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In present study, the diversity of summertime Northwest Pacific (NWP)

atmospheric circulation anomalies following El Niño-Southern Oscillation is

investigated by performing the inter-case empirical orthogonal function (EOF)

analysis among 33 El Niño cases and 36 La Niña cases, respectively. Although an

anomalous anticyclone is observed over the NWP for all El Niño cases’

composite, the circulation anomalies there vary from one case to another

for each case. The EOF1 mode of NWP circulation anomalies explains 39.8% of

inter-case variance, and its positive phase features an anomalous anticyclone

and cyclone at south and north of 25°N, respectively. Therefore, the positive first

principal component (PC1) corresponds to the anomalous NWP anticyclone,

while the anticyclone shifts more northeastward and a cyclone appears at its

south side for negative PC1. The PC1-related NWP circulation anomalies are

largely controlled by the pronounced central and eastern Pacific sea surface

temperature cooling, which indicates the diverse El Niño decay rate.

Furthermore, four categories are obtained according to the El Niño decay

rate by the nonlinear k-means cluster analysis, and the results further confirm

that the close relationship between NWP circulation anomalies and El Niño

decay rate. The PC1-regressed land rainfall anomalies highly resembles the

composite results in the key areas of Asian monsoon region: the central China

and South Asia, indicating variable rainfall anomalies in these areas during post-

El Niño summer. The conclusion obtained from La Niña cases are generally

same to El Niño.
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1 Introduction

El Niño-Southern Oscillation (ENSO) is a dominant mode

of tropical interannual variability and exerts great influence

on global climate (e.g., Lau and Nath 1996; Webster et al.,

1998; Trenberth et al., 2002). During El Niño/La Niña

decaying summer, an anomalous lower-tropospheric

anticyclone/cyclone often appears over the Northwest

Pacific (NWP; Fu and Ye 1988; Lau 1992; Zhang et al.,

1996), and strongly influences the climate of Asian

monsoon region, where accounts for more than half of the

world’s population. Specifically, the El Niño-induced

anomalous NWP anticyclone (NWPAC) weakens NWP

summer monsoon by suppressing local convection (Wang

et al., 2000; Wu et al., 2010; Xiang et al., 2013), enhancing

dry anomalies and anomalous downward vertical motions,

which reduce the NWP tropical cyclone number (Du et al.,

2011) and lead to the extreme warm summer in southern

China (Hu et al., 2011; Hu et al., 2012). While the moisture

transport from tropics to East Asia is strengthened, rainfall

over the mountainous central China is significantly enhanced

due to orographic lifting (Wu et al., 2003; Hu et al., 2017; Hu

et al., 2020). Moreover, a tripole pattern of precipitation

anomalies over the South Asian region can be observed

when the anomalous anticyclone extends westward to the

North Indian Ocean (Mishra et al., 2012; Chowdary et al.,

2016a; Srinivas et al., 2018; Chowdary et al., 2019; Liu and

Huang 2019; Tang et al., 2022b), characterizing a prolonged

hot pre-monsoon period and a delay of the South Asian

summer monsoon onset (Zhou et al., 2019). These climate

responses are nearly reversed during La Niña, although the

asymmetry exists between El Niño and La Niña (e.g., Hoerling

et al., 1997; Hoerling et al., 2001; Zhang et al., 2014; Tao et al.,

2017; Wang et al., 2021b; Wang et al., 2022). Thus, the

anomalous atmospheric circulation over the NWP plays a

crucial role in linking ENSO and Asian climate.

During the summer following El Niño, the NWPAC is

maintained by local cooling via a positive thermodynamic

feedback between SST and circulation anomalies (Wang

et al., 2000; Wang and Zhang 2002; Wang et al., 2013; Xiang

et al., 2013; Gong et al., 2018a) and remote tropical Indian

Ocean warming (TIO) via Kelvin wave induced Ekman

divergence mechanism (Yang et al., 2007; Wu et al., 2009;

Xie et al., 2009; Yang et al., 2010; Hu et al., 2014; Tao et al.,

2015). The NWP cooling and TIO warming can serve as the

Indo-western Pacific Ocean capacitor (IPOC) mode to anchor

the NWPAC (Xie et al., 2016; Xie and Zhou 2017; Hu et al.,

2019). However, the response of summertime NWP circulation

following ENSO is not stable. It varies from one ENSO case to

another (Chowdary et al., 2016a; Chowdary et al., 2016b; Chen

et al., 2016; Chen et al., 2017; Tao et al., 2017; Wang et al., 2017;

Tao et al., 2018; Jiang et al., 2019; Li et al., 2019; Tao et al., 2019),

and is subject to ENSO-unrelated (internal) variability (Kosaka

et al., 2013; Li et al., 2016; Gong et al., 2018b; Wang et al., 2018;

Zhou et al., 2018; Wang et al., 2020b; Chen et al., 2020; Wang

et al., 2020c). As a result, a robust rainfall response to ENSO has

not been fully recognized outside the Asian monsoon

researchers, as shown by the schematic diagrams of ENSO

impacts on the web pages of National Oceanic and

Atmospheric Administration (NOAA), International

Research Institute for Climate and Society (IRI), Met Office,

and so on. The pronounced rainfall anomalies in summer seem

to develop only after a strong ENSO (Wang et al., 2017), leading

to the most severe forecast errors during ENSO decay phase

(Ham et al., 2019; Wang et al., 2020a). In present study, the

diversity of NWP circulation anomalies during post-ENSO

summer is explored by using inter-case empirical orthogonal

function (EOF) analysis, founding that the diverse circulation

anomalies tend to cause the variable rainfall response in the key

areas of East and South Asia, i.e., the mountainous central

China (Hu et al., 2017; Hu et al., 2020) and western India

(Chowdary et al., 2019). The rest of the paper is organized as

follows. Section 2 describes the data and methods. The main

results are presented in Section 3, followed by the conclusion

and discussion in Section 4.

2 Data and methods

The atmospheric variables are derived by averaging two

merged reanalysis datasets, one from the National Centers for

Environmental Prediction/National Center for Atmospheric

Research (NCEP/NCAR) and the other from the European

Centre for Medium-Range Weather Forecasts (ECMWF).

The NOAA-Cooperative Institute for Research in

Environmental Sciences Twentieth Century Reanalysis V2c

(20CR; Compo et al., 2011) and NCEP-US Department of

Energy Atmospheric Model Inter-comparison Project II

reanalysis (NCEP2; Kanamitsu et al., 2002) are combined

into a merged NCEP dataset. The merged ECMWF dataset is

made from ECMWF twentieth century reanalysis (ERA20C;

Poli et al., 2016) and fifth generation reanalysis (ERA5;

Hersbach et al., 2020). To ensure temporal consistency, the

mean states of 20CR (ERA20C) and NCEP2 (ERA5) are

calibrated by removing their differences during the overlap

period 1979–2015 (1979–2010). The monthly mean SST

dataset used is made by averaging the Hadley Centre Sea

ICE and SST (HadISST; Rayner and Coauthors, 2003) and

NOAA Extended Reconstructed SST (ERSST; Smith and

Reynolds, 2003) V5 datasets. The monthly mean land

precipitation dataset is merged by the Climatic Research

Unit (CRU) TS4.01 (Harris et al., 2014) and Global

Precipitation Climatology Centre (GPCC) V7 (Schneider

et al., 2014) datasets. The above merged datasets are used to

get long-term and reliable data record, and the period from

1901 to 2017 are selected for analysis.
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The monthly mean climatology is first calculated for the

1901–2017 period, and monthly anomalies are then computed

as the departure from the climatology. Besides, the linear trend

has been removed from all datasets. The Niño3.4 index is

defined as SST anomalies averaged over the central and

eastern equatorial Pacific (CEP, 5°S–5°N, 170°–120°W).

Hereafter, any month in ENSO onset and decay year is

denoted by the suffix (0) and (1), respectively. Consistent

with Wang et al. (2019) and Wang et al. (2020a), an El Niño

(La Niña) year is identified as that the Niño3.4 index during

October-November-December(0)-January-February(1) is

greater (less) than or equals to 0.6°C (−0.5°C). As a result,

33 El Niño cases and 36 La Niña cases are identified. Only the

results of El Niño are shown in the main text, and the results of

La Niña are given in the supplemental material and briefly

discussed in last section. EOF, regression, correlation, k-means

cluster, and composite analysis are used, and the confidence

level is estimated based on the standard two-tailed Student’s

t-test. The k-means cluster analysis is introduced on the first

occasion that it is used.

3 Results

3.1 Inter-case EOF of NWPAC during post-
ENSO summer

Figure 1A shows the composite SST, 850-hPa winds, and

land precipitation during post-El Niño summer for 33 El Niño

cases. The most significant feature of atmospheric circulation

anomalies averaged for all cases is an anomalous anticyclone over

the NWP, and the easterly wind anomalies at the south flank of

NWPAC extend westward to the north Indian Ocean

(Figure 1A). As that the El Niño-related CEP warming

gradually decays, the NWPAC is mainly anchored by IPOC

mode with TIO warming and NWP cooling (Xie et al., 2016; Xie

and Zhou 2017).

The NWP circulation anomalies during post-El Niño

summer vary from one case to another (Supplementary Figure

S1). To reveal the possible factor responsible for the diversity of

NWP circulation anomalies among 33 El Niño cases, an inter-

case EOF analysis is applied to the 850-hPa wind anomalies over

FIGURE 1
(A) Composite anomalies of SST (shaded over the ocean; °C), 850-hPa winds (vectors; m s−1), and precipitation (shaded over the land; mm)
during post El Niño summer for 33 El Niño cases. (B) Regression of SST (shaded over the ocean; °C), 850-hPawinds (vectors; m s−1), and precipitation
(shaded over the land; mm) with respect to (C) the standardized PC1 of 850-hPa wind anomalies over the NWP (0°–40°N, 100°E–180°) during post El
Niño summer for 33 El Niño cases. Green lattices and black vectors indicate that the confidence level reaches 90%. The EOF1 explained variance
fractions are given at the top right of (B) and (C).
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the NWP region (0°–40°N, 100°E–180°). EOF1 mode explains

39.8% of total inter-case variance and is well separated with other

modes (Figures 1B,C). The positive EOF1 phase is characterized

by a meridional dipole pattern of circulation anomalies with an

anomalous anticyclone and cyclone located at south and north of

25°N over the NWP, respectively (Figure 1B). Therefore, the

positive first principal component (PC1) value corresponds to

the NWPAC, while the anticyclone shifts more northeastward

and an anomalous cyclone appears over the NWP for negative

PC1 value.

Furthermore, PC1 has a close relationship with the intensity

(Figure 2A), meridional (Figure 2B), and zonal location (Figures

2C,D) of NWPAC. The intensity of NWP circulation anomalies

is defined as the difference of 850 hPa zonal winds between a

southern region (5°–15°N, 90°–30°E) and a northern region

(22.5°–32.5°N, 110°–140°E) following Wang and Fan (1999),

and the NWPAC intensity is negative. If the NWPAC shifts

northeastward and an anomalous cyclone appears at its South

side, a positive value will appear for instead. Thus, the intensity of

NWP circulation anomalies reflects the location of NWPAC

indirectly. The meridional wind anomalies over the Indian

subcontinent and southern China are used to represent the

zonal location of NWPAC due to its east-west flat shape,

which is in favor of the conversion of kinetic energy from the

mean flow to perturbations (Hu et al., 2019; Wang et al., 2021a;

Tang et al., 2022a). Therefore, the EOF1 mode indicates diverse

location of NWPACs in 33 El Niño cases, the NWPAC shifts

more northeastward as a decrease of PC1 value.

3.2 Diverse ENSO decay pace

Pronounced CEP cooling and western Pacific warming are

observed in PC1-regressed SST anomalies, and the PC1-related

NWPAC is a direct Rossby wave response to CEP cooling

(Figure 1B; Fan et al., 2013; Wang et al., 2013; Chen et al.,

FIGURE 2
Scatter diagram of standardized PC1 and (A) NWPAC intensity, (B) meridional location of NWPAC center, (C) 850-hPa meridional wind
anomalies over the southern China (15°–30°N, 100°–110°E), and (D) 850-hPa meridional wind anomalies over the India subcontinent (15°–30°N,
80°–90°E) in 33 El Niño cases. The meridional location of NWPAC center is determined by the maximum value of anomalous 850-hPa stream
function over the NWP (10°–45°N, 100°–170°E) as shown by red dots in Supplementary Figure S1. The red lines denote the best fit lines for 33 El
Niño cases, and the correlation coefficients are on the top-right corner of each figure.
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2017; Tao et al., 2017; Dong et al., 2018; Tao et al., 2021). The

dipole SST pattern in Pacific indicates the diverse decay pace

among 33 El Niño cases. Figure 3A presents the PC1-regressed

SST anomalies, averaged over 5°S–5°N as a function of longitude

and calendar month. The discrepancy of CEP SST anomalies

during the decay phase of 33 El Niño cases gradually increases

and stabilizes after August (Figure 3A). The SST anomalies

averaged over the CEP (5°S–5°N, 150°–130°W) during SON(1)

season are defined as El Niño decay rate, which are highly

correlated with PC1 at −0.86 reaching 99% confidence level

(Figure 3B). Besides, the El Niño decay rate is significantly

correlated with NWPAC intensity, central latitude, meridional

wind anomalies over the southern China and Indian

subcontinent at 0.55, 0.48, −0.52, and −0.69, respectively

(Supplementary Figure S2), indicating that the contribution of

diverse El Niño decay pace to the variable NWP circulation

response.

Above study is analyzed from the perspective of circulation

diversity, and the following analysis is conducted from the

perspective of SST diversity to further confirm the importance

of El Niño decay pace by an objective method: nonlinear k-means

cluster analysis, which is more objective than directly using the El

Niño decay rate with some subjective criterions. The 33 El Niño

cases can be divided into four categories by a nonlinear k-means

cluster analysis of the equatorial SST anomalies averaged between

5°S and 5°N over the Pacific from October(0) to October(1),

following Wang et al. (2020a). The results of k-means cluster

analysis depend on the number, k, of clusters chosen. k � 4 is

used based on physical consideration, and other solutions of the k

from two to six have been tested. The four clusters are well

separated with each other according to the corresponding

silhouette values (Supplementary Figure S3A), representing

early decay, late decay, slow decay, and continuing cluster.

Early and late decay cluster feature a fast transition to La

Niña in spring and summer, respectively (Supplementary

Figures S3B,C), and slow decay cluster reaches a neutral

condition in subsequent winter (Supplementary Figure S3D).

For continuing cluster, the CEP warming persists, and an El Niño

event re-emerges in the following year (Supplementary Figure

S3E). The main ocean dynamical processes for four clusters have

been explored in detail by Wang et al. (2020a) through heat

budget analysis.

Figure 4 shows the composite anomalies during JJA(1) for

four clusters of 33 El Niño cases. Distinctive SST anomalies are

observed in four types of El Niño decay, leading to the different

NWP circulation response. The NWPAC in early decay cluster is

maintained by a combined effect of TIO warming and CEP

cooling, which trigger an eastward Kelvin wave and a westward

Rossby wave, respectively (Figure 4A; Chen et al., 2016; Hu et al.,

2020). In late decay cluster, the CEP cooling is not well

established during JJA(1), and the NWPAC is anchored by

IPOC mode, which corresponds to the zonal SST dipole with

the TIO warming and NWP cooling (Figure 4B; Wang et al.,

2013; Xie et al., 2016; Xie and Zhou 2017). For slow decay cluster,

the CEP warming is persistent, with the NWPAC shifted

northeastward and cyclonic wind anomalies appearing at the

southwest side of the anticyclone (Figure 4C; Chen et al., 2017;

Tao et al., 2017; Jiang et al., 2019). The dipole pattern of

circulation anomalies is more distinct in continuing cluster,

and the NWPAC is displaced further northeastward

(Figure 4D). The CEP warming forces the cyclonic wind

anomalies over the western Pacific as a Rossby wave response,

leading to the lower-level divergence and suppressing the

convection around the NWP. The resultant dry anomalies

FIGURE 3
(A) Regression of SST (°C) with respect to the standardized PC1, averaged over 5°S–5°N as a function of longitude and calendar month. Green
lattices indicate that the confidence level reaches 90%. (B) Scatter diagram of standardized PC1 and El Niño decay rate in 33 El Niño cases. El Niño
decay rate is defined as the SST anomalies over the CEP (5°S–5°N, 150°–130°W) during SON(1).
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further trigger and maintain the NWPAC through the Rossby

wave-induced convergence mechanism or local meridional

circulation (Chen et al., 2017; Tao et al., 2017; Jiang et al.,

2019). Thus, the results depicted by the four clusters confirm

that the NWP circulation anomalies are largely controlled by El

Niño decay pace, and the NWPAC tends to shift northeastward

(southwestward) in response to slow (fast) decay rate.

3.3 Variable rainfall response in the key
areas

A natural question arises, how does Asian monsoon rainfall

respond to the diverse NWP circulation anomalies? Previous

studies find that the enhanced rainfall over the mountainous

central China (Wu et al., 2003; Hu et al., 2017; Hu et al., 2020)

and a tripole rainfall pattern over the South Asian region (Mishra

et al., 2012; Chowdary et al., 2016a; Srinivas et al., 2018;

Chowdary et al., 2019) are induced during post-El Niño

summer, as confirmed in Figure 1A. The PC1-regressed land

rainfall anomalies over the Asian monsoon region highly

resemble the composite anomalies, especially in the central

China and South Asia (Figure 1B), and the result indicates

variable rainfall response in the above-mentioned key areas.

Note that the positive regressed rainfall anomalies over the

central China and western India cover larger areas than the

composite anomalies, and extend to the northern China and the

southwest side of Tibetan Plateau, respectively.

The composite results in the four clusters further confirm the

variable rainfall response to the diverse NWP circulation

FIGURE 4
Composite anomalies of SST (shaded over the ocean; °C), 850-hPa winds (vectors; m s−1), and precipitation (shaded over the land; mm) during
post El Niño summer for (A) early decay cluster, (B) late decay cluster, (C) slow decay cluster, and (D) continuing cluster of 33 El Niño cases. Green
lattices and black vectors indicate that the confidence level reaches 90%.
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anomalies. The positive rainfall anomalies appear over the

northern China in early decay cluster (Figure 4A). In late

decay cluster, pronounced wet anomalies can be seen over the

central China (Figure 4B), and the wet anomalies weaken in slow

decay cluster (Figure 4C). The rainfall anomalies in continuing

cluster exhibit a dipole pattern corresponding with dry and wet

anomalies in the North and South of central China, respectively

(Figure 4D). The tripole rainfall pattern over the South Asian

region is gradually reversed from early decay cluster to

continuing cluster, especially for the rainfall anomalies over

the western India (Figures 4A–D). Furthermore, Figure 5

shows the scatter diagram of PC1/El Niño decay rate and

rainfall anomalies in the key areas: the central China

(27.5°–37.5°N, 105°–115°E) and western India (8°–32°N,

70°–80°E). Indeed, PC1 and El Niño decay rate are

significantly correlated with rainfall anomalies, documenting

that the diversity of El Niño decay pace leads to the variable

rainfall response in the key areas of Asian monsoon region

through diverse NWPAC.

4 Conclusion and discussion

The diversity of summertime NWP circulation anomalies in

response to ENSO decay pace is investigated in present study. For

post-El Niño summer, the NWP circulation anomalies vary from

one case to another, and an anomalous anticyclone is observed

for all cases’ composite. The EOF1 mode of NWP circulation

anomalies following 33 El Niño cases, explaining 39.8% of total

inter-case variance, features an anomalous anticyclone and

cyclone at south and north of 25°N, respectively. Therefore,

the positive PC1 value corresponds to the NWPAC, while the

anticyclone shifts more northeastward and an anomalous

cyclone appears over the NWP for negative PC1 value.

The PC1-regressed SST anomalies show a pronounced CEP

cooling during El Niño decay phase, which triggers the PC1-related

NWPAC as a Rossby wave response. The CEP cooling lasts from

March through August and beyond, and indicates the diverse El

Niño decay rate among individual cases. A nonlinear k-means cluster

analysis reveals that the NWP circulation anomalies are largely

FIGURE 5
Scatter diagram of standardized PC1 and precipitation anomalies over (A) the central China (27.5°–37.5°N, 105°–115°E) and (B) the western India
(8°–32°N, 70°–80°E). (C) and (D) are as (A) and (B), but for El Niño decay rate and precipitation anomalies. The yellow dot and number represent the
case is not used in calculating the best fit lines and correlation coefficients.
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controlled by El Niño decay pace, and the NWPAC tends to shift

northeastward (southwestward) in response to slow (fast) decay rate.

The land rainfall anomalies respond to the diverse NWP circulation

anomalies highly resemble the composite rainfall anomalies in the

key areas of Asian monsoon region: the central China and South

Asia, indicating variable rainfall response in these areas.

An inter-case EOF analysis is also performed for NWP

circulation anomalies in 36 La Niña cases (Supplementary

Figure S4). The conclusion obtained from La Niña cases are

generally same to El Niño (Supplementary Figures S4–S8), and

the slow (fast) decay rate corresponds to the northeastward

(southwestward) shift of NWP cyclone. The PC1-regressed

CEP warming pattern and its center for La Niña cases are

slightly more westward than CEP cooling for El Niño cases,

as well as the circulation anomalies (Figures 1B, 3A;

Supplementary Figures S4B, S6A). As a result, the rainfall

response is more variable and covers larger areas over the

central China and India.

The present study emphasizes the crucial role of ENSO decay

rate to the diversity of NWP circulation anomalies and variable

rainfall response, but it does notmean the lack of influence of SST

anomalies in the other basins, i.e., the TIO and NWP. As shown

in Figure 4 and Supplementary Figure S7, the NWP circulation

anomalies in the four clusters are often maintained by the

combined effect of SST anomalies in several basins. Besides,

the ENSO decay rate is an important factor modulating Asian

monsoon rainfall following ENSO. However, there are still large

uncertainties in the prediction of ENSO, especially during its

decay phase (Tippett et al., 2012; Wang et al., 2020a), and much

work deserves to be done to improve ENSO forecasts.
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