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A persistent fog-haze process associated with high pollution occurred in the

northern suburbs of Nanjing from November to December 2013. Based on the

comprehensive chemical and microphysical observations during the intense

observation period, the composition characteristics, and variation rules of

volatile organic compounds (VOCs) in the atmosphere under four weather

conditions (slight haze, haze, fog, and dense fog) were compared and analyzed,

the influencing factors for VOCs during extremely dense fog were discussed in

more detail. The average concentrations of VOCs displayed as alkanes >
aromatics > alkenes > alkynes, and their concentrations were ranked as

dense fog > fog > haze > slight haze, the main factor contributing to the

difference in concentrations of VOCs under different weather conditions is the

boundary layer characteristics and photochemical reaction rate. Microphysical

parameters such as liquid water content (LWC) were negatively correlated with

VOCs concentration in dense fog (LWC>0.008 g m−3). Also, the concentration

of VOCs showed an oscillating decrease in extremely dense fog

(LWC>0.12 g m−3), and the total VOCs removal rate was close to 30%, which

may be attributed to an indirect/direct removal effect, in which the enhanced

collision and deposition of fog droplets promote the redistribution of VOCs

gas-aqueous/particle partitioning, and remove them from the atmosphere by

fog water.
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1 Introduction

Volatile organic compounds (VOCs) are important precursors of atmospheric

photochemical smog and secondary organic aerosols. Atmospheric VOCs are mainly

oxidized by OH radicals, O3, and NO3 radicals, with the reaction with OH radicals

accounting for the major part. VOCs can undergo a variety of photochemical

reactions in the presence of shortwave radiation, with O3 being one of the main

reaction products, and some oxygenated VOCs can also be generated from some

primary VOCs(Yuan et al., 2013). Secondary aerosols generated by VOCs through the
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oxidation process are important components of fine

particulate matter and have a significant impact on the

formation of haze (Izhar et al., 2019). Oxidation of VOCs

also provides a range of water-soluble compounds (e.g.,

formaldehyde, glyoxal) that are partitioned into wet

aerosols or cloud droplets at high relative humidity and

further oxidized to produce new secondary organic

compounds (Ervens et al., 2011). Secondary organic aerosol

(SOA) can act as a condensation nucleus and thus affect the

life history, size, and retention time of cloud droplets, and can

be removed by nucleation and collision in the atmosphere

(Herckes et al., 2013).

With economic development, severe O3 and SOA

pollution has become a widely recognized environmental

issue, and these pollutants are particularly prominent in

highly urbanized and industrial areas (Deng et al., 2019).

The studying of VOCs is getting more and more attention

because they are important precursors of O3 and SOA and

have important effects on human health. In China, most of the

research on VOCs is focused on some high-pollution areas,

such as the North China Plain, Yangtze River Delta, Pearl

River Delta, and Central China (Dai et al., 2017; Sheng et al.,

2018; Hui et al., 2019), and mainly focuses on the emission

characteristics of VOCs, analysis of emission sources, and

sensitivity to O3 formation (Mozaffar and Zhang, 2020).

The presence of fog droplets has an important influence on

the concentration distribution, reaction mechanisms, and

removal processes of pollutants in the atmosphere (Collett

et al., 2008). As fog often occurs in the stable inversion layer,

fog droplets in the atmosphere are suspended for a long time

and have a large surface area, so the concentration of

pollutants in fog droplets can reach several times to dozens

of times the rain droplets (Błaś et al., 2008). Fog droplets can

also influence the processes of production and chemical

reactions of several particulate matters, as well as their

chemical composition, mass, and number concentration

distribution, thus directly or indirectly affecting regional

climate (Izhar et al., 2020). Aqueous phase processes are an

important way to influence chemical processes in the

atmosphere (Duan et al., 2021; Franco et al., 2021). In the

aqueous phase, organic compounds are often oxidized by OH

radicals (Ervens et al., 2014). In the presence of fog, some

soluble organic compounds can be dissolved in the droplets

and further oxidized in the droplets, resulting in chemical

reactions different from those in the gas phase. After

evaporation, the droplets can form hygroscopic secondary

aerosol particles, which can further form haze when their

concentration is high, realizing the fog-haze transformation

(Pandis et al., 1990).

Due to the high solubility of oxygenated volatile organic

compounds (OVOCs), fog has been found to have a significant

wet scavenging effect on them (Sahu et al., 2016; Yang et al.,

2017; Hakkim et al., 2019), while fewer studies have been

conducted on the correlation between hydrophobic VOCs

species and fog. It has been found that the concentration of

insoluble VOCs in rainwater is higher than the value

determined by Henry’s law, and precipitation may be an

important mechanism for the removal of VOCs(Okochi

et al., 2004; Sato et al., 2006; Šoštarić et al., 2017);

However, it has also been suggested that for hydrophobic

VOCs like benzene, wet deposition is not an effective

mechanism for the removal of these pollutants from the

atmosphere (Mullaugh et al., 2015), solubility did not

significantly affect the concentration of VOCs in foggy days

(Hakkim et al., 2019). In general, the exact mechanism of

VOCs in the gas-aqueous phase process is still unclear, there

are still fewer studies on the fog-haze transformation process,

especially the effect of extremely dense fog on

VOCs(Gilardoni et al., 2014; Hakkim et al., 2019). This

study will use the combined physicochemical observations

of VOCs and fog during a persistent high pollution process in

Nanjing from 30 November to 12 December 2013 (UTC+8,

same below) to analyze the composition characteristics and

variation of atmospheric VOCs under four weather conditions

(slight haze, haze, fog, and dense fog), and focus on the

influencing factors of VOCs concentration changes under

dense fog conditions.

2 Materials and methods

2.1 Observation sites and instruments

The VOCs and pollutant gases observation instruments were

located in the campus of Nanjing University of Information

Science and Technology, Pukou District, Nanjing (118°42′E,
32°20′N, altitude: 62 m). The observations of fog droplet

spectra and meteorological elements are located in the

integrated observation training practice base of China

Meteorological Administration on campus. The northeast

direction of the observation site includes the petrochemical

industry, iron, and steel plants and chemical plants, and other

large enterprises in the north industrial area of Nanjing. 500 m

east of the VOCs observation site is the north-south Ningliu

Highway, and the information from the observation site in this

area can represent a composite source of traffic, urban, industrial

and arable land, as seen in Figure 1. Details of the instruments are

shown in Table 1.

2.2 Calculation method

2.2.1 Droplet spectrum data processing of fog
Droplet concentration N (in units of cm−3) and liquid water

content LWC (in units of g·m−3) are calculated using the

expression:
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N � ∑20
i�2
n(ri)Δr (1)

LWC � 1 × 10−6 × ρ × ∑20
i�2

4π
3
r3i n(ri)Δr (2)

where ri (in units of μm) is the droplet radius, n(ri) (in units of

cm−3·μm−1) is the droplet size distribution. ρ = 1g·cm−3 is the

density of water.

Tf is the threshold function describing the threshold behavior of

the autoconversion process. The size truncation function employed

to quantify the effect of truncating the cloud droplet size distribution

on the autoconversion rate can be used as a threshold function to

represent the threshold behavior associated with the autoconversion

process, providing a physical basis for the threshold function. The

value of Tf is between 0 and 1, and the larger the value, the stronger

the process of collision, Tf = 0 means no collision process, Tf =

1means complete collision process. It can be generally described by:

Tf � P
P0

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫∞

rc
r6n(r)dr

∫∞

0
r6n(r)dr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫∞

rc
r3n(r)dr

∫∞

0
r3n(r)dr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

rc ≈ 4.09 × 10−4βcon
1
6N

1
6LWC−1

3 (4)

FIGURE 1
(A). Surrounding of the observation site (B). The 72 h air mass back trajectories and potential source contribution function (PSCF) analysis of
VOCs.

TABLE 1 Observation instruments.

Instruments Producers Observation projects Time
resolution

Measurement range and
accuracy

Air Quality and Industrial Site
Monitoring System (GC5000)

AMA, German Volatile organic compounds (VOCs) 1 h 29 alkanes, 10aLkenes,
16 aromatics, 1 alkyne

i Series of Gas Analyzers Thermo Fisher
Scientific, America

NOx, O3, SO2, CO 5 min 0–0.05–100 ppm

Fog droplet spectrometer (FM-100) DMT, America Fog droplet size distributions 1 s 2–50 μm, 20 channels

Continuous Ambient Particulate
Monitor (FH62C14)

Thermo Fisher
Scientific, America

PM2.5 mass concentration 30 min 0–5000 μg m−3

Automatic weather station ICT, Australia Ground temperature, air pressure, wind
direction, wind speed, relative humidity

1 min 1%–3%

Visibility and Present Weather Sensor
(VPF-730)

Biral, America Visibility 30 s 10m–75 km
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where P is the autoconversion rate, P0 is the rate function

describing the conversion rate after the onset of the

autoconversion process, βcon � 1.15 × 1023 is an empirical

coefficient, rc is the critical radius for autoconversion (Liu,

2005; Niu et al., 2010).

Vt is the LWC weighted particle terminal velocity (in units of

cm·s−1) which can be described by:

Vt �
(4
3
)πρ∑20

i�2nir
3
i vi

LWC
(5)

vi � 1.202 × 10−2r2i (6)

where vi (in units of cm·s−1) is the fog droplets terminal velocities

for each size interval (Gultepe and Milbrandt, 2007).

2.2.2 Trajectory data
The backward trajectory is calculated by the Hybrid Single-

Particle Lagrangian Integrated Trajectory (HYSPLIT) model

developed by NOAA. It is widely used to analyze the sources

and transport pathways of pollutants. Cluster analysis is the

analytical process of grouping a collection of data objects into

multiple classes composed of similar objects, and is a multivariate

analytical tool for studying multivariate classification. In this

paper, the Trajstat plug-in in Meteoinfo software is used to

perform cluster analysis on the backward trajectory. 72 h

backward trajectories of air masses from 0:00 to 23:00 are

calculated, with an altitude of 500 m. Meteorological data are

from the Global Data Assimilation System (http://www.arl.noaa.

gov/).

The potential source contribution function (PSCF) is used for

further analysis of the sources of pollutants (Draxler and Hess,

1998). The PSCF value for a given grid cell is calculated by

counting the trajectory segment endpoints that are terminate

within the grid cell, and is defined as:

PSCFij � mij

nij
(7)

where mij is the number of endpoints, nij is the total number of

endpoints that fall in the cell. To minimize the error, an empirical

weight function Wij is applied: WPSCFij � Wij × PSCFij, and

Wij is defined as:

Wij �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1.00 4nave < nij

0.70 nave < nij ≤ 4nave

0.42 0.5nave < nij ≤ nave

0.05 nij ≤ 0.5nave

(8)

where nave is the average number of trajectory segment endpoints

per grid.

2.2.3 Ventilation coefficient
Ventilation coefficient (VC) is a product of boundary layer

height and average wind speed through the mixing layer, it is

used to characterize the transport rate of pollutants in the

boundary layer in the horizontal direction. VC is

calculated by:

VC � WS × PBLH

where WS (in units of m·s−1) is average wind velocity near the

ground, PBLH (in units of m) is boundary layer height. PBLH

data are from the Global Data Assimilation System.

3 Result

3.1 Meteorological condition and
microphysical parameters

The observation period was divided into four weather

conditions (slight haze, haze, fog, and dense fog) based on

visibility (VIS) and relative humidity (RH). The specific

classification criteria are shown in Table 2(Deng et al., 2002; Niu

et al., 2016; Jiang et al., 2017). Figure 2 shows the complete fog-haze

interconversion process during a persistent high pollution event in

Nanjing from 1 December 2013, to 12 December 2013. As shown in

Figure 2A, there is a negative correlation between VIS and RH, fog

and haze exist alternately. During the observation period, a total of

five gradually intensifying fog processes occurred, which are labeled

as F1, F2, F3, F4, and F5 for the convenience of description. It can be

seen that: F1, F2, and F3 occurred in the early morning hours of

December 4, 5, and 6, which is due to the easy formation of an

inversion layer in the boundary layer in winter and the formation of

radiation fog near the surface, this kind of fog gradually dissipates

after sunrise due to the surface warming and the destruction of the

stable layer. F4 lasted longer and was more intense, with visibility

reduced to below 100 m, but lasted no more than 2 h, and the fog

dissipated briefly in the afternoon due to enhanced shortwave

radiation. It was followed by F5 in the afternoon of 7 December

to the early morning of 9 December, the process was the most

intense and longest lasting, during which visibility decreased to

below 50 m and lasted close to 31 h.

3.2 Composition and variation of VOCs

A total of 56 VOCs were measured during the observation

period, which were classified into four categories according to

their functional groups: alkanes, alkenes, alkynes, and aromatics.

Figure 3 shows the average mixing ratio of VOCs under four

weather conditions, and the specific mixing ratio of each species

is shown in Supplementary Table S1. Compared with the

observations in Nanjing during the same period (Li et al.,

2013), the mixing ratio of VOCs under slight haze conditions

were comparable to the annual average concentrations, while the

mixing ratio of VOCs under other weather conditions were

significantly higher.
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Figure 4 shows the time-series variation of pollutants, where

slash area represents haze events, the light grey shade represents

fog events, the dark grey shade represents dense fog events, and

light haze events are the rest. With constant fluctuations in

VOCs concentrations from December 1st to fourth, especially

for alkanes (Figure 4A), and a brief peak in total VOCs (TVOCs)

concentration of 149.12 ppbv was observed on December 2nd at

the end of first haze process. The TVOCs concentration

increased on the fourth and the weather turned to haze

again, with the highest TVOCs reaching 181.36 ppbv after the

brief fog process F1 ended. F2 occurred in the early morning of

the fifth, when TVOCs reached 84.06 ppbv, followed by a

decrease in VOCs concentrations, which may be attributed to

photochemical reaction and realatively high VC compared to

previous days. F3 occurred in the morning of 6 December,

during which small peaks appeared. F4 started from the evening

of 6 December , along with the gradual increase in the intensity

of the fog, VOCs concentration reached a peak of 133.56 ppbv

during the dense fog, then the fog dissipated briefly at noon on

the seventh, VOCs concentration fell back a little, and the

weather turned to haze. The longest dense fog process

F5 occurred on the eighth and lasted until the morning of

the ninth, during which VOCs concentration increased again

and reached a peak of 190.89 ppbv after two fluctuations. It is

notable that when the dense fog changed to extremely dense fog

during F5, the VOCs concentration showed a different degree of

decrease, and we will focus on this issue in Section 3.5 to

understand it quantitatively.

TABLE 2 The judgment criteria of slight haze, haze, fog, and dense fog.

Slight haze Haze Fog Dense fog

5 km ≤ VIS<10 km; RH<95% VIS<5 km; RH<95% 0.2 km < VIS≤1 km; RH>95% VIS ≤ 0.2 km; RH>95%

FIGURE 2
Temporal evolutions of the meteorological elements and fog microphysical variables in the period of observation. [(A). Visibility and relative
humidity, (B). Short-wave radiation intensity and air temperature, (C). The number concentration of fog (black line) and liquid water content (blue
line), (D). Autoconversion threshold function (Tf) and weighted particle terminal velocity (Vt), (E). Planetary boundary layer height (PBLH) and
ventilation coefficient (VC), (F). Wind speed andwind direction. Slash area represents haze events, the light grey shade represents fog events, the
dark grey shade represents dense fog events, and slight haze events are the rest.].
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3.3 Spatially sources of VOCs

In order to quantitatively analyze the VOCs pollution transport,

the HYSPLIT model was used to analyze the 72 h backward

trajectory clustering of air masses at the observation site. The

results of trajectory clustering and PSCF analysis of VOCs are

given in Figure 1B the observed site during the pollution period

from 4 December to 8 December was mainly influenced by three

directional air masses from the south, northwest, and northeast,

accounting for 72.13%, 21.31%, and 6.56%, respectively. The

distribution of potential contribution of VOCs concentration

shows that the area of high PSCF values is located in the south

and southeast of the observation site, and the high PSCF values

(0.8–1.0) occurred within 300 km south of the observation site,

which means that the probability of VOCs concentration exceeding

the set threshold (median VOCs concentration) for the backward

trajectory of all air masses passing through this area is more than

80%, demonstrating the high potential source contribution of

southwestern Jiangsu Province and southeastern Anhui Province

to the VOCs concentrations at the observation site. On the whole,

the potential source contribution of the VOCs pollutants wasmainly

influenced by the short-range transport of the Yangtze River Delta.

Also, the ratio of toluene to benzene (T/B) was used to

identify local sources of pollution. T/B < 2 indicates that the

pollutants are significantly affected by traffic emissions, and the

larger the value of T/B, the more influenced by other emission

sources; T/B > 2 indicates that there are other sources besides

traffic emissions; when T/B reaches 10 or even higher, it indicates

that there are strong industrial emission sources nearby (Hui

et al., 2018). The mean value of T/B during the observation

period is 1.21, which is consistent with the results measured by

others in the northern suburbs of Nanjing (An et al., 2014),

indicating that the emissions during the observation period are in

line with the local average and that the emissions from traffic

sources are more influential.

3.4 Differences in VOCs concentration
under different weather conditions

The average concentration of VOCs during the observation

period behaved as dense fog > fog > haze > slight haze, and this

difference indicates that weather conditions have an important

influence on the VOCs concentration characteristics. Table 3

shows that PBLH and VC are significantly lower on foggy (fog

and dense fog) days than on hazy (haze and slight haze) days. The

average PBLH and VC during dense fog are only 146 m and

119.16 m2-s−1, respectively, which are the lowest among the four

polluted weather conditions. The atmospheric boundary layer

under static weather conditions is not conducive to the

diffusion of atmospheric pollutants, resulting in the

accumulation of VOCs pollutant (Hakkim et al., 2019). Also,

radiation plays an important role in the photochemical process

(Herckes et al., 2013), VOCs can be oxidized by O3, NO3, and OH

radicals, which is the most dominant photochemical reaction

process with OH radicals, while the non-photochemical

reaction process with O3 and NO3 is much less influential (Hui

et al., 2018). As can be seen in Figure 2B, shortwave radiation (SR)

peaks daily in the late afternoon, showing significant daily

variation characteristics, and the surface SR during F5

(8 December) was significantly reduced due to the weakening

effect of dense fog. On the seventh day, the SR value reached

425Wm−2, while the highest SR value on the eighth day was only

269Wm−2, which weakened by 37%. This resulted in a significant

reduction in the rate of production of reactive radicals, slowing

down the photochemical reaction rate of VOCs. It can also be seen

in Figure 4B that O3, themain product of photochemical reactions,

was significantly reduced during the dense fog with lower SR, while

TVOCs maintained high oscillations, which indicated that the

absence of photochemical reaction was one of the essential factors

leading to the accumulation of VOCs. It can be seen that the

differences in VOCs concentrations under different weather

conditions were mainly influenced by boundary layer

characteristics (such as wind speed, boundary layer height, and

ventilation coefficient), as well as photochemical reaction rates.

3.5 Effect of dense fog on the
concentration of VOCs

Due to the accumulation of VOCs in boundary layer, the

average concentration of TVOCs in dense fog is about 2.6 times

higher than in slight haze. However, when F5 fog changed into

extremely dense fog (VIS <50 m), the microphysical parameters of

FIGURE 3
The average volume fraction of each component in
atmospheric VOCs during different weather conditions.
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fog increased explosively, and the VOCs concentration showed a

downward trend, the concentration of TVOCs even decreased from

204.56 ppbv to 125.3 ppbv by about 38% during the fog period from

the eighth at 17:00 to the ninth at 0:00. The same phenomenon

occurs with PM2.5, which dropped from 362 μg m−3–77 μg m−3.

Throughout the two periods of dense fog in F5, the average VC

was 106.97 m2 s−1, and the degree of CO variation as a less reactive

gas (Figure 4C) was also weak (1.26–3.24 ppbv), which shows that

the atmospheric horizontal transport contributed little variation to

the VOCs concentration. At the same time, the mean value of LWC

during dense fog reached 0.13 g m−3, and the peak LWC reached

0.6 g m−3 during this observation, which is significantly higher than

the observed values of fog in related studies (Yang et al., 2017;

Hakkim et al., 2019), and such intensity and duration are also rare in

the YRD area, which undoubtedly provides a rare opportunity to

discuss the mechanism of the effect of dense fog on VOCs.

Although hydrophobic VOCs are poorly soluble, a higher

droplet surface area may still affect the extent of VOCs

dissolution in droplets at very high LWC in some degree

(Herckes et al., 2013). To explore this possibility, we selected

10 VOCs species among 56 VOCs with significant solubility

differences and a relatively large share of TVOCs concentration

(total concentration share over 65% of TVOCs), compared and

analyzed the differences in average VOCs concentration during

dense fog (200 m ≥ VIS>50 m) extremely dense fog (VIS≤50 m).

Table 4 ranks the VOCs components by solubility from largest to

smallest according to Henry’s coefficient (Sander, 2015), and the

mean concentration ratio δc is given (extremely dense fog/dense

TABLE 3 Mean values ±standard deviation of meteorological elements and fog microphysical parameters in different weather conditions.

Slight haze Haze Fog Dense fog

Relative humidity (%) 52.06 ± 14.18 70.51 ± 15.54 94.59 ± 4.87 99.41 ± 1.42

Temperature (°C) 6.64 ± 4.87 8.97 ± 4.34 5.81 ± 1.62 5.04 ± 2.05

Visibility (m) 6918 ± 1777 2656 ± 1159 679 ± 202 86 ± 41

Wind speed (m·s−1) 0.99 ± 0.82 0.88 ± 0.69 0.81 ± 0.73 0.87 ± 0.48

Short-wave radiation (W·m−2) 96.90 ± 160.65 118.34 ± 156.77 32.75 ± 65.73 22.36 ± 51.46

Boundary layer height (m) 341 ± 352 355 ± 366 199 ± 186 146 ± 121

Ventilation coefficient (m2·s−1) 601.67 403.25 261.39 119.16

Liquid water content (g·m−3) — — (3.57 ± 17.37) ×10−3 0.13 ± 0.15

Droplet number concentration (cm−3) — — 16.43 ± 73.60 364.43 ± 244.52

FIGURE 4
Temporal variations of pollutants during the period of intensive observation. [(A). Alkanes, Alkenes, Alkynes, and Aromatics. (B).TVOCs, NOx, and
O3. (C). PM2.5 and CO. Light grey shade represents fog events, dark grey shade represents dense fog events, and slight haze events are the rest.].
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fog), which can be calculated by Eq. 10. To remove the effect of

dilution, mean concentration ratio δc is revised by ventilation

coefficient (Hakkim et al., 2019):

δc � c2/VC2

c1/VC1
(10)

where c1 and c2 are the concentration of VOCs and PM2.5 under

dense fog and extremely dense fog conditions; VC1 and VC2 are

the average ventilation coefficients under dense fog and

extremely dense fog conditions, respectively.

Table 4 shows that for each VOCs component, the variation of

δc ranges from 0.48 to 0.88, with δc for TVOCs reaching 0.69

(removal rate close to 30%), indicating that the concentration of

VOCs in extremely dense fog is significantly lower than in dense fog.

Since the average ventilation coefficient was only 119.16 m2 s−1, it

was obvious that the effect of horizontal transport was weak.

According to Henry’s coefficient, the solubility ranking of VOCs

is benzene > toluene > p-xylene > ethylbenzene > acetylene >
propylene > ethylene > ethane > propane > isobutane. As can be

seen in Table 4, there is no significant correlation between δc and the

solubility of each component in dense fog and extremely dense fog,

where acetylene has the weakest removal effect, while propylene has

a slightly lower solubility than acetylene, but its removal effect is

similar to PM2.5 (more than 50%), which indicates that even in

extremely dense fog with high LWC, the difference in the ambient

VOCs concentration is not significantly influenced by the solubility.

Therefore, the relationship between ambient VOCs concentrations

and fog microphysical parameters needs to be further analyzed.

During the extremely dense fog, the fog body underwent

explosive growth, and the average LWC value increased from

4.58 × 10−4 g m−3 to 0.23 g m−3 within half an hour at around 02:

00 on the eighth, and all other microphysical parameters also

increased significantly (Li et al., 1999), so the autoconversion

threshold function Tf and the LWC weighted particle terminal

velocity Vt was introduced to quantitatively explore the

relationship between fog microphysics and VOCs concentration,

their timing variations are shown in Figure 2D, Figure 5 shows the

relationship between LWC and the concentrations of each

component of VOCs, where the correlation between the two

changes from positive to negative as LWC increases, and this

turning point occurs at LWC ≈0.008 g m−3. For illustration

purposes, a power-law relationship between VIS and LWC in fog

was fitted with Eq. 11:

VIS � 0.022 × LWC−0.398 (R2 � 0.87) (11)

As this process is influenced by the haze transformation, the

contribution of hygroscopic aerosol extinction is not negligible, and at

LWC=0.008 g m−3, the correspondingVIS average is already close to

150m, which is close to the average result given by the

parameterization scheme for fog visibility in the North China

Plain (about 220 m) (Zhang et al., 2014). Although the Tf value is

still less than 0.05 at this time, Vt is already close to 1.36 cm s−1,

indicating that it is in the transitional stage of conversion from dense

fog to extremely dense fog.When LWC>0.008 g m−3, as the fog body

continuously enhances and VIS drops below 50m

(LWC>0.12 g m−3), the peak values of Tf and Vt reach 0.5 and

2.04 cm s−1, respectively, and the large values of Tf and Vt are

distributed in the lower right of the respective coordinates, i.e., the

area of small (large) values of VOCs (LWC), which indicates that

LWC,Vt and fog water deposition fluxes were significantly enhanced

during the burst reinforcement of fog dominated by collision. In

addition, it can be inferred from the slope of the fitted line between

TABLE 4 Differences in concentrations of major VOCs (in units of ppbv) components and PM2.5 (in units of μg·m−3) under dense fog and extremely
dense fog events.

Mean concentration Mean concentration ratio
δc (extremely dense
fog/Dense fog)Dense fog (c1) Extremely

dense fog (c2)

benzene 8.20 5.86 0.78

toluene 10.63 8.73 0.74

p-xylene 2.31 1.89 0.74

ethylbenzene 8.52 7.15 0.76

Acetylene 1.57 16.20 0.88

propylene 6.36 3.38 0.48

ethylene 21.27 14.35 0.61

ethane 22.98 16.65 0.65

propane 9.96 8.50 0.77

isobutane 6.19 5.22 0.76

TVOCs 145.60 111.73 0.69

PM2.5 189.05 101.35 0.48
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strong fog LWCversusVOCs andPM2.5 in Figure 5: Extremely dense

fog has the highest removal rate of PM2.5, while the removal rates of

alkanes, aromatics, and alkenes are closer among the components of

VOCs, except alkynes, which was consistent with the inference given

by δc in Table 4. This may be due to the fact that aerosol water

formed by moisture absorption of fog droplets and aerosol can act as

a tiny reactor for several reactions between gases and aerosols,

resulting in complex gas-aqueous phase chemical reactions in the

atmosphere (Ervens et al., 2011; Ervens, 2015), affecting the source-

sink pathways of VOCs; VOCs may also be removed by adsorption

and deposition at the gas-aqueous interface or on the surface of the

particles (Raja and Valsaraj, 2004; Škrdlíková et al., 2011), and these

processes are important factors influencing the variation of VOCs

concentrations. The enhanced droplet collision effect may have

promoted the redistribution of VOCs gas-aqueous/particle

partitioning and removed VOCs from the atmosphere by an

indirect/direct removal effect. Nevertheless, the specific

physicochemical processes involved require more detailed

measurements of the composition in fog water to better

investigate the source-sink pathways of VOCs under the influence

of fog in the future.

4 Conclusion

During the sustained high pollution period from November to

December 2013, the average concentration of VOCs was alkanes >
aromatics > alkenes > alkynes. as shown by the backward trajectory

FIGURE 5
The relationship between microphysical variables of fog and (A). alkanes, (B). akenes, (C). alkynes, (D). aromatics, (E). TVOCs, (F). PM2.5.
[Horizontal axis is the logarithm of LWC with a base of 10, the vertical axis is the concentrations of VOCs, the sizes of bubbles represent mass-
weighted particle terminal velocity, the colors of symbols represent the values of autoconversion threshold function].
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clustering and PSCF potential source contribution analysis:

southwestern Jiangsu Province and southeastern Anhui Province

have a high potential source contribution to the VOCs

concentration at the observation site, indicating that the potential

source contribution of the VOCs pollutants was mainly influenced

by the short-range transport of the Yangtze River Delta.

The average concentration ranking of each VOCs component

under four weather conditions was dense fog > fog > haze > slight

haze. Compared with hazy days, the boundary layer height,

ventilation coefficient, and short-wave radiation were significantly

lower in foggy days, and the mean values of ventilation coefficient

and short-wave radiation in dense fog were 119.16 m2·s−1 and

22.36Wm−2, which only accounted for about 20% of those in

slight haze. It can be seen that the differences in VOCs

concentrations under different weather conditions are mainly

influenced by boundary layer characteristics as well as

photochemical reaction rates.

There was no significant correlation between the mean

concentration ratio δc of each VOCs components and its

solubility in dense fog and extremely dense fog. The linear

relationship between LWC versus VOCs and PM2.5 was

quantitatively analyzed on foggy days, and the threshold of

occurrence of the correlation from positive to negative was at

LWC ≈0.008 g m−3. In addition, extremely dense fog

(LWC >0.12 g m−3) had a significant wet scavenging effect on

PM2.5 and VOCs, as deduced from the slope of the linear fit

line: the highest scavenging rate for PM2.5, followed by alkanes,

aromatics and alkenes were closer to each other, and the lowest was

for alkynes. To better investigate the source-sink pathways of VOCs

under the influence of fog, the specific physicochemical processes

involved require more detailed measurements of the composition in

fog water in the future.
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