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Cities in tropical regions are experiencing high heat risks by overlaying the urban

heat island (UHI) effect. Urban green space (UGS) can provide local cooling

effect and reduce UHI. However, there still lack a comprehensive exploration of

the characteristics of UHI and cooling effect of UGS due to high cloud coverage

and limited number of available remote sensing observations. In this study, the

enhanced spatial and temporal adaptive reflectance data fusion method was

employed to develop an enhanced land surface temperature data in winter

seasons in three tropical megacities, Dhaka, Kolkata, and Bangkok. The

spatiotemporal variations of surface urban heat island (SUHI) were explored

from 2000 to 2020 with a 5-years interval. The optimal size of UGS associated

with its cooling effects was assessed by using the threshold value of efficiency

(TVoE). The relationship between the intensity and range of urban cooling island

(UCI) and four landscape metrics of green space patches, total area (P_Area),

shape index (P_SI), normalized difference vegetation index (P_NDVI), and land

surface temperature (P_LST), were analyzed. The results show that the average

SUHI intensity increased by 0.98°C, 1.42°C, and 0.73°C in Dhaka, Kolkata, and

Bangkok, respectively, from 2000 to 2020. The maximum intensity of UCI

ranges from 4.83°C in Bangkok to 8.07°C in Kolkata, and the maximum range of

UCI varies from 300m in Bangkok to 420m in Kolkata. The optimal size of

green space is 0.37 ha, 0.77 ha, and 0.42 ha in Dhaka, Kolkata, and Bangkok,

respectively. The P_NDVI and P_Area had significant positive effects on UCI

intensity and range, while the background temperature had significant negative

effects. With higher background temperature, the optimal patch size of UGS is

larger. This study provides useful information for developing effective heat

mitigation and adaptation strategies to enhance climate resilience in tropical

cities.
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Introduction

The world has been experiencing an inevitable trend of

urbanization (Girardet, 2020). According to the World

Urbanization Prospects report (United Nations, 2019), the

urban population of the world will continue to rise and 90%

of the increase concentrates in Asia and Africa. As cities continue

to expand, roads and buildings replace some natural surfaces

such as trees, water bodies and soil. The transformation of land

use changes biophysical properties of the land surface, which

could generate the local warming effect or urban heat island

(UHI) effect (Oke, 1973; Arnfield, 2003). The UHI effects and

global scale climate change are projected to cause a large number

of extreme heat events, thereby contributing to heat-related

mortality (Stone et al., 2014). It was estimated that with a

2.0°C increase in temperature, the annual heat-related

mortality increased from 32.1 per million people in 1986 to

81.3 per million people in 2005 in China (Wang et al., 2019).

Megacities in tropical regions of Asia have dense population

density, and were predicted to experience more frequent and

intense heatwaves for the next decades (Coleman, 2022). He 11th

goal of United Nation’s sustainable development goals (SDGs)

advocates making cities inclusive, safe, resilient, and sustainable

(United Nations, 2015). Exploring the UHI effect and the

effectiveness of mitigation measures are crucial for reducing

heat risk and enhancing climate resilience in these cities.

Since spaceborne remote sensing can provide timely and

objective observations over vast areas, spatiotemporal changes in

surface urban heat island (SUHI) at local, regional and global

scales were examined by using remotely-sensed land surface

temperature (LST) data (Liu et al., 2020b; Weng 2009; Lu

et al., 2019). Due to high cloud coverage, the amount of

cloud-free and high quality remote sensing data in tropical

regions is limited. In order to acquire remote sensing data

with both high spatial and temporal resolution,

spatiotemporal data fusion methods have been developed

(Gao et al., 2006; Zhu et al., 2010). Gao et al. (2006)

developed a Spatial and Temporal Adaptive Reflectance

Fusion Model (STARFM) to product daily surface reflectance

data at a spatial resolution of 30 m. To address landscape

heterogeneity, Zhu et al. (2010) further developed the

enhanced spatial and temporal adaptive reflectance fusion

model data fusion method (ESTARFM) to improve the

accuracy of predicted images. The ESTARFM model achieved

a satisfied accuracy in generating high spatio-temporal land

surface temperature data in previous studies (Liu et al., 2020b).

Urban green space (UGS) including parks, street vegetation,

green roofs, and woodlands is a commonly adopted measure to

mitigate the UHI effect (Aram et al., 2019). UGS provides cooling

effects to their surroundings through several processes such as

shading and evapotranspiration. However, the cooling effect of

UGS is spatially limited and generally decreases with distance

from UGS. Previous studies reported that beyond a certain

distance, the cooling effect of UGS patches disappears (Feyisa

et al., 2014). To quantify the cooling effect of UGS, Yu et al.

(2017) defined the intensity, range and efficiency of urban

cooling island (UCI), as well as the threshold value of

efficiency (TVoE). The TVoE has been used to acquire the

most suitable patch size of urban green space in different

study areas (Fan et al., 2019; Yang et al., 2020; Tan et al.,

2021). Numerous evidences from field observations and

remote sensing data proved that the cooling intensity and

range of parks have a positive relationship with their areas

(Lin et al., 2015; Algretawee 2022; Vaz Monteiro, 2016).

Besides the size of green space, factors such as the

composition, configuration, background temperature,

neighboring vegetation cover of green space patches also

impact their cooling effects (Akbari and Kolokotsa, 2016;

Gillner et al., 2015; Yu et al., 2018b; Zhou et al., 2022).

Although the megacities in tropical Asia are vulnerable to

extreme heat events, the unavailability of satellite data with both

high spatial and temporal resolution hindered the in-depth

investigation of urban heat islands and cooling effects in these

cities (Giridharan, 2018). Uddin et al. (2022) used the day and

night time temperature data provided by MODIS to quantify

UHI in Dhaka. They found that the UHI effect was significantly

related to population change, urban expansion, and

meteorological factors such as cloud cover. Parvin and Abudu

(2017) used Landsat data to assess UHI in Dhaka from 2002 to

2014 and reported that the temperature of all types of land cover

was rising. Das et al. (2020) used MODIS data to study UHI

seasonal changes in Kolkata and the relationship between UHI

and vegetation. Halder et al. (2021) investigated the relationship

between LST and vegetation and built-up areas using Landsat

data and predicted the urban expansion in Kolkata in the next

30 years. Khamchiangta and Dhakal (2019) used Landsat data to

study the temperature difference of different land cover types and

the relationship between heat island and urban physical structure

and non-physical factors in Bangkok. Although the heat island

phenomenon has been investigated in previous studies, the

analysis based on MODIS data failed to provide sufficient

spatial details, while the observation of Landsat was relatively

sparse in time. In addition, the regulation capacity of urban green

space on thermal environment has barely been explored in these

cities.

The megacities located in the tropical and subtropical regions

have similar climate background conditions. By adopting

standardized analysis methodologies, a comparative analysis of

these cities could provide comprehensive information for the

design and planning of green space in cities in tropical climate

zones. Taking three megacities, Dhaka, Kolkata, and Bangkok, as

the study area, the objectives of our study include 1) to generate

land surface temperature data with high spatial and temporal

resolution in winter season from 2000 to 2020 using data fusion

model, 2) to quantify spatiotemporal changes in SUHI from

2000 to 2020 and explore their relationship with land cover using
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the enhanced LST data, and 3) to calculate the threshold value of

efficiency (TVoE) of green space and analyze the relationship

between their cooling effect and landscape metrics.

Study area and data sets

Study area

The study areas consist of three megacities in Asia: Dhaka,

Kolkata, and Bangkok (Figure 1). The three megacities are

located in tropical or subtropical regions, and the seasonality

of temperature and precipitation in these cities are similar. They

are all categorized as tropical savannah (Aw) climate zone in the

Köppen-Geiger classification scheme (Beck et al., 2018). Dhaka is

the largest city in Bangladesh and one of the major cities in South

Asia with a population of over 15 million. Kolkata is the capital of

West Bengal and the third largest city in India after Mumbai and

New Delhi. In addition, it is the largest trading and commercial

center in eastern India which is located 150 km north of the Bay

of Bengal above the plains of the Ganges Delta (Nath et al., 2015).

As the capital and largest city of Thailand, Bangkok is the second

largest city in Southeast Asia. It is the center of politics, economy,

trade, transportation, culture, science and technology, education,

religion and all aspects of Thailand. Since the study focused on

SUHI analysis, urban functional areas of each city were

delineated as main study areas.

Datasets and preprocessing

Landsat data of the study area covering five time periods:

2000, 2005, 2010, 2015, and 2020 were acquired in this study. It

was obtained from the United States Geological Survey (USGS)

FIGURE 1
The geographic location of the study area. The red polygons represent the urban functional boundary. The underlying satellite images are from
Landsat-8 OLI sensor.
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FIGURE 2
The data processing workflow.

TABLE 1 Landsat data used for land cover classification.

Year City Sensor Landsat scene ID Acquisition time

2000 Dhaka Landsat 5 TM LT05_L1TP_137044_20000220_20161216_01_T1 02/20/2000

Kolkata Landsat 5 TM LT05_L1TP_138044_20000126_20161215_01_T1 01/26/2000

Bangkok Landsat 5 TM LT05_L1TP_129051_20001110_20161213_01_T1 11/10/2000

2005 Dhaka Landsat 5 TM LT05_L1TP_137044_20040302_20161202_01_T1 03/02/2004

Kolkata Landsat 5 TM LT05_L1TP_138044_20061212_20161117_01_T1 12/12/2006

Bangkok Landsat 5 TM LT05_L1TP_129050_20060127_20161124_01_T1 01/27/2006

2010 Dhaka Landsat 5 TM LT05_L1TP_137044_20090228_20161027_01_T1 02/28/2009

Kolkata Landsat 5 TM LT05_L1TP_138044_20100121_20161017_01_T1 01/21/2010

Bangkok Landsat 5 TM LT05_L1TP_129051_20081202_20170111_01_T1 12/02/2008

2015 Dhaka Landsat 8 OLI/TIRS LC08_L1TP_137044_20150128_20170413_01_T1 01/28/2015

Kolkata Landsat 8 OLI/TIRS LC08_L1TP_138044_20170108_20170311_01_T1 01/08/2017

Bangkok Landsat 8 OLI/TIRS LC08_L1TP_129051_20150104_20170415_01_T1 01/04/2015

2020 Dhaka Landsat 8 OLI/TIRS LO08_L1TP_137044_20201109_20201120_01_T1 11/09/2020

Kolkata Landsat 8 OLI/TIRS LC08_L1TP_138044_20210103_20210309_01_T1 01/03/2021

Bangkok Landsat 8 OLI/TIRS LC08_L1TP_129051_20210221_20210304_01_T1 02/21/2021
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(https://earthexplorer.usgs.gov/). One Landsat image with good

data quality in each time period was selected for land cover

classification and two Landsat images were both used for data

fusion. The details about Landsat images for land cover

classification are listed in Table 1 and the details for data used

for fusion are listed in Table 2. Radiometric calibration and

atmospheric correction were performed for the preprocessing of

the Landsat images. The red, near-infrared, and thermal infrared

bands were extracted for data fusion.

MODIS data is provided by the United States National

Aeronautics and Space Administration (NASA) (https://

ladsweb.modaps.eosdis.nasa.gov/). The MODIS data we used

includes surface reflectance data from MOD09GA and

MOD09A1 products and daytime land surface temperature

data from MOD11A1 and MOD11A2 8-day composite

products. Due to the frequent cloud coverage in the study

areas, cloud-free remote sensing images in winter months

(December to February) were selected to predict the Landsat-

like land surface temperature data (Table 2).

The original MODIS data is stored in HDF format. The

bands selected from MOD09GA/MOD09A1 are B01 and B02,

while Emis_31 and LST_Day_1 km bands were selected from

MOD11A1/MOD11A2. Batch data processing codes were used

to convert the original MODIS data to geotiff format using

MODIS Reprojection Tool. The extracted data bands were

converted to surface reflectance by applying the scale factor

and offset using the following equation:

Lλ � Scale Factor pDN +Offset (1)

where Lλ is the surface reflectance of band λ; Scale Factor is the
reflection coefficient of band; DN is the integer value of band λ,
and Offset is the Offset of band.

The blackbody radiance can be calculated according to Eq. 2:

Bλ(TS) � K1

eK2/Ts − 1
(2)

where K1 and K2 are Landsat sensor parameters, and Ts is the

true reflectance of band LST_Day_1 km.

The radiant brightness in thermal infrared band received by

MODIS satellite sensor is calculated using the radiative transfer

equation:

Lλ � ελ pBλ(TS) p τλ + L↑
atm λ + (1 − ελ) pL↓

atm λ
p τλ (3)

where Lλ is the brightness of thermal infrared radiation with

wavelength λ; Bλ(TS) is the blackbody radiation brightness when

the surface temperature is TS; τλ is the atmospheric

transmittance along the path direction from the target to the

sensor; ελ is the surface emissivity with wavelength λ; L↑atm λ and

TABLE 2 MODIS and Landsat data used for the ESTARFM data fusion.

Year City Landsat and daily MODIS (references
data)

Daytime MODIS 8-day composites at predicted
time (tp)

First pair (tm) Second pair (tn) December January February

2000 Dhaka 02/20/2000 — — — —

Kolkata 01/26/2000 — — — —

Bangkok 02/28/2000 12/05/2003 12/18/2000 01/09/2001 02/10/2001

2005 Dhaka 12/13/2003 03/02/2004 12/13/2003 02/10/2004 02/26/2004

Kolkata 12/03/2006 04/02/2007 12/11/2006 01/17/2007 02/26/2007

Bangkok 12/07/2004 12/29/2006 12/11/2005 01/09/2006 02/02/2006

2010 Dhaka 04/14/2008 10/26/2009 11/24/2008 01/17/2009 02/18/2009

Kolkata 05/07/2009 04/12/2010 12/19/2009 01/17/2010 02/26/2010

Bangkok 02/15/2007 04/25/2009 12/02/2008 01/17/2009 02/10/2009

2015 Dhaka 03/30/2014 11/12/2015 12/03/2014 01/09/2015 02/02/2015

Kolkata 04/15/2016 04/11/2017 11/16/2016 02/02/2017 03/14/2017

Bangkok 01/17/2014 02/05/2015 12/11/2014 01/01/2015 —

2020 Dhaka 02/24/2019 12/14/2021 11/24/2020 01/24/2021 02/02/2021

Kolkata 04/07/2020 04/26/2021 11/24/2020 01/01/2021 02/26/2021

Bangkok 12/17/2019 02/21/2021 12/02/2020 01/09/2021 —

-Due to image quality, we did not fuse data in part of time.
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L↓atm λ are atmospheric upward radiation and downward

radiation. Atmospheric transmittance, atmospheric upward

radiation, and atmospheric downward radiation can be

calculated using the atmospheric correction parameter

calculator provided by NASA. The processed MODIS data

were resampled to 30 m with the same resolution as Landsat

data. The preprocessing process is automatically performed using

IDL scripts.

Methodology

The data processing workflow mainly includes four steps

(Figure 2): land cover classification, land surface temperature

(LST) retrieval, surface urban heat island (SUHI) analysis and

cooling effects analysis for urban green space (UGS).

Land cover classification

Land cover types including impervious surface, bare land,

green space and water were classified using Support Vector

Machine (SVM) classifier in the study areas for 2000, 2005,

2010, 2015, and 2020. Training and validation samples were

randomly collected on Google Earth. The definition criteria

issued by the United Nations Human Settlements Programme

was used to determine the urban functional boundary (Lu et al.,

2022). The urban functional boundary could reflect the

urbanization situation in the study area more accurately than

the administrative boundary. According to the land cover

classification, the pixels with above 50% built-up density was

defined as the urban pixel, 25%–50% was defined as the suburban

pixel, and less than 25% was defined as the rural pixel. The area

within 100 m around the urban or suburban pixels was defined as

the urban open space, and the urban, suburban and urban open

space pixels were merged. Then, the area of each polygon was

expanded by 25% to establish buffer zones. The buffer zone with

the largest area is the urban functional area, and its boundary is

the functional boundary of the city. The urban functional

boundaries of the three study areas were created using the

land cover classification results in 2020 (Figure 1).

Land surface temperature retrieval

We used ESTARFM to fuse Landsat and MODIS data in this

study (Zhu et al., 2010). Landsat and MODIS images at the time

of Tm and Tn were input. The model searched for pixels similar to

the center pixel according the window size. The conversion

coefficients were determined according to the weights of

similar pixels. The predicted images were finally obtained by

combing two predicted results.

Among the commonly used land surface retrieval

algorithms, the algorithm based on radiative transfer

equation has a solid physical basis and high inversion

accuracy (Lu et al., 2020; Duan et al., 2021). Radiative

transfer equation-based method and the fused Landsat-like

data were used to retrieve the LST in our study. The red

band and near-infrared band of the fused image were used

to calculate the normalized difference vegetation index (NDVI)

(Lu et al., 2015; Yuan et al., 2018):

NDVI � (NIR − RED)
(NIR + RED) (4)

where NIR is the near-infrared band and RED is the red band of

the image.

Then, the vegetation coverage Pv was calculated using NDVI:

Pv � NDVI −NDVISoil
NDVIVeg − NDVISoil

(5)

where NDVISoil is the NDVI value of the bare soil or the area

without vegetation cover, and NDVIVeg is the NDVI value of the

pixel completely covered by vegetation. We take the empirical

value: NDVIVeg = 0.70 and NDVISoil = 0.05. When the NDVI of a

pixel is greater than 0.70, the Pv value is 1. When NDVI is less

than 0.05, Pv is set as 0.

The land surface emissivity was then calculated as:

ε � m pPv + n (6)
by using typical constant values for the emissivity of vegetation

and soil, m and n were set as 0.004 and 0.986, respectively

(Sobrino et al., 2008).

The blackbody radiance was calculated using the radiative

transfer equation:

Bλ(TS) � Lλ − L↑
atmλ

− (1 − ελ) pL↓
atm λ

p τλ
ελ p τλ

(7)

The land surface temperature was calculated as:

Ts � K2

ln(K1/Bλ(Ts) + 1) (8)

The temperature, Ts, was converted to degrees Celsius. The

LST retrieval was performed automatically using IDL scripts.

Surface urban heat island analysis

The surface urban heat island intensity (SUHII) can be

defined as the difference between the surface temperature of

built-up area and green space (Estoque and Murayama, 2017;

Bechtel et al., 2019). At each built-up area pixel, the SUHII was

calculated using the following equation:

SUHII � Turban − Trural (9)

Frontiers in Environmental Science frontiersin.org06

Li et al. 10.3389/fenvs.2022.1073914

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1073914


where Turban is LST at pixel i and Trural is the land surface average

temperature of green space pixels. The average temperature of

dense vegetation with NDVI greater than 0.55 in green patch

within urban functional boundary was taken as the average

temperature of green space.

The SUHII of the study area was further divided into five

levels as: very low level (SUHII <μ-std), low level (μ-std≤ SUHII

<μ-0.5*std), moderate level (μ-0.5*std≤ SUHII <μ+0.5*std), high
level (μ+0.5*std≤ SUHII <μ+std), and very high level

(SUHII ≥μ+std). The average of the annual SUHII in the

urban functional area (excluding water area) was calculated as:

SUHIIcj � ∑n
i�1SUHIIcij

∑i
(10)

where SUHIIcj represents the average SUHII of city C in the jth

year (j = 2000, 2005, 2010, 2015, and 2020), i is the pixel i, and

SUHIIcij represents the value of SUHII of city c at pixel i in the

jth year.

Quantifying the urban cooling effect

UGS patches were manually selected using Google Earth for

each study area. Due to the complex composition of green space,

only green space patches with dense trees were selected in order

to control the influencing variables and dense trees are

recognised as having strong cooling effects. The selection of

green space patches follows several rules: select green patches

that are primarily covered by trees, green patches that have no

internal water spots and are more than 300 m away from other

green spaces or water bodies to avoid interaction between

samples, and green patches smaller than 900 m2 (30 m*30 m)

were removed. Based on these rules, 73, 90, and 107 green space

patches were delineated in Dhaka, Kolkata and Bangkok,

respectively.

The intensity and range of urban cooling island (UCI) were

used to quantify the cooling effect of green space patches in our

study. The intensity of UCI was calculated as the temperature

difference between the temperature of the green patch and the

peak temperature at the first turning point when the temperature

decreased (Yu et al., 2018b). The cooling range is the distance

from the edge of the patch to the first turning point on the

temperature curve (Yu et al., 2017). In order to study UGS

cooling effect, we used Arcpy scripts to create 18 buffers for

each green patch. Since the image resolution is 30 m, the buffer

distance is set to 30 m, and then the average LST of each buffer

was calculated. According to previous studies (Fan et al., 2019),

540 m (18*30 m) could cover far more of the cooling range that a

green space patch can produce. Then, the UCI intensity and

range of each green space patch were calculated. The patches

which LST dropped at the beginning were treated as abnormal

patches and removed in our analysis.

Yu et al. (2017) defined the threshold value of efficiency

(TVoE) to find the optimal patch size of urban green space in

different study areas. UCI intensity increases rapidly in the first

half of the period with the increase of patch area, while the

change of UCI intensity is no longer obvious after exceeding a

certain value (Yu et al., 2018a; Yu et al., 2018b; Fan et al., 2019).

The log function is used to fit the change in UCI intensity

according to Eq. 11:

y � a p lnx + b (11)
where a is the coefficient of the log function; b is the constant of

the log function. The critical point where the slope of the log

function is equal to one is defined as TVoE. The UCI intensity

increases significantly with the increase in patch size before the

TVoE, and increase insignificantly after exceeding the TVoE. The

logarithmic regression was used to extract the TVoE or optimal

green space patch size in each city.

Statistical analysis

Following previous studies (Sun and Chen, 2017; Fan et al.,

2019; Yu et al., 2020; Shah et al., 2021; Tan et al., 2021), four

dominant factors, namely normalized difference vegetation index

(P_NDVI), land surface temperature (P_LST), shape index

(P_SI) and area (P_Area) of UGS patches were selected to

explore their influence on the cooling intensity and range of

UGS. The shape index represents the complexity of patch shape.

The larger the value of the shape index, the more complex the

shape is. The four metrics, their definition and description are

listed in Table 3.

Pearson correlation was used to examine the relationship

between the UCI effect and relevant landscape metrics. In

specific, The UCI effect includes cooling intensity and cooling

range and landscape metrics include P_NDVI, P_LST, P_SI, and

P_Area. Pearson correlation coefficients were calculated to

represent the magnitude of the correlation between UCI effect

and relevant landscapemetrics. Landscapemetrics can affect UCI

effect independently as well as interactively. Due to the possible

correlation between landscape metrics, partial correlation

analysis was performed to exclude the interaction between the

landscape metrics.

Landscape metrics were used as independent variables, and

the intensity and range of UCI effect were used as dependent

variables. For landscape metrics with significant correlation

relationship with UCI, regression analysis was conducted to

analyze their effects on cooling effects. Because the

relationship between the two is not necessarily a simple linear

relationship, multiple functions were used to find the optimal

regression. The R2 represents the degree to which the dependent

variable can be explained by the model. The coefficient reflects

the expected change in the dependent variable for every unit
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change in the associated independent variable. The ordinary least

squares (OLS) regression was performed using

SPSS25.0 software.

Results

Land cover changes

Table 4 shows the validation results of land cover maps for

these three Asian megacities in five time periods. The overall

accuracies range from 85.75% to 91.78%, and the Kappa

coefficients range from 0.82 to 0.88. For Dhaka and Kolkata,

low overall accuracies were obtained in 2000. It might be caused

by the relatively low image quality.

The three cities have experienced significant urban

development from 2000 to 2020. The urban areas have

continuously expanded and green space has shrunk

(Figure 3). The land cover changes in the three cities

experienced similar changing trajectories. From 2000 to 2020,

the green space of the three cities decreased by 1138.69 ha,

13894.52 ha, and 14416.24 ha respectively. Bare land decreased

by 15257.98 ha, 20315.92 ha, and 109164.43 ha, respectively. The

area of water bodies changed slightly in Dhaka and Kolkata. The

impervious surface of each city expanded rapidly and increased

by 16062.34 ha, 34707.11 ha, and 112698.38 ha respectively. The

built-up areas in the three cities are rapidly expanding outward.

The green space and bare land areas were mainly converted into

impervious surface areas.

Spatiotemporal variation of surface urban
heat island

According to previous studies (Weng et al., 2014; Liu et al.,

2020b), the observed Landsat data can be used to evaluate the

accuracy of prediction results. The LST data obtained from the

Landsat image on 13 December 2003 was used to estimate the

accuracy of the LST from the predicted image. At the significance

level of 0.01, MAD and RMSE between the two datasets were

0.26°C and 2.02°C, respectively, and Pearson’s value was 0.99.

These results indicated that there was a strong correlation

between predicted and observed LST (Figure 4).

Figure 5 shows the spatial pattern changes of SUHII in the

three cities from 2000 to 2020. The High Level and Very High

Level areas in all three cities continue to extend outward. The

high level areas are concentrated in the city center in 2000, while

they spread to the whole functional area of the city in 2020. The

SHUII in the three cities show different spatial patterns. Multiple

high intensity areas were observed in Dhaka in 2020. Some

marginal areas even have higher heat island intensity than the

central areas, and most high-intensity areas are concentrated in

the central and northwest of the city. The SUHI in Kolkata

sprawls in all directions from the city center. In Bangkok, the

SUHI gradually spreads to the east and west from 2000 to 2020.

Compared with the land cover map, it is obvious that the spatial

evolution of SUHI corresponds well with the spatial pattern of

urban expansion.

The temporal variations of SUHII and LST differences in the

three cities were analyzed from 2000 to 2020 (Figure 6). The

intensity of SUHI showed a monotonic increasing trends, and

experienced a fluctuation in 2010 only in Bangkok. The changing

slope of SUHII indicated that all three cities has been

experiencing intensified SUHI effect. The continuous rise of

SUHII is related with the increase of the difference between

urban temperature and background temperature. The increase of

urban surface temperature is significantly faster than that of

background temperature. From 2000 to 2020, the urban surface

temperature in three cities increased by 4.03°C, 8.39°C, and

4.47°C respectively, and the background temperature increased

by 3.05°C, 6.97°C, and 3.74°C respectively.

Urban cooling effects

Figure 7 shows the logarithmic regression analysis results in

each city. Based on the fitted logarithmic regression models, the

TVoE values were estimated. The p-value of each city is less than

0.01, indicating that the relationship is significant. The TVoE is

0.37 ha (R2 = 0.08), 0.77 ha (R2 = 0.31) and 0.42 ha (R2 = 0.12) in

Dhaka, Kolkata and Bangkok, respectively.

Table 5 shows the statistics of landscape metrics and UCI

intensity in the study areas. The mean patch size of greens space

is larger in Kolkata and Bangkok than Dhaka. The shape index of

green patches is largest in Bangkok. The average NDVI and LST

of UGS are higher in Kolkata than the other two cities. The

TABLE 3 Landscape metrics of the urban green space patches.

Metric Definition Description

P_NDVI P NDVI � ∑n
i�1NDVIi/n P_NDVI is the average NDVI of the patch. NDVIi is the NDVI of pixel i, n is the number of pixels in the patch

P_LST P LST � ∑n
i�1LSTi/n P_LST is the average LST of the patch. LSTi is the LST of pixel i, n is the number of pixels in the patch

P_SI P SI � a/2p
����
π p b

√
P_SI is the shape index of the patch. A is the patch perimeter and b is the patch area

P_Area — P_Area is the area of the patch
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maximum UCI intensity ranges from 4.83°C in Bangkok to

8.07°C in Kolkata. The mean UCI intensity is highest in

Kolkata and lowest in Dhaka. The maximum UCI range

varies from 300 m in Bangkok to 420 m in Kolkata. The mean

UCI range varies from 67 m in Bangkok to 81 m in Dhaka.

The correlation between landscape metrics and cooling

effects in the megacities was also analyzed (Table 6). Among

the four metrics, P_NDVI has a significant positive correlation

with UCI intensity in Kolkata and Bangkok, but only has a

significant positive correlation with UCI range in Bangkok.

P_LST has a strong influence on UCI intensity and UCI range

in all the cities, and the absolute values of Pearson correlation

coefficients are greater than 0.50 on UCI intensity. For P_SI

index, although correlation is negative on UCI intensity, the

relationship is no significant. P_Area has a strong influence on

UCI intensity and UCI range in the study areas.

For the significant correlations, the effects of landscape

metrics were further analyzed using OLS regression (Table 7).

The increase in NDVI leads to increase of UCI intensity in

Kolkata (coefficient = 8.37) and Bangkok (coefficients = 4.83)

and increase of UCI range in Bangkok (coefficient = 201.99). An

increase in average LST is significantly associated with the

decrease of UCI intensity and range in all the megacities. The

effect of LST on UCI intensity in strongest in Kolkata, and its

effect on UCI range is most significant in Dhaka. In addition, the

increase of patch area is significantly associated with the increase

of UCI intensity and range in all the megacities.

Discussion

Spatiotemporal variation of surface urban
heat island

The study areas have a tropical monsoon climate, which is

cloudy and rainy almost all year round. These lead to the difficulty in

obtaining continuous gap-free remote sensing images. The blending

of MODIS and Landsat data produced LST data with high spatio-

temporal resolution. Since MODIS data have a spatial resolution of

1 km, narrow rivers and small-sized land features cannot be

identified from the LST images. Compared with Hassan et al.

(2021) which used MODIS data to explore SUHI effect, our data

captured more detailed information (Figure 5). The overall land

cover change results are similar to previous studies (Estoque et al.,

2017; Si et al., 2022). The comparison between the land cover and

SUHI map indicates that the expansion of urban impervious surface

areas affects the variations of heat island. Due to the different

physical properties of visible band and thermal infrared band, the

visible bands and thermal infrared bands were fused separately,

which effectively improved the accuracy of data fusion. The data

fusion methods and processing framework have been developed to

improve the efficiency and accuracy of data fusion. Since data gaps

often exist in MODIS data, Liu et al. (2020b) used a mean filter orT
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linear regression to fill the missing pixels, which enhanced data

availability and provided richer information for fusion. Since the

moving window of ESTARFM model has a fixed size, Liu et al.

(2020a) used surface heterogeneity information to develop a new

spatiotemporal data fusion algorithm which could automatically

adjust the size of the moving window. These methods can be tested

and applied to improve the accuracy of fused LST data in future

studies. Based on the multi-temporal land cover and SUHII maps,

the variations of land cover and urban thermal environment from

2000 to 2020 was captured clearly in the study areas.

Urban cooling effects and policy
implications

The maximum intensity of UCI was found to range from 4.83°C

to 8.07°C, and the maximum range of UCI varies from 300m to

420 m in the threemegacities. Our result show that the largest park in

Kolkata (39 ha) provided a maximum cooling island effect with an

intensity of 8.07°C and range of 420m. Surveys in different seasons,

times of day, and measuring methods indicated that the maximum

cooling of large-sized parks could reach 5°C–8°C (Aram et al., 2019;

Yin et al., 2022). The average night-time cooling range of Kensington

Gardens (111 ha) in London was found to vary between 20 and

440 m (Doick et al., 2014). The Heiwa Park (147 ha), Nagoya had a

cooling distance of 200–300m during night and 300–500 m during

daytime (Aram e al., 2019). The mean cooling range and intensity of

blue-green space are 150m and 2.47°C in summer in Copenhagen

(Yang et al., 2020). Different TVoE values to provide the optimal

green space patch area were obtained for each megacity. Our study

shows that the TVoE is 0.37 ha, 0.77 ha, and 0.42 ha in Dhaka,

Kolkata and Bangkok, respectively. Geng et al. (2022) applied the

TVoEmethod to 207 urban parks in 27 cities in East China with four

FIGURE 3
Land cover maps of the three megacities in 2000, 2005, 2010, 2015, and 2020.

FIGURE 4
Scatter plot between the estimated and the observed land
surface temperature.
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different local background climates, including warm temperate sub-

humid monsoon, northern subtropical sub-humid monsoon,

northern subtropical humid monsoon, and middle subtropical

humid monsoon climate, and found that the TVoE was

significantly affected by the background climate. Fan et al. (2019)

found that the TVoE was about 0.6–0.62 ha in Hong Kong, Jakarta,

Mumbai, and Singapore, and 0.92–0.96 ha in Kaohsiung, Kuala

Lumpur, and Taiwan. Tan et al. (2021) found that the TVoE of

three-based green spaces was about 0.31 ha in Nanning, China. The

TVoEwas found to be 4.55 ha in Fuzhou (Yu, et al., 2017). According

to Fan et al. (2019), the TVoE was influenced by the background

temperature and NDVI of green patches in the seven hot humid

Asian cities.With higher background temperature, the optimal size of

green space will be larger. This agrees well with our study.

Our results indicate that UCI intensity is correlated negatively

with P_LST and positively with P_NDVI and P_Area, while UCI

FIGURE 5
SUHII in the three megacities in 2000, 2005, 2010, 2015, and 2020.

FIGURE 6
Temporal variation of SUHII in the three megacities from 2000 to 2020.
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FIGURE 7
Logarithmic regression analysis results in the three megacities.

TABLE 5 Statistics of landscape metrics, UCI intensity and range in the three megacities.

City P_Area P_SI P_NDVI P_LST UCI intensity UCI range

Range
(ha)

Mean
(ha)

Range Mean Range Mean Range
(°C)

Mean
(°C)

Range
(°C)

Mean
(°C)

Range
(m)

Mean
(m)

Dhaka 0.09–8.68 0.75 1.08–2.23 1.38 0.17–0.73 0.42 28.75–35.14 31.93 0.0006–5.64 1.08 30–390 81

Kolkata 0.09–39.42 2.55 1.06–1.87 1.32 0.25–0.82 0.55 38.07–46.03 41.98 0.021–8.07 1.90 30–420 70

Bangkok 0.28–22.46 2.55 1.11–2.72 1.44 0.30–0.60 0.41 32.02–37.70 34.47 0.008–4.83 1.33 30–300 67

TABLE 6 Pearson correlation coefficients between the cooling effect and landscape metrics.

Landscape metrics UCI intensity UCI range

Dhaka Kolkata Bangkok Dhaka Kolkata Bangkok

NDVI 0.11 0.43** 0.23* 0.06 0.18 0.23*

LST −0.58** −0.80** −0.68** −0.46** −0.44** −0.32**

SI −0.00 −0.04 −0.00 0.10 −0.06 −0.18

Area 0.28* 0.39** 0.26* 0.25* 0.34** 0.22*

*Correlation is significant at the 0.05 level.

**Correlation is significant at the 0.01 level.

TABLE 7 Regression analysis between the cooling effect and landscape metrics.

Landscape
metrics

UCI intensity UCI range

Dhaka Kolkata Bangkok Dhaka Kolkata Bangkok

R2 Coefficients R2 Coefficients R2 Coefficients R2 Coefficients R2 Coefficients R2 Coefficients

NDVI — — 0.20 8.37 0.08 4.83 — — — — 0.09 201.99

LST 0.38 −0.62 0.70 −0.86 0.52 −0.75 0.19 −9.45 0.15 −12.62 0.17 −17.58

Area 0.30 0.37 0.30 0.80 0.17 0.62 0.10 5.65 0.10 4.32 0.09 4.11
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range is correlated negatively with P_LST and positively with

P_Area. Since dense vegetation can increase the NDVI value and

UCI intensity, the planting of woody vegetation is suggested to be

increased in urban green space. The results also show that patch

shape index has insignificant relationship with UCI intensity and

range. Thus, city planners should choose the most convenient and

economic way to plan green patches in terms of green space

shapes. The effective method to enhance UCI intensity and range

include increasing the area and biomass of green space, and

lowering its background temperature. However, different results

have been reported in previous studies. Some studies found that

the correlation between P_Area, P_NDVI, P_SI, and UCI was

insignificant (Shashua-Bar and Hoffman, 2000; Derkzen et al.,

2017). The cooling effect of UGS is a huge and complex system

(Murakawa et al., 1991). It is not only related to these landscape

metrics, but also to other factors such as local climate background

(Oliveira et al., 2011), geographical location (Hathway and

Sharples, 2012), detailed landscape components (Zhao et al.,

2014), humidity and evaporation (Vaz Monteiro et al., 2016;

Zhou et al., 2017). In addition, ordinary linear regression (OLS)

was used in our study. The OLS assumes that a linear relationship

exists between the dependent and the independent variables. It also

assumes error terms are independent and normally distributed.

Spatial regression models such as spatial lag model, spatial error

model and geographically weighted regression can be applied in

order to account for spatial dependencies in the relationship

between characteristic of UGS and intensity and range of UCI

(Bartesaghi-Koc., 2022; Baqa et al., 2022).

Urban ecology is a huge system, and any environmental factors

are likely to affect urban cool effects (Yu et al., 2017). The proposed

methods can be adopted in other tropical cities to obtain more

generalizable findings about the effects of urban greening

characteristics on cooling effects in tropical climates

(Bartesaghi-Koc et al., 2018). The physical characteristics of

trees, the patterns of planting, and arrangement can also

influence the air temperature and cooling effects of green

infrastructures (Hami et al., 2019). The effects of these factors

can be investigated by using more precise and comprehensive

approaches in future studies. Moreover, the cooling effect of city

parks varies in different seasons (Yang et al., 2020). The

investigation of cooling effect of urban green spaces in different

seasons can provide more information for the design of UGS

patches. Urbanmorphology/geometry parameters such as sky view

factor, aspect ratio, building and tree height, vegetation structure or

stratification, orientation, altitude may also influence the thermal

environment in cities (Irger, 2014; Morakinyo et al., 2020). They

affect air circulation, heat dissipation, and thermal energy

absorption in open spaces and urban canyons (Morakinyo

et al., 2017; Ahmadi Venhari et al., 2019; Bartesaghi-Koc et al.,

2022). A comprehensive investigation of urban and green space

characteristics on urban thermal environment will be helpful to the

planning of urban spaces to mitigate heat and improve thermal

environment of cities in future studies.

Conclusion

In this study, ESTARFM data fusion method was applied to

produce enhanced LST data for SUHI analysis the tropical

megacities. Impervious surface has increased by 30%–40% and

bare land and green space have decreased by 20%–40% in the

megacities from 2000 to 2020. The average SUHI intensity

increased by 0.98°C, 1.42°C, and 0.73°C in Dhaka, Kolkata, and

Bangkok, respectively in last 2 decades. The urban cooling

effects analysis results indicate that the maximum intensity

of urban cooling island ranges from 4.83°C in Bangkok to 8.07°C

in Kolkata, and the maximum range of urban cooling island

varies from 300 m in Bangkok to 420 m in Kolkata. The optimal

patch size of green space is 0.37 ha, 0.77 ha, and 0.42 ha in

Dhaka, Kolkata and Bangkok, respectively. UCI intensity is

negatively correlated with P_LST and positively correlated with

P_NDVI and P_Area, while UCI range was correlated

negatively with P_LST and positively correlated with P_Area.

The optimal size of green space patches is larger in cities with

higher background temperature. These results provide valuable

information for the scientific planning of urban green space to

produce effective cooling effects. Comprehensive investigation

of urban characteristics on thermal environment can

be performed for heat mitigation and adaptation in future

studies.
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