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The sustainability of the ecological environment has been greatly threatened.

Based on carbon emissions and combined with the panel data of 30 provinces

in China from 2003 to 2020, this paper studied the various mechanisms of

industrial structure optimization and population agglomeration on carbon

emissions. The fixed effect model, panel threshold model and spatial

spillover model are used to study the direct and indirect effects of industrial

structure optimization and population agglomeration on carbon emissions, and

the robustness of the results is tested in various ways. In terms of direct effects,

the industrial structure optimization has a significant negative effect on carbon

emissions, and the significance level is 1%. Population agglomeration has a

significant positive effect on carbon emissions, with a significance level of 1%. In

terms of indirect effects, 1) by adding the cross term of industrial structure

optimization and population agglomeration, it is proved that population

agglomeration can promote the carbon emission reduction effect of

industrial structure optimization. 2) Population agglomeration was used as

the threshold variable to verify the interval effect of industrial structure

optimization on carbon emission reduction. The results show that the

industrial structure optimization has a double threshold effect of population

agglomeration on carbon emissions, and the threshold values are 2.1137 and

5.9263, respectively. And the larger the population agglomeration interval, the

weaker the inhibition effect of industrial structure optimization on carbon

emissions. 3) The industrial structure optimization, population agglomeration

and carbon emissions have significant spatial spillover effects. The industrial

structure optimization in neighboring areas has a significant inhibitory effect on

carbon emissions, and the population agglomeration in neighboring areas has a

significant promoting effect on carbon emissions.
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1 Introduction

To address climate change and achieve carbon neutrality is a

global trend and the call of The Times. It bears on the future

survival and development of mankind. In 2020, energy-related

carbon dioxide emissions accounted for about 87% of the total

global carbon dioxide emissions (UNEP, 2021), and fossil energy

combustion was the main source of global carbon dioxide

emissions. Accelerating energy transformation and reducing

energy consumption intensity are necessary measures to

reduce carbon emissions and achieve the goal of “zero

carbon” (ECIU, 2021). Industrial structure optimization is the

fundamental way to reduce carbon emission. Carbon emissions

mainly come from the massive use of fossil energy such as coal,

oil and natural gas, which can cause desertification, greenhouse

effect and global climate change. The rapid development of

industrialization has a high demand for various energy

sources, resulting in an increase in carbon emissions. As far as

China’s current post-industrialization development stage is

concerned, the proportion of the secondary industry shows an

obvious downward trend, replaced by the rapid development of

the tertiary industry, which reflects the country’s industrial

structure gradually tends to be advanced and rationalization

(Huang and Li, 2017). In contrast, the tertiary industry has a

weak dependence on energy, which can greatly reduce the total

consumption and consumption intensity of fossil energy caused

by China’s industrial development. This is also a realistic way for

China to promote the development of low-carbon economy

through structural adjustment and mode transformation

(Zhao et al., 2022). However, the rapid development of the

tertiary industry is often accompanied by a large number of

population agglomeration (Yang, 2018). Take China as an

example, more and more people are moving to large and

medium-sized cities with higher tertiary industry development

level, and some first-tier and second-tier cities have very rapid

population growth. This is because the development of the

tertiary industry is more dependent on population

agglomeration than the manufacturing and agricultural sectors

(Duranton and Puga, 2020). On the one hand, compared with the

manufacturing industry, most of the products of the tertiary

industry are non-tradable and conform to the production and

sale model. Enterprises and consumers need close interaction.

On the other hand, tertiary industry products have higher

income elasticity (Ngai and Pissarides, 2007) and attract

population. The unreasonable population density will lead to

the increase of carbon emission and the structural imbalance of

regional carbon emission (Sun et al., 2013; He et al., 2019). This

conclusion has been confirmed by a large number of scholars.

However, some scholars hold the opposite view, believing that

population agglomeration has positive external effects and can

improve economies of scale in the use of resources and energy

(Edward and Matthew, 2009). In this case, the effect of simply

relying on industrial structure optimization to promote carbon

emission reduction could be complex and uncertain, and the

effect of industrial structure optimization accompanied by

population agglomeration on carbon emission needs to be

further verified.

Accordingly, this paper aims to construct a theoretical

analysis framework for industrial structure optimization,

population agglomeration and carbon emission. And explore

the following questions: 1) Under the coexistence of regional

industrial structure optimization and population agglomeration,

what are the direct action mechanisms of the two factors on

regional carbon emissions? 2)What is the non-linear mechanism

of regional carbon emission under the interaction of industrial

structure optimization and population agglomeration? Is there

an interval effect with the population agglomeration scale as the

threshold? 3) Do industrial structure optimization, population

agglomeration and carbon emissions have spatial spillover

effects? What is the effect? In order to answer the above

questions, based on the panel data of 30 provincial-level

regions in China from 2003 to 2020, this paper

comprehensively verifies the direct and indirect mechanisms

of industrial structure optimization and population

agglomeration on carbon emissions by using OLS estimation,

intra-group interval estimation (fixed effect model), panel

threshold effect model and spatial econometric model. It

provides ideas for national and local governments to

formulate reasonable industrial structure adjustment policies,

population mobility and supporting policies in order to promote

carbon emission reduction and achieve the goal of “carbon peak”.

Therefore, the adjustment and industrial structure optimization

to reduce carbon emissions, promote high-quality economic

development and regional coordinated development has been

widely concerned by the government and academia.

2 Literature review

The industrial structure optimization not only reflects the

advanced development of economic development of a country or

region (Fu, 2010; Gan et al., 2011), but also brings important

impact on the ecological environment of a country or region

(Chang, 2015; Li, 2021). For more than a decade, the adjustment

and industrial structure optimization to reduce carbon

emissions, promote high-quality economic development and

regional coordinated development has been widely concerned

by the governments around the world and academia. Kaya’s

identity proves that the upgrading of industrial structure is the

fundamental driving force for the low-carbon development of

industrial system. Reducing the energy use intensity and carbon

emissions of the industry is conducive to the realization of low-

carbon development of the industry (Sheinbaum and Belizza,

2010). As for the impact of industrial structure upgrading on

carbon emissions, the current academic opinion holds that

industrial structure optimization and upgrading can reduce
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carbon emissions through structural adjustment and

technological effect. However, this influence has regional

differences at different spatial scales, including different

countries (Duro and Padilla, 2006; Yuan et al., 2016) and

different regions in the same country (Pau and Bhattacharya,

2004; Zhao et al., 2022). Different industrial sectors also have

different impacts on carbon emissions. Some empirical studies

prove that almost all industrial scale growth will make a positive

contribution to carbon emissions (Al-Ghandoor, 2010).

However, the contribution of the tertiary industry is

significantly smaller than that of the secondary industry (Liu

and Lung, 2010). In addition, some scholars use the spatial

econometric model to demonstrate the spatial spillover effect

of industrial structure on carbon emissions. The results show that

the upgrading of industrial structure can not only reduce the local

carbon intensity, but also reduce the carbon intensity of the

surrounding areas. However, the capacity to reduce varies with

the level of economic development, technological innovation and

urbanization (Yu, et al., 2022).

Population size is an important factor in environmental

pollution and carbon emissions. Since Marshall (1890) first

proposed the concept of agglomeration, the relationship

between population agglomeration and energy consumption,

carbon emission and environmental pollution has attracted

the attention of scholars in demography, development

economics, geographic economics and other related fields

(Liddle, 2014). There are three main viewpoints in academic

research on the relationship between population and

environment. First, population density will bring a large

amount of pollutants in a short time, beyond the load-

carrying capacity of the environment (Fang and Lin, 2009).

Secondly, population agglomeration will bring positive

external effect to the environment, which is conducive to

improving environmental pollution (Chen, et al., 2020; Wang,

et al., 2021). Thirdly, the relationship between population

agglomeration and environment presents temporal and

interval heterogeneity. In the time dimension, population

growth increases the carbon footprint and CO2 emissions in

the short term. But in the long run, the consumption of natural

resources and renewable energy improves the quality of the

environment in the long run, along with population growth

(Khan et al., 2020). From the interval dimension, there is a

U-shaped relationship between population agglomeration and

environmental pollution. When the agglomeration level is low,

population agglomeration plays a positive externality and has a

positive impact on environmental pollution. Only when the

concentration exceeds a certain level can it have a negative

impact on the environment. (Wang, 2015). In recent years,

studies have also shown that the impact of population

agglomeration on carbon emissions has significant regional

differences (Clark, 2010; Menz and Welsch, 2012; Li et al.,

2019). The differences are not only between countries, but

also between regions and cities within countries. And the

conclusion accords with the environmental Kuznets curve

theory (EKC) (Grossman and Kruege, 1995).

Regional economic development depends on agglomeration

economy, and agglomeration includes both industrial

agglomeration and population agglomeration. And the two

have synergistic effect (Ahmad et al., 2021). Both types of

agglomeration will inevitably put enormous pressure on

energy consumption and environmental pollution (Kaya and

Koc, 2019; Qin et al., 2022). Many scholars have comprehensively

considered the impacts of population agglomeration and

industrial agglomeration on the environment, but no

consensus has been reached. With the deepening of the

research, some scholars are concerned that there is a certain

relationship between the development of industry and

population itself, so they begin to explore the non-linear

relationship between the three. The general result is that

population density can positively regulate environmental

efficiency by strengthening the spillover effect of industrial

synergistic agglomeration (Zhu et al., 2021). In addition, some

scholars have verified the spatial effects among the three by using

spatial metrology. It is also confirmed that the industrial

development and population in neighboring areas have

spillover effects on local carbon emissions.

Based on the above literature review, fruitful results have

been obtained in the research on the relationship between

industrial structure and carbon emissions, but there are still

three aspects that can be improved. First, most of the existing

studies on carbon emission or environment by industrial

structure optimization only consider the simple linear

relationship between industrial structure and environment,

and whether there is interval heterogeneity in the emission

reduction effect of industrial structure optimization has not

been thoroughly studied. Second, most existing studies have

studied the pairwise relationship between industrial structure,

population agglomeration and carbon emissions, and rarely put

in the same framework. Despite the comprehensive

consideration of the relationship between industrial

agglomeration, population and carbon emissions, industrial

agglomeration cannot measure the structural problems of

industries. At the same time, the relationship between regional

variables is mostly investigated in isolation, while the possible

agglomeration and spillover effects between regions are ignored.

Third, generally speaking, a certain conduction mechanism

affecting carbon emissions may exist as a function of time

from its occurrence to its effect. In terms of the impact time

of industrial structure optimization and population

agglomeration on regional carbon emissions, it may be

reflected in a time lag of one or 2 months, or one or 2 years.

However, there are few literature that consider both long-term

and short-term time effects when conducting empirical studies.

Therefore, the marginal contribution of this paper is to

comprehensively consider the direct and indirect effects,

short-term effects and long-term effects of industrial structure
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factors and population factors of carbon emissions. First,

consider the general regulation effect and threshold effect of

industrial structure optimization of population agglomeration on

carbon emissions. Firstly, population agglomeration is included

in the research framework of carbon emission effect of industrial

structure optimization. The general regulating effect and

threshold effect of industrial structure optimization of

population agglomeration on carbon emission were explored

respectively. Second, the long-term and short-term effects of

industrial structure optimization and population agglomeration

on carbon emissions were investigated from two time

dimensions, namely, the same period and the lag period.

Thirdly, from the perspective of spatial spillover, whether

industrial structure optimization and population

agglomeration have spatial effects on carbon emissions is

investigated. Exploring the direct and indirect spatio-temporal

relationships among the three has important theoretical

significance and strategic value for realizing the two-carbon

goal by optimizing the industrial structure and improving the

population mobility policy.

3 Theoretical mechanism analysis

Mechanism analysis of industrial structure optimization on

carbon emission. The energy demand of each industry is quite

different, and the carbon emission coefficient of each energy is

different, so the carbon emission generated in the process of

burning energy is also different. The secondary industry includes

most of the industries with high energy consumption coefficient,

and has a large demand for a variety of energy sources. China is in

the process of post-industrial development, and the tertiary

industry is the leading industry in China at the present stage

(Yu, 2015). With the increase of the proportion of service

industry, low energy consumption industries form clusters,

which gradually reduce the proportion of high energy

consumption and high emission industries (Zhang et al.,

2016). In addition, from the perspective of factor flow, the

industrial structure optimization has realized the flow of

important production factors to the tertiary industry. Capital

or labor factors flow to higher-end industrial sectors faster, and

technological progress indirectly promotes carbon emission

reduction that drives the industrial structure optimization

(Cai, 2013). Therefore, the optimization of the industrial

structure is realized by means of the “structural dividend”

released by the coordinated development of various

departments between and within the industry. In this way,

more economic benefits can be obtained and the energy

efficiency of the whole industry can be improved (Ervural,

et al., 2018). At the same time, the spillover effect exists in a

certain distance (Liu and Ma, 2021).

Mechanism of population agglomeration on carbon

emissions. There are three mechanisms of population

agglomeration on carbon emissions. First, population

agglomeration greatly reduces the actual travel distance of

residents, and large-scale use of public transport will achieve

scale efficiency of carbon emission reduction (Holden and

Norland, 2005; Brownstone and Golob, 2009). At the same

time, the aggregation of population can improve the

utilization rate of various resources, reduce the occupation of

various resources by repeated construction, especially conducive

to the sharing of public facilities. In this way, enterprises or

individuals can reduce the cost of obtaining and using resources

and public facilities and improve the economies of scale in the use

of resources (Glaeser, 2011). In addition, it can increase the

matching between jobs and workers, reduce the cost of job

searching and improve work efficiency. More importantly, it

can accelerate the generation of new knowledge and technology,

promote the renewal of production and environmental

protection technology to a certain extent, which is conducive

to the control of environmental pollution. Second, Population

agglomeration has negative environmental externalities. The

large-scale disordered agglomeration of population will lead to

a significant increase in regional domestic energy consumption,

especially in the energy consumption of buildings, transportation

and household appliances. A large amount of energy

consumption increases the emission of regional pollutants.

The economic development mode, population flow and wind

conditions in neighboring areas will also lead to the close-range

diffusion of pollutants. Moreover, it has a positive spatial effect

on carbon emissions in neighboring areas (Xia and Lu, 2015).

Mechanism of industrial structure optimization and

population agglomeration on carbon emission. Labor supply

and population size affect the industrial value-added structure

of consumption and investment through the income channel and

the price channel respectively, so as to bring about the

adjustment of industrial structure. People’s pursuit of life

status and quality is gradually advanced, so it strongly

promotes the development of service industry and the

industrial structure optimization (Thorpe and Schmuller,

1958). When people’s pursuit of higher living conditions and

quality gradually promotes the development of service industry

and reduces the proportion of secondary industry. The

development of tertiary industry not only reflects the stage

and level of regional economic development, but also

represents the technical level of the region. The tertiary

industry sector has a higher level of demand for labor force,

so that labor force can learn through a variety of channels

(Marshall, 1890). As a result, the labor tends to match high-

end industrial sectors with better pay, better working conditions,

more room for advancement and higher demand for skills. Thus

promote the industrial structure optimization, and finally reduce

regional energy consumption and carbon emissions. The tertiary

industry sector is highly dependent on labor and energy, and

migrants tend to flow to areas with better public services (Xia and

Lu, 2015), resulting energy consumption of the population. But
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population agglomeration can also have positive externalities,

reducing travel distances and sharing regional facilities, thus

achieving economies of scale in energy consumption (Liddle,

2004). At the same time, the labor force can improve the labor

production efficiency of the tertiary industry and reduce the

energy consumption by constantly applying their knowledge to

the production services of the tertiary industry. Therefore, the

impact of industrial structure optimization and population

agglomeration on carbon emissions depends on the difference

between the direct energy consumption brought about by

industrial structure optimization and population

agglomeration and the indirect energy consumption reduced

by agglomeration through positive externalities, which is

closely related to the level of population agglomeration.

4 Research design

4.1 Model setting and data

4.1.1 Baseline regression model
Cobb-Douglas production function describes the functional

relationship between labor force, capital and other production

factors and economic output, which can profoundly reflect the

nature and characteristics of changes in the output of economic

activities (Phelps Brown, 1957). With the continuous

development of economic theory and social practice, the

production function has been continuously developed

(Samuelson, 1979; Mc Combie, 1991). This paper refers to

the model derivation method of Cheng et al. (2019). In this

paper, referring to the model derivation method of Cheng et al.

(2019), a direct impact model of industrial structure

optimization on carbon emissions was constructed for the

direct transmission mechanism (Model 1). On this basis, it is

considered that the industrial structure optimization and

population agglomeration may have a non-linear indirect

mechanism of action on carbon emissions, that is, the

general regulation effect of population agglomeration on the

industrial structure optimization. Population agglomeration

influences the industrial structure optimization from two

aspects: “Marshallian technology externality” and the

expansion of consumption demand (Jia et al., 2022).

Therefore, the carbon reduction adjustment effect model of

population agglomeration on industrial structure optimization

(Model 2) was established, that is, the interaction term between

industrial structure optimization and population agglomeration

was added on the basis of Model 1.

Model 1: Direct impact model of industrial structure

optimization on carbon emissions

lnCETOit � α0 + α1MSit + α2 lnTPit + α3 lnPAit+
α4 lnFDIit + α5 lnERit + α6 lnGDPit + μi + γi + εit

(1)

Model 2: General moderating effect model of population

agglomeration

lnCETOit � α0 + α1MSit + α2 lnTPit + α3MSit* lnTPit

+α4 lnPAit + α5 lnFDIit + α6 lnERit + α7 lnGDPit + μi + γi + εit

(2)
In Eqs 1, 2, CETO represents carbon emission, MS

represents industrial optimization level, TP represents

population density, PA represents technological innovation,

FDI represents foreign direct investment, ER represents the

intensity of environmental regulation, GDP represents the

level of regional economic development. i represents the

province, t represents the year. α0 denotes constants, α1 until

α7 denote regression coefficients of each variable. μi and γi are the

non-observed effects of provinces and time, and εit represent the

random disturbance term.

4.1.2 Panel threshold regression model
In order to further clarify the non-linear mechanism of

population aggregation, the panel threshold model was

established by reference to Hansen (1999) method to verify

whether there is complex interval effect in the regulating

effect of population aggregation. Firstly, a single threshold

effect model (Model 3) was established:

Model 3: Xxx.

lnCETOit � β1MSitI τ it ≤ γ( ) + β2MSitI τit > γ( ) + ln γxXit + μi

+ εit

(3)
Secondly, a double threshold effect model (Model 4) was

established:

Model 4: Xxx.

lnCETOit � β1MSitI τ it ≤ γ( ) + β2MSitI γ1 < τ it ≤ γ2( )
+β2MSitI τ it > γ2( ) + ln γxXit + μi + εit (4)

I(·) is an indicative function, The inequality in parentheses is

one if it is true, and 0 if it is not. A represents the industrial

specialization. τit is the threshold variable, namely, the

population aggregation degree index. γ1 and γ2 are variable

threshold values, μi is the individual fixed effect, εit is the

random interference term, Xit represents the remaining

variables in model 1 above and will not be repeated.

4.1.3 Spatial effect model
Industrial structure optimization, population agglomeration

and carbon emission are likely to show certain spatial aggregation

characteristics. Therefore, in order to further discuss the spatial

spillover effect of industrial structure optimization and

population agglomeration on carbon emissions, the spatial

interaction term with the spatial weight matrix is introduced
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into Model 1, which is further expanded into a general spatial

econometric model (Anselin and Florax 1995; Shao et al., 2016).

Spatial econometric models generally include spatial auto

regressive model (SAR), spatial error model (SEM) and spatial

Dubin model (SDM) (Ma and Zhang, 2014). Due to uncertainty

in model selection, general spatial econometric model is adopted

for verification (see Model 5):

Model 5: Xxx.

lnCETOit � τ lnCETOi,t−1 + ρϖ lnCETOt + α1Xit + d′
tXtδ + μi + γi + εitεit

� λωεt + υit

(5)

In Eq. 5,ϖ is the space weight matrix, lnCETOi,t−1 is the first-
order lag of the explained variable, d′tXtδ represents the spatial

lag term of the explanatory variable. ω is the row of the

corresponding spatial weight matrix, γt is the time effect, εit is

the random perturbation terms.

4.2 Data selection and processing

4.2.1 Data sources
Carbon Emission (ceto). The carbon emission in this paper

refers to the carbon emission per capita, because the carbon

emission is the carbon emission caused by various energy

consumption, but the official institution has not given this

series of data. Therefore, in accordance with IPCC emission

guidelines (IPCC, 2006) and various energy data statistics of

various provinces, this paper uses the following formula to

calculate carbon emissions:

ECi � ∑
8

j�1
aj*bji � 1, 2, . . . . . . 30j � 1, 2, . . . . . . 8 (6)

AECi � ECi

POPi
i � 1, 2, . . . . . . 30 (7)

Where, i represents the province, j represents the selected energy

type. A total of 30 provincial-level regions were selected

(excluding Tibet, Hong Kong, Macao and Taiwan). Eight

major energy sources were selected, namely raw coal, coke,

gasoline, kerosene, diesel, fuel oil and natural gas. ECi

represents the province i’s carbon emissions in 10,000 tons.

AECi represents carbon emissions per capita. POPi represents

the total population. aj represents carbon emission coefficient of

energy sources j. bj represents annual consumption of energy

sources j, calculated as the standard coal consumption, the unit

of ten thousand tons. The carbon emission coefficient of main

consumption energy is derived from the default value of IPCC

carbon emission calculation guide. The conversion standard coal

coefficient and carbon emission coefficient of each energy are

shown in Table 1 respectively.

Industrial Structure Optimization (ms). Petti-clark

theorem points out that with the continuous development

of economy, the industrial center will gradually transfer from

tangible property production to intangible service production,

and the proportion of non-agricultural industry is higher and

higher, while the proportion of agriculture is continuously

lower, which also reflects the upgrading of industrial structure

(Clark, 1940). Therefore, many scholars use the proportion of

output value of the secondary and tertiary industries in the

total output value to measure the upgrading of industrial

structure (Wu and Liu, 2013). At the different stages of

national development, suitable leading industries are

needed to promote economic development. In the middle

and late stage of industrialization, the leading industries are

capital intensive heavy industry and technology intensive

industry respectively. In the late stage of industrialization,

the public’s demand for consumer services and social services

rose sharply, and the leading industry began to transform into

the service industry based on information economy and

knowledge economy, which greatly increased the

development volume of the “tertiary industry”. Therefore,

this paper follows the method of previous scholars and uses

the ratio of output value of tertiary industry and secondary

industry to measure the optimization level of industrial

structure.

Population Agglomeration (tp). In this paper, population

density is used as a proxy index of population agglomeration,

which is equal to the ratio of the total population of the current

year to the area of the administrative region (Yang and Ren,

2018). Generally speaking, the greater the regional population

density, the stronger the population agglomeration.

Spatial weight matrix (ϖ). The construction of appropriate

spatial weight matrix is the premise of accurately measuring the

spatial correlation of carbon emissions. This paper chooses the

geographical distance weight matrix to study. Elements in the

matrix represent the inverse of the distance between the region i

and j.

Control variables. Technological innovation, environmental

regulation, regional economic growth and foreign direct

investment have important effects on regional carbon

emissions. On the basis of determining the core explanatory

variables, environmental regulation (ER) (Xu, 2016),

technological innovation (PA) (Wang and Wei, 2019),

regional economic development (GDP) (Teixeira and Queiros,

2016; Liu et al., 2018) and foreign direct investment (FDI)

(Sarkodie and Strezov, 2019) were further selected as control

variables. The total investment amount of industrial pollution

control, the number of patent applications, per capita GDP and

the total investment of foreign enterprises in each region are

respectively used to express. Among them, pollution control

investment, per capita GDP and foreign enterprise investment

are based on 2002 and converted into constant prices.
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5 Mechanism test and discussion

5.1 Carbon emission level analysis

In order to understand the carbon emission level of each

provincial region in China from 2003 to 2020, a broken line

chart of China’s total carbon emission from 2003 to 2020 was

drawn (see Figure 1). As can be seen from Figure 1, in recent

20 years, the total carbon emissions in China have been on the

rise. However, after 2012, the rising speed and amplitude of

the total carbon emissions decreased to a large extent, and the

rising amplitude of the total carbon emissions tended to be

gentle. This is because before 2011, China was in the stage of

rapid industrial development, the development of the

secondary and tertiary industries will inevitably promote

the increase of energy consumption as the input factor,

while after the 12th Five-Year Plan, China began to enter

the post-industrial era, the demand for coal resources is

constantly decreasing.

The emissions of each region in 2003, 2012 and 2020 were

selected for analysis. According to the carbon emissions of each

region in the 3 years, the emissions were divided into four ranges

from small to large, which were named as low emission region,

moderate emission region, high emission region and ultra-high

emission region (see Figure 2). From 2003 to 2020, the number of

regions with high emission and ultra-high emission also showed

an increasing trend. The number of high-emission areas

increased from zero in 2003 to six in 2012 and eight in 2020,

while the number of ultra-high-emission areas increased from

zero in 2003 to two in 2012 and three in 2020. The regions with

the highest emissions in 2012 were Shandong and Hebei.

Shandong is a major manufacturing center along China’s east

coast, and its energy, industrial and agricultural sectors are also

strong. Hebei, in northern China that surrounds Beijing, is the

country’s largest steel-producing province. In 2020, the regions

with ultra-high emissions were Inner Mongolia, Shandong and

Shanxi. Among them, Inner Mongolia and Shanxi are large

provinces with rich coal resources and high total carbon

emission. This is partly evidence of the “resource curse” effect

(Wu, et al., 2018).

In order to fully understand the change trend of carbon

emissions in 30 provincial-level regions in China during the

3 years, the column chart of carbon emissions in

30 provincial-level regions in 3 years was drawn (see

Figure 3). Specifically, from 2012 to 2020, carbon emissions

in most provincial-level regions showed a continuous rise

TABLE 1 Standard coal coefficient and carbon emission coefficient of energy conversion.

Energy category Raw
coal

Hard
coke

Crude
oil

Gasoline Kerosene Diesel Fuel
oil

Natural
gas

Convert standard coal coefficient (Per million tons/
million tons)

0.7143 0.9714 1.4286 1.4714 1.4714 1.4571 1.4286 1.3300

Carbon emission factor (Per million tons/million
tons)

0.7559 0.8555 0.5857 0.5538 0.5714 0.5921 0.6185 0.4483

FIGURE 1
Total carbon emissions in China from 2003 to 2020.
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trend, while the rise trend tended to be flat in the past decade.

In addition, the total carbon emissions of a considerable

number of provincial-level regions, such as Beijing, Tianjin,

Jilin, Henan and Chongqing, have shown considerable

reductions. Although the number of high emission and

ultra-high emission areas has increased in China, as far as

the structure of carbon emission is concerned, there are

different directions and different degrees of carbon

emission change trends in various regions, and the

“Matthew effect” of carbon emission between regions is

also vaguely presented. This is because each region

becomes more dependent on its own comparative

advantage, and the comparative advantage of factor

endowment further strengthens the changes of regional

industrial structure and energy consumption.

5.2 Direct impact test

The least squares (OLS) estimation method is used to

estimate the relationship between them. The mixed estimation

model assumes that all individuals have exactly the same

regression equation, so that all the data can be put together

and OLS regression can be performed just like cross-sectional

data, so it is called mixed regression. Before regression,

descriptive statistical analysis was carried out on variables. In

this paper, indicators of 30 provincial-level regions in China from

2003 to 2020 were used, and the total number of observation

samples was 540 (see Table 2). The specific results of the mixed

estimation are shown in Table 3.

According to Table 3, without considering individual effects,

industrial structure optimization has a significant negative effect

FIGURE 2
(A) Carbon emissions in 2003, (B) Carbon emissions in 2012, (C) Carbon emissions in 2020.
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on carbon emissions, with a significance level of 1%.Population

agglomeration has a significant positive effect on carbon

emissions at a significant level of 10%.It can be seen that the

industrial structure optimization can reduce carbon emissions on

the whole, and regional carbon emissions also increase with the

increase of population agglomeration level.

Since the basic assumption of mixed regression is that there

are no individual effects, it is also known as’ Population-averaged

estimator’ (PA), because the individual effects are averaged out.

This hypothesis must be tested statistically. The null hypothesis

that there is no individual effect is rejected by testing the mixed

estimates. At the same time, the fixed effects model with cluster

robust standard error (between-group estimator) was used to

investigate the relationship between the two. The specific results

are shown in Table 4.

In order to further prove the robustness of the estimation

within the group and clarify the possible long-term time effect

among the three, the data with the dependent variable lagging for

2 years were selected for the robustness test of the model. The test

FIGURE 3
Three-year carbon emissions of 30 provincial-level regions in China.

TABLE 2 Descriptive statistical analysis of each variable.

Variable Obs Mean Std. Dev Min Max

Ceto 540 8.8567 0.8427 5.4553 10.6335

Ms 540 1.0250 0.5606 0.4944 5.1692

Tp 540 5.4323 1.2714 1.9911 8.2569

Fdi 540 1.7955 2.9171 0.0408 22.2882

Er 540 3.4649 0.8833 0.2258 6.0218

Pa 540 1.5459 1.4075 −1.4694 4.6537

Gdp 540 3.7189 2.7255 0.3088 16.4212

TABLE 3 Mixed estimation of industrial structure optimization, population agglomeration and carbon emissions.

ceto Coef Std. Err T p> t [95% Conf.Interval]

Ms −0.6923*** 0.1700 −4.0700 0.0000 −1.0401 −0.3446

Tp 0.2680* 0.1540 1.7400 0.0920 −0.0470 0.5829

Fdi −0.1273** 0.0435 −2.9300 0.0070 −0.2162 −0.0384

Er 0.2369* 0.1079 2.2000 0.0360 0.0163 0.4575

Pa −0.0027 0.1265 −0.0200 0.9830 −0.2615 0.2561

Gdp 0.1462** 0.0659 2.2200 0.0350 0.0114 0.2810

_cons 7.0635*** 0.9871 7.1600 0.0000 5.0446 9.0824

R2 0.4701

***, ** and * indicate significance levels o%, 5%, and 10%, respectively.

Frontiers in Environmental Science frontiersin.org09

Liang et al. 10.3389/fenvs.2022.1078319

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1078319


results are shown in Table 5. Compared with Table 5, the results

of the dependent variable taking the current year’s amount and

the lag of 2 years are very close. Meanwhile, the impact of

industrial structure optimization and population

agglomeration on the dependent variable is similar to that of

the mixed estimation results, which further indicates the

robustness of the results. It can be seen that industrial

structure optimization has a significant inhibitory effect on

carbon emissions at the level of 1%, and population

agglomeration has a significant promoting effect on carbon

emissions at the level of 1%.

5.3 General moderating effect test

It can be seen from the above that industrial structure

optimization and population agglomeration have a significant

direct effect on carbon emissions. In view of the causal

relationship between industrial structure and population

agglomeration, the panel fixed effect model is used to estimate

the moderating effect of population agglomeration on the

relationship between industrial structure optimization and

carbon emissions. Meanwhile, the results of the same period

and the two lag periods were compared. On the one hand, the

TABLE 4 Fixed effect model estimation of carbon emissions from industrial structure optimization and population agglomeration.

ceto Coef Std. Err t p> t [95% conf. Interval]

Ms −0.7005*** 0.0958 −7.3200 0.0000 −0.9047 −0.4964

Tp 0.2893*** 0.0109 26.6400 0.0000 0.2661 0.3124

Fdi −0.1327*** 0.0220 −6.0300 0.0000 −0.1795 −0.0858

Er 0.2627*** 0.0449 5.8600 0.0000 0.1671 0.3583

Pa −0.0266 0.0257 −1.0400 0.3170 −0.0813 0.0281

Gdp 0.1443*** 0.0364 3.9700 0.0010 0.0668 0.2219

_cons 6.9145*** 0.1339 51.6500 0.0000 6.6292 7.1998

R2 0.4516

***,**, and * indicate significance levels o%, 5%, and 10%, respectively.

TABLE 5 Fixed-effects model estimates of the dependent variable with a lag of 2 years.

Robust

f2ceto Coef Std. Err T p>|t| [95% Conf. Interval]

Ms −0.5754*** 0.0940 −6.1200 0.0000 −0.7737 −0.3771

Tp 0.2944*** 0.0104 28.3800 0.0000 0.2725 0.3162

Fdi −0.1241*** 0.0153 −8.1300 0.0000 −0.1564 −0.0919

Er 0.2788*** 0.0394 7.0800 0.0000 0.1957 0.3620

Pa −0.0115 0.0262 −0.4400 0.6670 −0.0668 0.0439

gdp 0.1136*** 0.0252 4.5000 0.0000 0.0604 0.1668

_cons 6.6995*** 0.1379 48.5700 0.0000 6.4085 6.9905

R2 0.4422

***,**, and * indicate significance levels o%, 5%, and 10%, respectively.

TABLE 6 General adjustment effect analysis of population agglomeration
on emission reduction effect of industrial structure optimization.

ceto Coef p>|t| f2ceto Coef p>|t|

Ms −0.3775*** 0.0040 ms1 −0.5415* 0.0630

Tp 1.7658*** 0.0000 tp 1.6759*** 0.0040

Mstp −0.1210*** 0.0000 ms1tp −0.1508*** 0.0070

Pa 0.2244*** 0.0000 pa 0.1383*** 0.0000

Fdi 0.0064 0.4730 fdi 0.0069 0.6520

Er 0.1291*** 0.0000 er 0.1213*** 0.0000

_cons −1.2309 0.2590 _cons −0.4815 0.8680

R2 0.7580 R2 0.6534

***,** and * indicate significance levels of 1%, 5%, and 10%, respectively.
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robustness of the results is proved. On the other hand, the

differences of the long-term and short-term effects of

industrial structure optimization and population

agglomeration on carbon emissions are compared. The

estimated results are shown in Table 6. As can be seen from

Table 6, the model fit degrees were 0.7580 and 0.6534,

respectively, indicating a high degree of fit. The estimated

coefficient of the interaction term of industrial structure

optimization and population agglomeration is −0.1210, which

is significant at the 1% level. This indicates that the effect of

industrial structure optimization on carbon emission will be

moderated by population agglomeration. That is, with the

increase of population agglomeration level, the inhibition

effect of industrial structure optimization on carbon emission

is enhanced. By comparing the results of two lag periods, it is

found that industrial structure optimization, population

agglomeration and their cross terms have the same direction

of action on carbon emissions, and their influence coefficients are

very close, which proves the robustness of the results. However,

in the long run, the carbon emission reduction effect of industrial

structure optimization is stronger, while the carbon emission

effect of population agglomeration is weaker, and the synergistic

effect of the two is also stronger.

5.4 Threshold effect test

To further verify the non-linear action mechanism of

industrial structure optimization and population

agglomeration on carbon emissions, and explore whether

population agglomeration has a threshold effect on carbon

emission reduction caused by the upgrading of industrial

structure. The existence of threshold effect was tested based

on the method of hansen (1999), and repeated sampling was

conducted for 300 times through the “self-help method”. The

results of the independent variable lagging for two periods were

also used as comparative analysis and robustness test. The

sampling results show that both the simultaneous threshold

effect and the lag two periods are tested by single threshold

and double threshold, but not by triple threshold. The test results

and estimates of the double threshold model are shown in

Tables 7, 8.

Figures 4A, B of the likelihood ratio function with a lag of two

periods were drawn. The 95% confidence intervals of the

threshold estimators 2.1137 and 5.9963 are the critical value

estimators under the significance level of all LR statistics less than

1%, which is in the acceptance domain of the null hypothesis that

the threshold estimate is equal to the true value, that is, the

acceptance threshold estimate is equal to the true value.

Combining Figures 4A, B with Tables 7, 8, it can be seen that,

The industrial structure optimization has a threshold effect of

population aggregation on carbon emissions, and there is a

double threshold effect, the threshold values are 2.1137 and

5.9963, respectively, and both of them are significant at the

level of 1%.According to the estimation results in Table 8, in

the first interval, the influence coefficient of industrial structure

optimization on carbon emission is −3.87, which is significant at

the level of 1%.This indicates that when the population

concentration degree is less than 2.1137, the industrial

structure optimization has a significant inhibitory effect on

carbon emissions. In the second interval, the influence

coefficient of industrial structure optimization on carbon

emission reduction is −1.2, which is significant at 1% level.

When the population concentration level is greater than

5.9963, the industrial structure optimization has a significant

negative effect on carbon emissions, and the influence coefficient

is −0.5696. From the above results, it can be seen that the

industrial structure optimization has an interval effect on

regional carbon emissions with the population concentration

level as the threshold. The carbon emission reduction effect of

industrial structure optimization will be weakened with the

increase of population concentration level. Comparing the

estimation results of the same period, it is found that the

direction of the estimation coefficients is the same, and the

estimation coefficients are very close, which proves the

robustness of the interval effect of population

agglomeration on the industrial structure optimization.

However, the interval effect of industrial structure

optimization on carbon emissions is stronger than the

inhibition effect in each interval.

TABLE 7 Double threshold estimates.

f2ceto Ceto

Threshold Coef Coef

Single 2.1137***(0.000) 2.1303***(0.000)

Double 5.9263***(0.000) 5.9487***(0.000)

***, ** and * indicate significance levels of 1%, 5%, and 10%, respectively.

TABLE 8 Results of double threshold estimation.

f2ceto Ceto

_cat#c.ms1 Coef p > t Coef p > t

0.0000 −3.8700*** 0.0000 −3.6314*** 0.0000

1.0000 −1.2000*** 0.0000 −1.0737*** 0.0000

2.0000 −0.5696*** 0.0000 −0.4856*** 0.0000

_cons 9.3437*** 0.0000 9.2134*** 0.0000

R2 0.1997 0.3352

***,** and * indicate significance levels of 1%, 5%, and 10%, respectively.
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5.5 Spatial spillover effect test

Spatial econometric models generally include SAR, SEM

and SDM, each of which has its own applicable situation. In

order to avoid model selection bias, this paper uses the general

spatial panel econometric model to verify the spatial effects

among the three. Before the spatial econometric analysis, the

existence of spatial effect is tested first, that is, the spatial auto

correlation test is conducted on the optimization level of

industrial structure, population agglomeration and carbon

emissions. The Moran ‘i index method was used to

calculate the spatial effect from 2003 to 2020 under the

geographical distance matrix. The results showed that the

Moran ‘i index reached the significance level of 1% in each

year. This indicates that there is a significant spatial auto

correlation between industrial structure optimization,

population agglomeration and carbon emission in

30 provinces from 2003 to 2020, which means that there is

spillover effect in spatial distribution between them (the

results are omitted).

Based on the spatial weight matrix of geographical

distance, the general spatial panel model is used to verify

the spatial spillover effects of industrial optimization and

population agglomeration on carbon emissions. The results

are shown in Table 9. According to Table 9 , the total effect of

industrial structure optimization on carbon emission is

3.4551, and the significance level is 1%.The total impact

coefficient of population agglomeration on carbon

emissions is −0.5317, and the significance level is 1%.In

addition, the direct and indirect effects of industrial

structure optimization and population agglomeration are

also significant in the partial differential interpretation

results of variable changes. The industrial structure

optimization and population agglomeration have significant

indirect effects on carbon emissions, and the industrial

structure optimization in neighboring provinces has a

significant negative spatial spillover effect on carbon

emissions in their own province, and the influence

coefficient of −0.1483 is significant at 10% level. However,

the population agglomeration of neighboring provinces has a

positive spatial spillover effect on the carbon emission of the

province, and the coefficient is estimated to be 2.7024, which is

significant at the level of 1%.According to the above results,

industrial structure optimization can reduce carbon emissions

of neighboring provinces through spatial spillover effect,

while population agglomeration can increase carbon

emissions of neighboring provinces through spatial

spillover effect.

Since the Spatial Dubin Model (SDM) combines the

advantages of the spatial lag model and the spatial error

model, it can investigate the spatial effects of the main

variables and unobservable random shocks at the same

time. Therefore, the SDM model is used to test the

robustness of the relationship between the three. The test

results are shown in Table 10. According to the results in

Table 10, the test results of the SDM model are very close to

the results of the general spatial panel model, indicating the

robustness of the spatial spillover effect of industrial structure

optimization and population agglomeration on carbon

emissions.

FIGURE 4
(A) Likelihood ratio function of estimated first threshold (B) Likelihood ratio function of estimated second threshold.
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6 Discussion

The results of Tables 2–Tables 5 show that industrial

structure optimization has a significant negative effect on

regional carbon emissions. In the long run, it has a stronger

inhibition effect on carbon emissions. This is due to the

optimization and upgrading of industrial structure, which can

weaken the influence of natural resources on the formation of

resource-dependent industrial structure (Wang and Chen, 2020).

The negative external effect of population agglomeration is

obvious, because the consumption of daily energy brought by

population increases greatly, such as transportation energy

consumption and electricity consumption (Liddle and Lung,

2010). Thus, improving energy efficiency and lowering carbon

emissions by providing or encouraging living in high-rise

buildings and using public transport resources is not proven.

TABLE 9 Regression results of general spatial panel model.

Variables Coef. Std. Err. Z p > z [95% conf. Interval]

Main

Tp 0.8919*** 0.1866 4.7800 0.0000 0.5262 1.2576

Ms −0.3891*** 0.0425 −9.1500 0.0000 −0.4725 −0.3057

Wx

Tp 5.4354*** 1.2366 4.4000 0.0000 3.0117 7.8592

Ms −0.5716** 0.2514 −2.2700 0.0230 −1.0643 −0.0790

ρ −0.8369*** 0.2089 −4.0100 0.0000 −1.2464 −0.4275

sigma2_e 0.0183*** 0.0011 16.1000 0.0000 0.0160 0.0205

Direcet

Tp 0.7528*** 0.2006 3.7500 0.0000 0.3596 1.1459

Ms −0.3834*** 0.0391 −9.8000 0.0000 −0.4601 −0.3068

Indirect

Tp 2.7024*** 0.7878 3.4300 0.0010 1.1582 4.2465

Ms −0.1483* 0.1248 −1.1900 0.0635 −0.3930 0.0964

Total

Tp 3.4551*** 0.7533 4.5900 0.0000 1.9786 4.9316

Ms −0.5317*** 0.1415 −3.7600 0.0000 −0.8091 −0.2544

R2 0.2919

***,** and * indicate significance levels of 1%, 5%, and 10%, respectively.

TABLE 10 Regression results of SDM with fixed effects.

<!--Col Count:>Robust

Ceto Coef Std. Err z p>|z| [95% Conf. Interval]

Main

Tp 0.4413** 0.5894 2.7500 0.0454 −0.7139 1.5965

Ms −0.2804*** 0.0503 −5.5800 0.0000 −0.3789 −0.1819

Wx

Tp 2.7668** 1.3287 2.0800 0.0370 0.1626 5.3710

ρ 0.5389*** 0.0703 7.6700 0.0000 0.4011 0.6766

Variance

sigma2_e 0.0239*** 0.0055 4.3200 0.0000 0.0131 0.0348

R2 0.7898

***,** and * indicate significance levels of 1%, 5%, and 10%, respectively.
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The results in Tables 7–Tables 9 show that population

agglomeration has a significant positive moderating effect and

a double threshold effect on carbon emissions from industrial

structure optimization. From the perspective of population

agglomeration promoting the industrial structure

optimization, the cross-terms of the two have a significant

inhibiting effect on carbon emission at the level of 1%.This

means that when more people are matched into a more

optimized industrial structure, carbon emissions can be

effectively reduced (Wu et al., 2021). However, in terms of

interval effect, there are significant interval differences in the

effect of industrial structure optimization on carbon emissions,

which are not reflected in the direction of the effect, but in the

intensity of the effect. In the current period, when the population

concentration level is lower than 2.1303, the industrial structure

optimization has the strongest carbon emission reduction effect.

However, when the concentration level is greater than 5.9487, the

intensity of carbon emission reduction is the weakest. In the long

run, when the population concentration level is less than 2.1137,

the carbon emission reduction intensity is maximum, and when

the population concentration level is greater than 5.9263, the

carbon emission reduction intensity is minimum. This indicates

that the carbon emission reduction effect of industrial structure

optimization is limited by the population agglomeration level,

and the lower the agglomeration level, the stronger the emission

reduction effect. In the long run, the emission reduction effect of

industrial structure optimization is better, but there is a more

strict limit on the population concentration level. According to

the above findings, it is necessary to find a reasonable match

between regional population size and industrial structure (Khan

et al., 2020).

Tables 9, 10 show that industrial structure optimization,

population agglomeration and carbon emissions have

significant spatial spillover effects. The spatial spillover effect

of industrial structure optimization is significantly negative,

while the spatial spillover effect of population agglomeration

is significantly positive. Geographical proximity facilitates

internal information exchange and the spread of green

technologies through frequent interaction of professional and

technical personnel, as well as the integration of development

concepts and industrial synergies (Zeng et al., 2021).

7 Conclusion and policy implications

Nature is the basic condition for human survival and

development. o actively yet prudently promote carbon peaking

and carbon neutralization, and to carry out carbon peaking in

planned steps, is a necessary measure for China to actively

participate in global governance on climate change. Industrial

structure adjustment is an effective path for our country to

reduce carbon emissions and strive to achieve the peak target

as soon as possible. However, the optimization of regional

industrial structure is often accompanied by the accumulation

of resources, especially the large-scale agglomeration of

population. It has important practical significance and

strategic value to explore how to reduce carbon emission

under the coexistence of industrial structure optimization and

regular population crowding.

This paper constructed a panel model to verify the various

mechanisms of industrial structure optimization and population

agglomeration on carbon emissions, based on the panel data of

provincial regions from 2003 to 2020. 1) The fixed effects model

was used to verify the direct effects and general moderating

effects among the three. 2) Panel threshold model was used to

further explore the heterogeneous effect of population

agglomeration on emission reduction interval of industrial

structure optimization. 3) The spatial weight matrix was

introduced to construct a spatial econometric model to

analyze the spatial spillover effects of industrial structure

optimization, population agglomeration and carbon emissions.

The specific conclusions are as follows:

First, considering the environmental regulation, the scale of

opening to the outside world, regional economic development

and technological progress, the improvement of industrial

structure optimization level can effectively reduce regional

carbon emissions, this conclusion is consistent with the

mainstream conclusion of the academic circle (Zhao et al., 2022).

Second, population agglomeration plays an important role in

the relationship between industrial structure optimization and

carbon emission (Liu J. et al., 2021). First, population

agglomeration can reduce regional carbon emissions by

adjusting industrial structure optimization. Secondly, in terms

of regional heterogeneity test, population agglomeration is taken

as the threshold variable to verify that there is a significant double

threshold effect in the carbon emission reduction of industrial

structure optimization. With the increase of population

agglomeration level, the carbon emission reduction effect of

industrial structure optimization is gradually weakened.

Thirdly, industrial structure optimization, population

agglomeration and carbon emissions have significant spatial

spillover effects. Industrial structure optimization is conducive

to carbon emission reduction in neighboring areas, while

excessive population agglomeration contributes positively to

carbon emissions in neighboring areas.

According to the above conclusions, some suggestions are

put forward to promote the low-carbon development of

30 provincial-level regions in China. First, optimizing

industrial structure is an effective way to reduce regional

carbon emissions and realize the target of carbon peak soon

in China. Therefore, we should continue to vigorously develop

the tertiary industry and increase the proportion of tertiary

industry output. Policymakers should give full play to their

role in industrial development, and optimize and upgrade

local industrial structure by improving regional infrastructure,

building a good business environment and attracting a number of
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high-quality large enterprises to settle in. At the same time,

carbon reduction strategies can be optimized by developing

energy-saving carbon pricing (Jiang et al., 2022) and

promoting natural gas reform (Jiang et al., 2021). Second,

population sprawl and unsustainable lifestyle are important

reasons for the increase of regional carbon emissions.

Therefore, policymakers should control the overuse of natural

resources by the population and promote sustainable lifestyles,

such as water and energy conservation and the use of renewable

energy. We should give full play to the positive externalities of

population agglomeration, strive to achieve economies of scale in

the utilization of energy and resources, and improve the quality

level of population and environmental awareness. Thirdly,

formulate reasonable population mobility policies, especially

to raise the population entry threshold in regions with a high

level of industrial structure optimization, andmaximize the green

and low-carbon development effect of the regional industrial

system. Fourthly, due to the obvious spatial effects of industrial

structure optimization and population agglomeration on carbon

emissions, good information sharing and economic sharing

mechanisms should be established among regions. To avoid

“beggar-thy-neighbor” phenomenon, we should build a

platform for inter-regional interaction and cooperation of

industrial factors and promote the rational inter-regional flow

of innovative resources and technological factors. At the same

time, we will give full play to the regional linkage mechanism and

formulate and improve policies for coordinated socio-economic

development to rationalize the spatial distribution of population.

8 Prospects

The mechanism of industrial structure optimization and

population agglomeration on carbon emissions is based on the

provincial data from 2003 to 2020. So, the action mechanism of

urban industrial structure and population agglomeration on

urban carbon emission is averaged out. The actual situation of

industrial structure optimization, population agglomeration and

carbon emissions may vary greatly among cities within

provinces. Therefore, in the future, the industrial structure

optimization, population agglomeration and carbon emissions

of prefecture-level cities in China will be explored, and the

relationship among them will be verified.
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