carbon

emissions in some regions have a rebound effect (Tian et al.,

2014; Chen J. et al., 2019). The agricultural carbon emission

intensity shows a downward trend over time, and the decline rate

in central and eastern regions is significantly faster than the

western regions (Li and Li, 2022). In terms of research methods,

various methods such as slacks-based measure (SBM) model

(Kuang et al., 2020; Liu D. D. et al., 2021), exploratory spatial data

analysis (Chen J. et al., 2019; Cui et al., 2021), input-output model

(Wang et al., 2020) and scenario simulation (Shan et al., 2018; Liu

and Feng, 2020) have been used in the research on structure,

offset and spatiotemporal variation of agricultural carbon

emissions.

In terms of influencing factors, some scholars have explored

the impact of natural climatic conditions, economic development

level labour input, agricultural resource input, and agricultural

technology on agricultural carbon emissions (Xu et al., 2021;

Yang et al., 2021; Yang H. et al., 2022). Studies have

demonstrated that economic development increases

agricultural carbon emissions, and labour input and

technology input have a remarkable inhibitory impact on the

agricultural carbon emissions, with a significant spatial spillover

effect, which is a key factor to improve carbon emission

performance (Yang H. et al., 2022). Some scholars have

explored the impact of technological progress on agricultural

carbon emissions. Due to different research periods, some studies

found that technological progress has a significant inhibitory

impact on agricultural carbon emissions (Liu and Yang, 2021).

Agricultural technological progress has a strong diffusion effect

(He et al., 2021; Li and Li, 2022). Most of the previous studies

only analyse the overall effect and ignore regional heterogeneity

when exploring the effect of technological progress on

agricultural carbon emissions; GTWR model can uncover the

spatiotemporal heterogeneity of technological progress on

agricultural carbon emissions. In addition, each province’s

agriculture in each province is not independent, but has

spatial network associations. The centrality in the agricultural

social network can reflect regions’ status in the social network

(Shen et al., 2021).

The different status and role of agriculture in different regions

will affect the dissemination of information and technology

applications, which may influence agricultural carbon emissions.

Moreover, the emission decision of a region is influenced not only

by its own agricultural resource and economic development level,

but also by the emission decision of other regions (He et al., 2021).

At the same time, the “Matthew effect” in the spatial network is

relatively common. The regions occupying the central position of

the network can often obtain numerous of resources by virtue of

their location advantages, promoting carbon emissions reduction.

Marginal regions exhibit minimal network benefit effect (He et al.,

2021; Yang N. Z. et al., 2022; Song et al., 2022), which may further

increase the gap between the impact of regional centres on

agricultural carbon emissions and exacerbate the unbalanced

development of agricultural carbon emissions. At present, there

is no research on the effect of centrality on agricultural carbon

emissions and its moderating effect between technological progress
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and agricultural carbon emissions based on agricultural social

network associations. Under the background of deepening spatial

correlation, it is necessary to deeply explore the relationship

between centrality and agricultural carbon emissions based on

SNA theory, reveal the influencing mechanism of spatial

connection on agricultural carbon emissions, and provide

practical reference for achieving China’s carbon peak and neutral

goals and the Sustainable Development Goals (SDGs) of the United

Nations’ Agenda 2030.

Based on the above analysis, the provincial panel data from

2001 to 2019 are used to quantitatively calculate agricultural

carbon emissions and the SBM model is used to calculate and

decompose agricultural technological progress. The agricultural

centrality is calculated based on SNA theory and gravity model.

Then the technological progress and agricultural network

centrality are introduced into the impact analysis framework of

agricultural carbon emissions from the perspective of spatial

correlation. The GTWR model is used to reveal the

spatiotemporal heterogeneity of agricultural carbon emissions in

different regions based on different levels of technological progress

and centrality. The moderating effect of agricultural centrality on

technological progress and agricultural carbon emissions is further

explored. Finally, we propose targeted policy suggestions based on

the research findings to achieve the precise implementation of

agricultural carbon emissions reduction.

The innovations of this paper are as follows. First, based on the

perspective of SNA, this paper introduce the agricultural network

centrality into the analysis framework of agricultural carbon

emissions, study the impact of agricultural network centrality on

agricultural carbon emissions and further explore its moderating

effect on the relationship between technological progress and

agricultural carbon emissions. These studies broaden the

research perspective and improves the mechanism analysis.

Second, the GTWR model is used to explore the impact of

technological progress on the spatiotemporal heterogeneity of

agricultural carbon emissions at different time in different

regions. The conclusion is more accurate. Third, we identify the

status and role of different regions in the social network of

agricultural carbon emissions, which helps to explain the impact

of technological progress on agricultural carbon emission reduction

from the perspective of centrality. This could also provide ideas for

building regional synergistic emission reduction mechanisms to

achieve China’s carbon emission goals.

2 Methods and data sources

2.1 Research methods

2.1.1 Calculation of agricultural carbon
emissions

Carbon emissions in agriculture are mainly generated by

chemical fertilizers, agricultural films, pesticides and agricultural

machinery diesel used in agricultural production activities.

Referencing the carbon sources and emissions coefficients of

related researches (Tian et al., 2014; Liu D. D. et al., 2021; YangH.

et al., 2022), which mainly include pesticides 4.9341 kg/kg,

agricultural films 5.18 kg/kg, chemical fertilizer 0.8956 kg/kg,

agricultural diesel 0.5927 kg/kg, agricultural ploughing

312.6 kg/km2 and agricultural irrigation 20.476 kg/hm2. The

calculation formula is as follows.

C � ΣCi � KiEi (1)

where C represents the total amount of agricultural carbon

emissions, Ci denotes the ith type of carbon emissions, Ki

represents the use of the ith carbon source, and Ei represents

the carbon emission coefficient of the ith carbon source.

2.1.2 Super-efficiency SBM model
The level of agricultural technological progress is

estimated using the super-efficiency SBM model of

undesired output. Referencing the existing research

(Kuang et al., 2020; Liu D. D. et al., 2021; Xie et al.,

2021), we first calculated the total factor productivity

(TFP) of agriculture, in which the input is based on the

different factors in the agricultural production process,

including land, manpower, machinery, water, fertilizer,

pesticide input, agricultural film and energy. Output

indicators consist of expected and undesired output,

wherein the expected output is the total agricultural

output value, and the undesired output is the agricultural

carbon emissions. Table 1 presents the variables and

descriptive statistics. According to the Malmquist index,

TFP of agriculture was cumulatively transformed to obtain

the level of technological progress (Liu and Yang, 2021). The

relevant calculation formula is as follows:

min ρ �
1
m∑m

i�1 �x/xik( )
1

h1+h2 ∑h1
p�1yd/yd

pk +∑h2
q�1yu/yu

qk( )
�x≥ ∑n

j�1,≠ k

xijλj;y
d ≤ ∑n

j�1,≠ k

yd
pjλj;y

u ≥ ∑n
j�1,≠ k

yu
qjλj

�x≥xk;y
d ≤yd

k ;y
u ≥yu

k

λj ≥ 0, i � 1, 2, . . .m; j � 1, 2, . . . n, j ≠ 0
p � 1, 2, . . . h1; q � 1, 2, . . . h2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (2)

where n represents the number of decentralized management

unit in the decision-making unit, m is the number of inputs,

h1 and h2 represent the number of expected output and

unexpected output, respectively. �x, yd and yu are the slack

of input, expected output and unexpected output,

respectively. x, yd and yu are the elements in the

corresponding input matrix, expected output matrix and

unexpected output matrix, respectively. ρ indicates the

agricultural TFP value.
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MI � EC p TC (3)

TC �
����������������������
Et xt, yt( )
Et+1 xt, yt( ) Et xt+1, yt+1( )

Et+1 xt+1, yt+1( )
√

(4)

whereMI represents the productivity index, EC is the change of

technical efficiency in the two periods, TC is the change of

production technology progress in the two periods. Et(xt, yt)
and Et+1(xt+1, yt+1) represent the technical efficiency value of

region i in two periods. The technological progress is extracted

referencing the method of Färe et al. and Yang et al. (Färe et al.,

1992; Yang H. et al., 2022)

2.1.3 Social network analysis
SNA is one of the most widely used research methods in

sociology and economics in recent years. The theoretical

perspective of SNA focuses on the relationships and social

structures between social actors. The object of SNA is a

network structure consisting of the internal links of different

actors. A network of inter-provincial agricultural production

spatial linkages is constructed by calculating inter-regional

gravity values. Through social network analysis, different

agricultural centrality in each region are calculated to further

explore the mechanisms of influence on agricultural carbon

emissions.

2.1.3.1 Gravity model

The gravity model is introduced into the agricultural social

correlation network, and the output value of agricultural in each

region was divided by the square of the regional distance to

reflect the agricultural spatial correlation between regions. The

larger the agricultural output value and the closer the

geographical distance between regions, the larger the

gravitational value and the stronger the association. The

greater the association between regions, the greater the

mutual influence. The gravity value is converted into a

gravity matrix (Shen et al., 2021). The calculation formula of

the gravity value is as follows:

Fij � kQiQj/D2
ij (5)

where Fij refers to the agricultural gravity value between regions

i and j; Qi, Qj represent the total output value in agriculture in

regions i and j, respectively. k is the gravity coefficient, usually

taken as 1. Dij represents the distance between the centres in

TABLE 1 Variable definitions and descriptive statistics.

Index Variable
category

Variable Description Mean Standard
deviation

Minimum Maximum

Input Land input Crop sown area/103hm2 Reflect the cultivated area Kuang et al.
(2020)

5,147 3,737 89 14,903

Human input Number of employees in
agriculture/104people

Number of agricultural labor force Yang
H. et al. (2022)

957 720 37 3,478

Mechanical
input

Total power of agricultural
machinery/104kW

Agricultural machinery is an important
tool for agricultural production process
Rehman et al. (2022)

2,785 2,704 94 13,353

Water input Effective irrigation area/
103hm2

Water consumption represented by
effective irrigation area in agriculture
Benbi (2018)

1,958 1,532 88 6,178

Fertilizer input Net amount of agricultural
chemical fertilizer
application/104t

Main pollution sources in agricultural
production process Bhattacharyya et al.
(2012)

172 140 3.020 716

Pesticide input Pesticide usage/104t Main pollution sources in agricultural
production process Rehman et al. (2022)

5.150 4.273 0.060 17.350

Film input Usage of agricultural film/
104t

Main pollution sources in agricultural
production process Yang H. et al. (2022)

6.862 6.411 0.0294 34.35

Energy input Agricultural diesel
consumption/104t

Main pollution sources in agricultural
production process Tian et al. (2014)

62.73 65.27 0.470 487.0

Expected
output

Agricultural
output

Total agricultural output
value/108 CNY (China
Yuan)

Converted to the constant price in
2001 to eliminate the impact of price
changes Liu Z. et al. (2021)

2,282 2,033 52.78 9,672

Undesired
output

Carbon
emissions

Agricultural carbon
emissions/104t

251.9 191.9 3.439 857.2

Frontiers in Environmental Science frontiersin.org04

He and Ding 10.3389/fenvs.2022.1078357

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1078357


regions i and j, which is measured by longitude and latitude.

The formula indicates that the agricultural spatial correlation

between regions is positively related to its scale and inversely

related to the distance between regions. Agriculture is highly

dependent on natural endowments. Due to similar natural

resource endowments, climate and terrain conditions in

adjacent areas, it is reasonable for us to choose geographical

distance.

2.1.3.2 Network characteristics

With reference to relevant literature, we use network

analysis indicators to quantify the different connectivity

characteristics of each Chinese province, calculating the

degree centrality and betweenness centrality of agricultural

in each area (He et al., 2021; Shen et al., 2021). The degree

centrality represents the ratio of the number of members

directly associated with a member to the total number of

individuals most likely to be directly associated. The higher

the degree centrality, the more control a member has over

other members. The betweenness centrality indicates the

extent to which members of the network play a mediating

role for other members. The higher the degree of betweenness

centrality, the more pronounced the intermediary position of

a member in the network. The degree centrality and

betweenness centrality are used to characterise the different

agricultural positions and roles of individual provinces, and to

further explore the mechanisms of their influence on

agricultural carbon emissions.

In the analysis of the overall network of agricultural links in

China, all provinces are considered as the overall network

structure and each province is considered as a node in the

network. The connections between the regions are considered

as edges in the network. The inter-provincial network of spatial

linkages in agricultural production is based on a gravity model.

The agricultural situation in each province is analysed by

calculating the degree of agricultural centrality of each region,

and the links between different provinces are explored through a

social network linkage map.

2.1.4 Spatial autocorrelation
According to the first law of geography, “all things are

related, but nearby things are more related than distant

things” (Tobler, 1970), therefore, spatial correlation in terms

of agricultural carbon emissions may also be present. Whether

the spatial effect should be considered in the model depends on

whether agricultural carbon emissions are geographically

dependent and correlated. Moran’s I (Moran, 1950) is used to

test whether there is a spatial correlation in provincial

agricultural carbon emissions. The Moran’s I is calculated as

follows:

I � n∑n
i�1∑n

j�1Wi,j xi − �x( ) xj − �x( )∑n
i�1∑n

j�1Wi,j∑n
i�1 xi − �x( )2 , i ≠ j (6)

where I represents the global Moran’s I, n is the number of

research units, and xi and xj are the agricultural carbon

emissions in province i and j, respectively. �x represents the

average agricultural carbon emissions in each province, and W

is the weight matrix of the spatial correlation between provinces i

and j. The value of global Moran’s I ranges from −1 to 1. If I > 0,

there is a positive spatial correlation; conversely, if I < 0, it indicates

a negative spatial correlation. If the absolute value is close to 0, it

means the spatial distribution is random (Shen et al., 2021).

2.1.5 GTWR model
In contrast to traditional geographically weighted regression

model that only consider spatial dimensions, the GTWR model

combines both time and space factors. Incorporating the time

dimension into geographic space to form a three-dimensional

spatiotemporal weight matrix reveals the spatiotemporal

evolution of the driving force of agricultural carbon emissions

in each region at a certain period, which provides an analytical

basis for simultaneously dealing with the “space-time” non-

stationarity (Yang et al., 2021). The formula is as follows:

C � β0 ui, vi, ti( ) + β1 ui, vi, ti( )Ti + β2 ui, vi, ti( )Di

+ βk ui, vi, ti( )Conti + εi,

k � 3, 4, . . . , 8

(7)

where C represents the agricultural carbon emissions in each

province. ui, vi, ti represent the latitude, longitude and year of the

i th region, respectively, representing the spatiotemporal

coordinates of the i th region. β0(ui, vi, ti) represents the

space-time intercept term of region i. Ti represents the

observed value of technological progress in region i, and β1 is

the estimated coefficient of technological progress. Di represents

the observed value of the centrality in region i, and β2 is the

estimated coefficient of centrality. Conti denotes the remaining

control variables, and βk represents the estimated coefficient of

control variables. εi is the model residual term.

Among them, the calculation formula of the observation

point i at each spatiotemporal position and the estimated value of

the k th independent variable is as follows:

β̂ ui, vi, ti( ) � XTW ui, vi, ti( )X[ ]−1XTW ui, vi, ti( )Y (8)

where β̂(ui, vi, ti) represents the estimated coefficients of

explanatory variables. W(ui, vi, ti) is the spatiotemporal weight

matrix and is determined by the finite Gaussian function. X

represents the independent variable matrix, and XT is the

transpose of the independent variable matrix. Y is the

dependent variable agricultural carbon emission matrix.

The explained variable in the regression model is agricultural

carbon emissions. An index system affecting China’s agricultural

carbon emissions is established based on the relevant research

(Chen Y. H. et al., 2019; Liu D. D. et al., 2021; He et al., 2021;

Koondhar et al., 2021; Sun and Xu, 2022). The related variables

are shown in Table 2.
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Core explanatory variables: 1) Agricultural technology

progress. Relevant studies have shown that industrial

technological progress can inhibit industrial carbon emissions

(Chen et al., 2020; Zhang et al., 2020). In the field of agricultural

production, the diffusion, learning and competition effect of

agricultural technological progress among regions will affect

agricultural carbon emissions (Yang et al., 2021). Through the

decomposition of TFP, we can obtain the level of technological

progress, and further explore the spatiotemporal heterogeneity of

technological progress on agricultural carbon emissions (Xie

et al., 2021; You and Zhang, 2022). 2) Agricultural network

centrality. As the basic industry for human survival, agriculture

not only has symbiotic characteristics caused by geographical

location and climate environment, but also has spatial correlation

behaviours such as imitation or competition caused by industrial

homogeneity. The importance of different agricultural locations

and different degrees of intermediary connection in the national

agricultural social network may have a heterogeneous impact on

regional agricultural carbon emissions (He et al., 2021). We

calculate the agricultural point centrality and betweenness

centrality according to the gravity model. The point degree of

centrality reflects the provinces’ position in the centre of China’s

agricultural social network. The larger the index value, the greater

the regional centrality and the closer the relationship with other

regions. For convenience of understanding, we use the location

centrality in the interpretation of this paper. The betweenness

centrality reflects regions’ the intermediary role in agriculture.

The greater the value, the greater the intermediary role of the

region in the agriculture spatial social network (Al-Ezzi et al.,

2021), so as to explore the impact of each province’s agricultural

status and the degree of intermediate contact on regional

agricultural carbon emissions.

Control variables: 1) Employees in agriculture. Labour is one

of the necessary factors for agricultural production activities. The

use of agricultural machinery and the collection and use of

agricultural information require labour input. Some studies

demonstrate that higher employee investment leads to lower

agricultural carbon emissions and higher ecological efficiency

(Cui et al., 2018). 2) Human capital. The number of agricultural

employees only accounts for changes in the number of

agricultural labour, whereas human capital can provide

relevant information regarding the quality of workers (Long

et al., 2018). Human capital is measured by the average level

of education. The level of education in each region represents the

overall quality of the region, which also includes the quality of the

labour force. Therefore, it is reasonable to use the average years of

schooling of the population in each province as an approximate

indicator of the level of human capital, referencing the research of

Romer (1990) and Mankiw et al. (1992). 3) Industrial structure.

The upgrading of industrial structure from the primary industry

to secondary and tertiary industry has generated a squeeze on

agriculture, resulting in the reduction of agricultural production

activities and subsequent reductions in agricultural carbon

emissions. The impact of the industries structure of

TABLE 2 Variable definitions and descriptive statistics.

Variable
category

Variable/unit Description Mean Standard
deviation

Minimum Maximum

Explained variable Agricultural carbon emission
(C)/104t

Based on carbon emission calculation
formula

251 191 3.439 857

Core explanatory
variables

Agricultural technological
progress (TC)

Based on MI index decomposition 1.149 0.172 0.477 2.264

Agricultural network centrality
location centrality (DEG)

Calculated based on the gravity model 22,367 42,508 1.170 256,222

betweenness centrality (BET) 5.958 6.852 0.015 25.510

Control variable Number of labor (NEPI)/people Employees in the primary industry 957 720 37.090 3,478

Human capital (AYE)/year Average years of education 8.492 1.251 3.430 12.780

Industrial structure (PIO) Proportion of secondary and tertiary
industries

0.796 0.103 0.439 0.993

Rural economic development
level (GDPP)/104 CNY

Per capita net income of rural residents 3.400 2.662 0.300 16.456

Level of financial support for
agriculture (FSA)/104 CNY

Financial expenditure on agriculture,
forestry, water affairs and policy subsidies

297 277 6.285 1,311

Effective irrigation level of
cultivated land (EIL)

Ratio of effective irrigation area to total
sown area of crops

0.431 0.195 0.142 0.989
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agriculture is represented by the change in the proportion of

secondary and tertiary output value on agricultural carbon

emissions (He et al., 2021). 4) The level of rural economic

development (Zhang et al., 2019). It is measured by rural per

capita GDP. 5) The level of financial support for agriculture. The

higher the value, the higher the government attaches importance

to agriculture (Chavas, 2001; Guo et al., 2022). It is measured by

the total of both financial expenditure on agriculture, forestry

and water affairs as well as policy subsidies. 6) Effective irrigation

level. It represents the effective use of water resources in

agricultural production activities and is represented by the

ratio of effective irrigation area to total sown crop area (Chen

Y. H. et al., 2019). The variables involving prices are converted to

the constant price in 2001 to eliminate the impact of price

changes. The variables and descriptive statistics are shown in

Table 2.

2.2 Data sources

The relevant data of 31 provinces (excluding Hong Kong

SAR, China, Macao SAR, China and Taiwan) in China used in

this paper are mainly from China Statistical Yearbook from

2001 to 2019 (http://www.stats.gov.cn/tjsj/ndsj/). The data of

employees in primary industry are from China demographic and

Employment Statistical Yearbook (http://www.stats.gov.cn/tjsj/).

Some missing data comes from provincial statistical yearbooks

(e.g., http://tjj.xinjiang.gov.cn/), and some missing data in

individual years are processed using linear interpolation. The

geographic longitude and latitude data are obtained from the

Basic Geographic Information Centre in China (https://www.

ngcc.cn/ngcc/).

3 Results

3.1 Temporal and spatial changes of
agricultural carbon emissions

Due to the different natural resources and economic

development levels of each province, there are considerable

differences in agricultural carbon emissions. Figure 1 presents

the agricultural carbon emissions of each province in 2001,

2005, 2010, 2015 and 2019. From the perspective of time

sequence change, China’s agricultural carbon emission shows

a general trend of growth followed by decline. From 2001 to

2015, the vast majority of areas saw a significant increase in

carbon emissions, especially in Henan, Inner Mongolia,

Heilongjiang, Yunnan, Hebei, Jilin, Gansu, Guangxi, Anhui,

Shaanxi, Hunan, Hubei, and Guangdong, where the increase

in their carbon emissions was more than one million tonnes.

From 2015 to 2019, most provinces achieved varying degrees

of reduction in agricultural carbon emissions. Among them,

Hebei, Shandong, Hubei, Henan, Yunnan, Gansu,

Heilongjiang, Anhui and Jiangxi had very significant

reductions of more than 400,000 tonnes in 4 years (Henan

and Shandong remained in the highest classification after the

reduction due to their large carbon emission base). This is

probably because the Chinese government has become more

and more explicit about carbon emission reduction in recent

FIGURE 1
Agricultural carbon emissions by province (2001, 2005, 2010, 2015 and 2019).
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years, and all regions (especially the main grain-producing

regions) have responded positively to the government’s call

for carbon emission reduction, which has had a significant

effect.

From the perspective of spatial distribution, the

characteristics of spatial agglomeration are significant, and

primarily concentrated in major grain producing provinces

in central and eastern China. Areas with high agricultural

carbon emissions include Henan, Shandong, Hebei, Jiangsu,

Anhui, Hubei, Heilongjiang, Hunan and other regions, all of

which are major grain producing areas. Due to more input in

agricultural production factors (fertilizers, pesticides, etc.),

the carbon emissions are high in these provinces. The areas

with low agricultural carbon emissions include Hainan,

Ningxia, Shanghai, Tianjin, Qinghai, Beijing and Tibet etc.,

most of which are developed or remote regions. The

industries in developed areas are concentrated in

manufacturing and service industries, and the agricultural

industry only accounts for a small proportion, therefore,

agriculture produces less carbon emissions. In remote

areas, due to natural climatic conditions and extensive

operations, the pollution to the environment is relatively

minimal, and the carbon emissions are relatively low.

3.2 Spatial autocorrelation analysis

To test whether the spatial effects should be considered in

the regression, a global Moran autocorrelation test was

performed on China’s agricultural carbon emissions, and

the results are shown in Figure 2. During the study period,

the global Moran’s I was greater than 0 and the Z value was

greater than 1.65, which was significant at the 5% level. The

overall Moran’s I exhibited a downward trend first, followed

by an upward trend. From 2001 to 2009, the global Moran’s I

was greater than 0.2. It began to decline in 2009 and then

increased in recent years, indicating that the spatial

autocorrelation and spatial agglomeration among provinces

have increased in recent years. The results demonstrated a

remarkable spatial autocorrelation in agricultural carbon

emissions between provinces. Agricultural carbon emissions

in a certain region have spatial spillover effects on other

provinces, therefore, spatial effects should be considered

when exploring the driving factors of China’s agricultural

carbon emissions.

3.3 Social network analysis

Network structure characterization and centrality analysis

were used to determine the importance of each node in the

agricultural carbon emission side of the network. The gravity

model is used to calculate the location centrality and

betweenness centrality of agricultural carbon emissions in

each province. This provides a regional reference for

subsequent policy formulation according to local

conditions. The structure of social network connections in

2001 and 2019 are shown in Figure 3, where each node

represents each province and a straight line connection

means that there is a link between two provinces.

Figure 3 shows the network of agricultural connectivity for

each province (node) in 2001 and 2019 respectively. From

Figure 3, we can see how each province is connected to the

other provinces. In both 2001 and 2019, the network is

dominated by Henan, Shandong, Hubei, Jiangsu, Jiangxi,

Zhejiang, and Anhui. These provinces always play an

important role in the spatially linked network of agricultural

carbon emissions in China. Provinces with significantly increased

connectivity and importance to other regions in the connectivity

network mainly include Inner Mongolia, Sichuan, Hunan,

Shaanxi, and Guizhou. These provinces are increasingly

important in the China’s agriculture and are more likely to

have an impact on other regions. Provinces with significantly

lower connectivity to other regions in the connectivity network

include Beijing, Tianjin, and Tibet. Due to economic

development or remote geographical location, these regions

are less important in the agricultural network and have less

impact on other regions.

Due to space constraints in the paper, only the location

centrality and the betweenness centrality of 2019 are shown in

Tables 3, 4. The location centrality and the betweenness

centrality are both reported the normalized result. Table 3

shows the location centrality results. The regions with high

level of location centrality include Henan, Shandong, Hubei,

Jiangsu, Jiangxi, and Zhejiang, followed by Inner Mongolia,

Anhui, Fujian, Sichuan, Shanghai, Hunan, and Hebei. Most of

the above-mentioned provinces are large agricultural

provinces in the north or in the middle and lower reaches

FIGURE 2
The changing trend of Moran’s I of agricultural carbon
emissions in China.
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of the Yangtze River, which are relatively concentrated in the

spatial correlation of agricultural carbon emissions in China.

The findings indicate that the stability of the overall network

structure is highly dependent on these provinces, which have a

key role in the spatial pattern of China’s agricultural carbon

emissions. The provinces with low level of location centrality

FIGURE 3
Social network structure based on centrality in China.

TABLE 3 Spatial distribution of location centrality.

Grade Location centrality Province

Highest (2.633, 4.167) Henan, Shandong, Hubei, Jiangsu, Jiangxi, Zhejiang

High (2.133, 2.633) Inner Mongolia, Anhui, Fujian, Sichuan, Shanghai, Hunan, Hebei

Medium (1.567, 2.133) Shanxi, Liaoning, Heilongjiang, Shaanxi, Beijing, Tianjin

Low (0.933, 1.567) Guangdong, Guizhou, Guangxi, Hainan, Chongqing, Yunnan

Lowest (0.067, 0.933) Jilin, Tibet, Gansu, Qinghai, Ningxia, Xinjiang
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include Guangdong, Guizhou, Guangxi, Hainan, Chongqing,

Yunnan, and the regions with the lowest level of regional

centrality include Jilin, Tibet, Gansu, Qinghai, Ningxia, and

Xinjiang. Most of these areas are remote areas, where

agricultural carbon emissions are less related to other

provinces, leaving them in a subordinate position in the

social correlation network of China’s agricultural carbon

emissions. Although Jilin is also one of the main

agricultural producing areas, the remoteness of the region

and its distance from the rest of China’s provinces has resulted

in a low centrality, which is less connected to other regions

due to geographical distance, natural climate, etc. Similar to

this are Heilongjiang and Liaoning.

Table 4 shows the betweenness centrality results. The

provinces with the highest betweenness centrality include

Henan, Shaanxi, Sichuan, Anhui, Hubei, and Hunan. Those

with high degree of betweenness centrality include Shanxi,

Inner Mongolia, Shandong, Gansu, Jiangxi, and Hebei. These

provinces are in the core of the spatial network of agricultural and

have a strong ability to control agricultural carbon emissions in

other provinces. The provinces with low levels of betweenness

centrality mainly include Beijing, Tianjin, Tibet, Liaoning,

Heilongjiang, and Shanghai. The provinces with the lowest

level of betweenness centrality are Guangxi, Hainan, Jilin,

Qinghai, Ningxia, and Xinjiang. These regions are easer

affected by those with high betweenness centrality, and it is

difficult to control or dominate the carbon emissions in other

regions.

In general, each province shows significant unbalanced

characteristics in the social association network of agricultural,

but many province shows relative consistency in the location

centrality and betweenness centrality. Henan, Shandong, Hubei,

Jiangxi, Jiangsu, Inner Mongolia, Anhui, Sichuan, Hunan, Hebei,

and other cited regions, have high location centrality and

betweenness centrality. Most of them are large agricultural

provinces. They are in a significant central position in the

associated network, with a strong intermediary and control

role. In contrast, Guangxi, Hainan, Chongqing, Jilin, Tibet,

Qinghai, Ningxia, Xinjiang, and other regions have low

location centrality and betweenness centrality, and have a

marginal position in the social networking.

3.4 Empirical model analysis

3.4.1 Correlation and collinearity analysis
To understand the correlation between variables and avoid

collinearity, the Pearson correlation analysis and the variance

inflation factor (VIF) test are performed on the variables

involved. The results are shown in Tables 5, 6, respectively.

Table 5 indicates the dependent variable has a high

correlation with each independent variable, while the

correlation between independent variables is low. The VIF test

results are shown in Table 6. The VIF of each independent

variable is less than 8, and the average VIF is 3.49, indicating that

there is no serious collinearity between the independent

variables. The next step of the regression analysis can be

performed.

3.4.2 GTWR model
Table 7 presents the model fitting results of ordinary least

squares (OLS), time weighted regression (TWR),

geographically weighted regression (GWR) and GTWR. It

can be seen that the R2 increases significantly and AICc is

smaller after adding spatial weight. Comprehensively

comparing various indicators, the GTWR model is the most

accurate, thus, the GTWRmodel is used for empirical analysis.

ArcGIS 10.2 software is used to present the spatial pattern

evolution trend of the core explanatory variables

(technological progress, location centrality and betweenness

centrality) on the influence coefficient of provincial

agricultural carbon emissions. Due to space limitations,

Figure 4 only presents 2000, 2010 and 2019.

In terms of technological progress, technological progress has

a negative effect on agricultural carbon emissions, and the

regression coefficient decreases from western to eastern

regions. The spatial gradient distribution characteristics are

obvious, with significant heterogeneity among provinces. In

2000, the regression coefficients of most provinces is negative,

indicating that technological progress had an inhibitory impact

on agricultural carbon emissions. Moreover, they mainly

distributed in major grain areas. In 2010 and 2019, the

regression coefficients of all provinces decreased significantly.

In 2019, only three regions of Hainan, Guangxi and Tibet had

TABLE 4 Spatial distribution of betweenness centrality.

Grade Betweenness centrality Province

Highest (0.022, 0.200) Henan, Shaanxi, Sichuan, Anhui, Hubei, Hunan

High (0.008, 0.022) Shanxi, Inner Mongolia, Shandong, Gansu, Jiangxi, Hebei

Medium (0.002, 0.008) Guangdong, Jiangsu, Zhejiang, Fujian, Guizhou, Chongqing, Yunnan

Low (0.001, 0.002) Beijing, Tianjin, Tibet, Liaoning, Heilongjiang, Shanghai

Lowest (0, 0.001) Guangxi, Hainan, Jilin, Qinghai, Ningxia, Xinjiang
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positive regression coefficients, and the remaining 28 provinces

are all negative. The regression coefficient decreased significantly,

and the number of provinces changed from positive to negative,

indicating an increasingly inhibitory impact of technological

progress on agricultural carbon emissions.

In terms of location centrality, the regression coefficients of

most provinces in 3 years are negative, except for Hainan and

Qinghai in 2001, Xinjiang, Qinghai and Gansu in 2010, and

Yunnan, Qinghai, Chongqing, Shaanxi, Ningxia, Guangxi,

Gansu, Hainan, and Guizhou in 2019. This indicates that the

location centrality has a negative impact on agricultural carbon

emissions, and the greater the agricultural location centrality of a

region, the less the agricultural carbon emissions of the region.

In terms of betweenness centrality, the number of provinces

with positive regression coefficients for betweenness centrality in

2001 and 2010 is 24 and 25, respectively. However, the regression

coefficients of 15 provinces are negatively correlated in 2019. The

number of regions whose regression coefficient changed from

positive to negative has increased. The regression coefficient of

most positive correlation provinces has decreased, and the

positive correlation has weakened, indicating that the effect of

mediation on agricultural carbon emissions had a trend from

positive to negative.

3.4.3 Moderating effect
The fixed-effect hierarchical regression method is used to

conduct empirical tests with referencing related studies to further

explore the influencing mechanism of centrality on technological

progress and agricultural carbon emissions (Verdier, 2020; Lv

et al., 2021; Qi et al., 2021; Zheng et al., 2021).

First, we verify the moderating effect of the interaction term

between technological progress and location centrality on

agricultural carbon emissions. The first step is to conduct the

regression of technological progress and agricultural carbon

emissions. The second step is introducing the location

centrality into the model as an independent variable for

regression. The third step is adding the interaction term

between technological progress and location centrality for

regression. The results are shown in columns 1), 2) and 3) in

Table 8, respectively. Column 1) reveals a significant negative

effect between technological progress and agricultural carbon

emissions, which is consistent with the results in Figure 4.

Column 2) demonstrates that location centrality has a positive

effect on agricultural carbon emissions. After introducing the

interactive term of technological progress and location centrality

in column 3), the location centrality shows a significant negative

impact on agricultural carbon emissions, indicating that greater

location centrality leads to more important the status and the less

agricultural carbon emissions. The interaction coefficient is

significantly negative (β = −0.838, p < .01), indicating that the

TABLE 5 Correlation test between variables.

Variable C TC DEG BET NEPI AYE PIO GDPP FSA EIL

C 1

TC −0.093** 1

DEG −0.501*** 0.027 1

BET 0.816*** −0.059 0.465* 1

NEPI 0.050* 0.085** 0.219*** 0.068* 1

AYE −0.163*** 0.102** 0.224*** 0.084** 0.478** 1

PIO −0.790*** −0.127*** 0.266** 0.432** −0.208** −0.302*** 1

GDPP −0.036* 0.164*** 0.307*** 0.096** 0.101*** 0.365*** −0.293** 1

FSA 0.461*** 0.065 0.246* 0.398*** 0.353*** 0.218* 0.214*** 0.362*** 1

EIL −0.149*** 0.164*** 0.011 −0.041 0.148*** 0.366*** −0.221* 0.410** 0.015 1

Notes: *, **, *** represent significance at 10%, 5% and 1%, respectively.

TABLE 6 VIF test of explanatory variables.

Variable VIF 1/VIF

GDPP 7.69 0.13

BET 5.80 0.17

FSA 4.46 0.22

DEG 4.24 0.24

NEPI 3.37 0.30

AYE 2.44 0.41

PIO 2.11 0.47

EIL 1.79 0.56

TC 1.29 0.78

Mean VIF 3.49
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location centrality has a significant positive moderating effect on

the relationship between technological progress and agricultural

carbon emissions. The greater the regional agricultural location

centrality is, the stronger the inhibition effect of technological

progress on agricultural carbon emissions is. In contrast, the

smaller location centrality leads to weaker the inhibition effect of

technological progress on agricultural carbon emissions.

Location centrality strengthens the negative impact of

technological progress on agricultural carbon emissions.

Second, we verify the impact of the interaction term between

technological progress and betweenness centrality on agricultural

carbon emissions. The first step is performing the regression of

technological progress and agricultural carbon emissions, the

second step is introducing betweenness centrality into the model

as an independent variable for regression, and the third step is adding

the interaction term between technological progress and betweenness

centrality for regression. The results are shown in columns (1), (4) and

(5) in Table 8, respectively. In column (4), the overall effect of

betweenness centrality on agricultural carbon emissions is positive,

which is consistent with Figure 4. The interaction coefficient between

technological progress and betweenness centrality in column (5) is

significantly negative (β = −0.479, p < .05), indicating that

betweenness centrality significantly strengthens the negative effect

of technological progress on agricultural carbon emissions with a

positive regulatory effect. The greater the regional betweenness

centrality, the stronger the inhibitory impact of technological

progress on agricultural carbon emissions; the smaller the

betweenness centrality, the weaker the inhibitory impact of

FIGURE 4
Spatiotemporal heterogeneity of the impact of technological progress and centrality on agricultural carbon emissions.

TABLE 7 Model selection and regression results.

OLS GWR TWR GTWR

Bandwidth 0.115 0.196 0.115

Residual Squares 3.747 0.862 3.121 0.570

Sigma 0.081 0.038 0.073 0.031

AICc −1283 −1992 −1342 −2121

R2 0.874 0.971 0.895 0.981

R2Adjusted 0.872 0.971 0.893 0.981

Trace of SMatrix 76.802 32.751 116.521

Spatiotemporal Distance Ratio 0.442
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technological progress on agricultural carbon emissions. Although the

betweenness centrality has a positive effect on agricultural carbon

emissions overall, it can significantly strengthen the inhibitory effect of

technological progress on agricultural carbon emissions. It may be

that regions in the middle of the communication between nodes have

a significant role as a bridge and a strong ability to control resources. It

is easier to grasp the advantages of various information, technology

and other resources over time in these regions, resulting low-carbon

and carbon reduction in agriculture.

Finally, in order to ensure the robustness of the moderating

effect, location centrality and betweenness centrality are

introduced in column (6), and the interactive terms of

technological progress and location centrality and the

interactive terms of technological progress and intermediary

centrality are introduced in columns (7) and (8), respectively.

The interaction termbetween technological progress and centrality

is tested by regression. The results are shown in columns (6), (7)

and (8) in Table 8, respectively. The coefficients of the interaction

terms are all significantly negative, indicating that location

centrality and betweenness centrality both have a significant

positive moderating effect on the relationship between

technological progress and agricultural carbon emissions. With

the increase of location centrality and betweenness centrality, the

impact of technological progress on agricultural carbon emissions

TABLE 8 Regression results of moderating effect.

Variable (1) (2) (3) (4) (5) (6) (7) (8)

TC −0.122** −0.101** −0.137** −0.066* −0.129*** −0.068** −0.089** −0.114***

(0.043) (0.041) (0.049) (0.032) (0.038) (0.030) (0.037) (0.039)

DEG 0.311*** 0.315*** −0.181*** −0.176*** −0.167***

(0.041) (0.030) (0.029) (0.033) (0.036)

TC*DEG −0.838*** −0.488**

(0.257) (0.229)

BET 0.371*** 0.364*** 0.442*** 0.439*** 0.431***

(0.016) (0.018) (0.019) (0.019) (0.024)

TC*BET −0.479** −0.351*

(0.223) (0.180)

NEPI 0.814*** 0.782*** 0.783*** 0.490*** 0.486*** 0.447*** 0.449*** 0.448***

(0.032) (0.029) (0.029) (0.021) (0.020) (0.019) (0.020) (0.020)

AYE 0.388*** 0.411*** 0.410*** 0.349*** 0.347*** 0.328*** 0.328*** 0.329***

(0.025) (0.020) (0.019) (0.019) (0.020) (0.022) (0.021) (0.021)

PIO −0.097*** −0.140*** −0.140*** −0.195*** −0.193*** −0.188*** −0.188*** −0.188***

(0.024) (0.036) (0.036) (0.032) (0.032) (0.031) (0.032) (0.032)

GDPP −0.255*** −0.257*** −0.254*** −0.250*** −0.249*** −0.248*** −0.246*** −0.247***

(0.032) (0.032) (0.032) (0.031) (0.030) (0.032) (0.031) (0.031)

FSA 0.479*** 0.290*** 0.280*** 0.307*** 0.312*** 0.384*** 0.378*** 0.382***

(0.066) (0.051) (0.053) (0.047) (0.046) (0.055) (0.056) (0.057)

EIL 0.325*** 0.318*** 0.314*** 0.210*** 0.204*** 0.193*** 0.191*** 0.190***

(0.019) (0.018) (0.019) (0.012) (0.013) (0.013) (0.013) (0.013)

C −0.179*** −0.145*** −0.128*** −0.0446** −0.0192 −0.0390** −0.0298* −0.0208

(0.025) (0.031) (0.028) (0.018) (0.020) (0.017) (0.014) (0.017)

Observations 589 589 589 589 589 589 589 589

R2 0.788 0.809 0.811 0.875 0.877 0.879 0.880 0.880

Notes: *, **, *** represent significance at 10%, 5% and 1%, respectively.
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increases. The sign and significance of the regressions in columns

(3) and (6) are relatively consistent with columns (7) and (8),

respectively, indicating that the regression results are robust.

4 Discussion

4.1 Theoretical mechanism analysis

According to the first law of geography “all things are related,

but nearby things are more related than distant things” (Tobler,

1970). Similarly, agriculture interact with each other in different

regions, and carbon emissions are linked in different regions. The

social network association uses a gravity model that takes into

account the distance between two regions and the agricultural

situation to measure the relationship and status of subjects in

different regions. In this paper, social network analysis is used to

obtain the locational centrality and betweenness centrality of

agriculture, and to explore the mechanisms by which different

locational centrality plays a role in agricultural carbon emissions.

The increase or decrease of agricultural carbon emissions in

one region will adjust its own emissions according to the

reference of other regions. This cooperative approach to

emissions reduction can be explained by the “peer effect”. The

emission decision of a region is influenced not only by its own

agricultural resource and economic development level, but also

by the emission decision of other regions (He et al., 2021).

As an important way to achieve emission reduction,

technological progress has become an important direction

of mutual learning among regions. Through the “learning

effect”, agricultural technology progress may benefit more

regions in emission reduction (Xie et al., 2021). The

different status and role of agriculture in different regions

will influence the voice of agriculture in China, and further

influence the dissemination and application of technology,

which in turn will have a certain impact on agricultural carbon

emissions. In addition, due to the “Matthew effect”, regions

that occupy the centre of the network can obtain a large

amount of resources and promote their own carbon

emission reduction by virtue of their location, which

further intensifies the unbalanced development of carbon

emissions in agricultural regions with different centres.

The analysis of spatial heterogeneity and moderating effect

helps to explain the impact of technological progress on

agricultural carbon emissions from the perspective of

centrality. We can understand the impact mechanism of

agricultural status and role on regional government decision-

making better, and these provide ideas for the construction of

regional collaborative emissions reduction mechanism. The

specific impact mechanisms are analysed below.

First, the agricultural status and role of different provinces are

explored. Each province shows significant unbalanced characteristics

in the social association network of agricultural carbon emissions, but

the same provinces have relative consistency in the location centrality

and betweenness centrality. The provinces with high location

centrality and betweenness centrality are in a significant central

position in the associated network, have a strong intermediary and

control role. The provinces with low location centrality and

betweenness centrality are in a marginal position in the social

network. Different degrees of centrality result in different levels of

impact on other areas in the network of agricultural carbon

connections.

Second, the research found that the technological progress has a

negative effect on agricultural carbon emissions. Since technological

progress is confirmed to reduce agricultural carbon emissions by

improving agricultural machinery and other processes, with a strong

positive externality. The location centrality has a negative impact on

agricultural carbon emissions. The greater a region’s agricultural

location centrality, the lower the region’s the agricultural carbon

emissions. It may be that the area is more connected to other

areas in the social network and that learning behaviours occur to

adopt measures to reduce agricultural carbon emissions. The increase

of the regression coefficient fromnegative to positive indicates that the

carbon reduction bonus brought by the agricultural location centrality

has reduced, and the progress of science and technology and the

convenience of information dissemination lead to a reduction in the

network connectivity advantage of the location centrality. The effect of

betweenness centrality on agricultural carbon emissions had trend

from positive to negative. These enlighten the government to attach

importance to the technology and the intermediary advantages of the

region to grasp resources and actively learn and exchange to reduce

agricultural carbon emissions.

Third, the moderating effect of agricultural centrality on the

relationship between technological progress and agricultural carbon

emissions is explored. The agricultural location centrality and

betweenness centrality have a significant positive moderating effect

on the relationship between technological progress and agricultural

carbon emissions. With the increase of location centrality and

betweenness centrality, the inhibitory effect of technological

progress on agricultural carbon emissions increases. This is

probably due to the fact that the higher the centrality of a region,

the stronger the lead and diffusion role it plays, allowing for faster and

wider diffusion of technology. Due to the centrality advantage, more

resources such as information and technology can be obtained, thus

curbing agricultural carbon emissions. Therefore, the moderating

effect of high centrality on technological progress and agricultural

carbon emissions should also be emphasized, and inhibition effect of

technological progress on agricultural carbon emissions should be

strengthened to achieve more efficient carbon reduction.

4.2 Policy implications

Based on the above analysis of carbon emissions, agricultural

centrality and the regulation effect of centrality on carbon

emissions in different regions, the status and role of different
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agricultural centrality regions are discussed from the perspective

of carbon emission reduction, and corresponding suggestions are

put forward to reduce agricultural carbon emissions and help

achieve the SDGs.

1) The advantages of agricultural regional centres should be

valued, and the driving and diffusion effects should be

enhanced. For Henan, Shandong, Hubei, Jiangxi, Jiangsu,

Inner Mongolia, Anhui, Sichuan, Hunan, Hebei, the major

agricultural carbon emission provinces are also regions

with high location centrality, and they have a key driving

role in the spatial pattern of China’s agricultural carbon

emissions. Areas such as Henan, Shaanxi, Sichuan, Anhui,

Hubei, Hunan, Shanxi, Inner Mongolia, Shandong, Gansu,

Jiangxi and Hebei have a high betweenness centrality and

play the role of a bridge of communication. It is important

to give full play to the advantages of agricultural regional

centres to enhance the driving and diffusion effects.

Therefore, it is necessary to consider the moderating

effect of spatial correlation effects on carbon emission

reduction. Since regions with higher centrality are easer

connected with other regions and have more significant

carbon emissions reduction effects, policy formulation

should take advantage of the special status of such

regions, make full use of the diffusion effect of such

regions, and actively promote low-carbon production

technologies and effective policies to facilitate

agricultural carbon emission reduction in other regions.

2) Policy guidance and financial support for marginalised

agricultural areas should be strengthened. For agricultural

regions with low locational centrality and marginalised in

socially connected networks, such as Guangxi, Hainan,

Chongqing, Jilin, Tibet, Qinghai, Ningxia, Xinjiang and

other regions (provinces with essentially no agricultural

industry are omitted), policy guidance should be

strengthened and active learning from areas with

significant agricultural carbon reduction.

3) The regional coordination mechanisms for emission

reduction should be established, and regional exchanges

and collaboration should be promoted and strengthened.

There is an obvious spatial correlation between agricultural

carbon emissions. The carbon emissions of a region are not

only related to the agricultural and economic development

of this region, but are also influenced by the relevant spatial

social networks in the region, showing a learning behaviour

of agricultural carbon emission reduction. Therefore, a

regionally coordinated mechanism for emission

reduction should be established so that regions can learn

from each other to achieve sustainable development and

ecological civilization in agriculture.

4) It is important to focus on the progress and application of

agricultural science and technology, as well as the

moderating role of the central degree on agricultural

technology. On the one hand, agricultural economic

linkages should be strengthened to clear obstacles to the

spatial spillover of technological progress and allow

different regions to benefit from technological progress.

On the other hand, we should make full use of the

moderating effect of high centrality on technological

progress and agricultural carbon emissions, and

strengthen the inhibiting effect of technological progress

on agricultural carbon emissions to achieve higher and

more efficient carbon emission reduction.

4.3 Limitations

Due to limited data availability, the primary sources of

agricultural carbon emissions considered in this research

include six common categories, including pesticides,

agricultural films, agricultural irrigation, chemical

fertilizer, agricultural ploughing, and agricultural diesel.

Theoretically, the crop type and different farming methods

also have impact on carbon emissions, which may affect the

results. Therefore, further research should performed in

future. In addition, agricultural carbon emissions may

influenced by many factors at different spatial and

temporal scales. We selected only some of potential

variables, but the influence of residents’ environmental

awareness, governmental policy priorities and other

circumstances are important. It is required further

exploration including these factors.

5 Conclusion

This study use relevant data from 31 provinces in China from

2001 to 2019 to explore the spatiotemporal changes of agricultural

carbon emissions. The SBM model, SNA and GTWR model are

used to study the effect of technological progress and agricultural

centrality on the spatiotemporal heterogeneity of agricultural

carbon emissions. The moderating effect of agricultural

centrality on the relationship between technological progress

and agricultural carbon emissions is further explored. The main

conclusions are as follows.

First, agricultural carbon emissions in China increased

significantly during the study period. The spatial

agglomeration characteristics were significant, and they were

mainly concentrated in major grain producing areas. There is

a significant spatial dependence of agricultural carbon emissions

among provinces. The non-equilibrium characteristics of each

province in the social network of agricultural carbon emissions

are noticeable, while the same provinces show relative

consistency in terms of location centrality and betweenness

centrality. Areas with high centrality are the major grain
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producing areas, and they invariably play an important role in

the spatially linked network of agricultural carbon emissions.

Second, technological progress has an inhibitory effect on

agricultural carbon emissions, and the inhibitory effect gradually

increases. The regression coefficient decreases from western to

eastern regions, with remarkable spatial gradient distribution

characteristics. The agricultural location centrality has a negative

effect on overall agricultural carbon emissions, and the spatial

heterogeneity is significant, however, the number of regions

where the impact has changed from negative to positive has

increased over time, indicating that the carbon reduction

dividend brought by location centrality has decreased. The

impact of betweenness centrality on agricultural carbon

emissions has changed from positive to negative in many

provinces over time. The enhancement of provinces’

intermediary role has a trend of promoting the inhibiting

impact on agricultural carbon emissions.

Third, agricultural location centrality and betweenness

centrality have a significant positive moderating effect on the

relationship between technological progress and agricultural

carbon emissions. With the increase of location centrality and

betweenness centrality, the inhibitory effect of technological

progress on agricultural carbon emissions increases.
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