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Our aim in this research was to detect historical and future water yield

coefficient evolution and attribution. Based on the calibrated and validated

water yield coefficient model in the Yiluo River Basin, the coefficient for the

years 2000–2020 was simulated, along with the future projection for

2030–2050 under four Shared Socioeconomic Pathways (SSP126, SSP245,

SSP370, and SSP585). The spatio-temporal evolution of historical and future

water yield coefficients was then analyzed. Moreover, the geographical

detector model was used to detect the impacts of climate, land use, and

terrain factors on the water yield coefficient. The results showed that the

water yield coefficient increased by 8.53% from 2000 to 2020, with the

coefficient of farmland increasing by 10.47% and that of forestland

decreasing by 8.93%. The coefficient was highest under the SSP370 scenario

and the lowest under the SSP585 scenario in projections for 2030–2050.

Compared to 2000–2020, the coefficients of the two scenarios increased

by 12.2% and 2.0%, respectively. Consequently, under the SSP370 and

SSP585 scenarios, the coefficient of farmland increased by 13.2% and 2.7%,

and that of the forestland decreased by 0.9% and 14.6%, respectively. Driving

factors detection indicated that land use types had the strongest explanatory

power affecting the water yield coefficient; the explanatory value reached

26.5% in 2000–2020 and will exceed 29.5% in 2030–2050. In addition, the

interaction between any two factors was stronger than a single factor. This

research provides scientific support for the precise management of watershed

and water-land resources.
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1 Introduction

The water yield coefficient is an indicator of the capacity of

regional water yield, which refers to the proportion of water yield

to precipitation. The water yield coefficient has changed under

the dual impacts of climatic variation and human activity,

profoundly influencing the development and utilization of

available water resources (Liu et al., 2016; Schwärzel et al.,

2020; Gbohoui et al., 2021). Climate variation, accompanied

by temperature increments and extreme precipitation, have

fundamentally affected the state of water resources (Capo

et al., 2018; Li and Wang, 2021; Ouyang, 2021). Additionally,

human activity has greatly changed the properties of water yield

and consumption through underlying surface construction (Hu

et al., 2021; Li et al., 2022a; Xu et al., 2022). In the context of

climate warming and intensified human activity, it is critical to

analyze the spatio-temporal evolution of the water yield

coefficient and identify driving factors in development of

watershed and water-land resources.

Scholars worldwide have conducted extensive studies

assessing historical water yield capacity (Li H. et al., 2021;

Guo et al., 2021; Li et al., 2022b; Zhou et al., 2022).

Hydrological modeling is the principal approach in

quantitative simulation of regional water yield. Hydrological

models, such as the Soil and Water Assessment Tool (SWAT)

(Ayivi and Jha, 2018; Chiang et al., 2019), MIKE European

Hydrological System (MIKE SHE) (Wang et al., 2013; Zheng

et al., 2020), and the Integrated Valuation of Ecosystem Services

and Tradeoffs (InVEST) model (Yang X. et al., 2021; Jin et al.,

2022), have been used for this purpose. Yang et al. (2019)

evaluated water yield based on the SWAT model and pointed

out that the annual water yield decreased by 38.48% in the Yanhe

Basin due to the implementation of the Grain for Green Project.

Pei et al. (2022)adopted the InVEST model and noted that the

annual water yield had an increasing trend of 1.96 mm/a (p < 0.1)

in the Agro-pastoral ecotone of Northern China from 2000 to

2019. Moreover, historical water yield coefficient evaluation has

been conducted in recent years. Shi et al. (2018)analyzed spatio-

temporal variation of the water yield coefficient based on gross

water resources and reported that the coefficient was between

0.03 and 0.58 in the Huang-Huai-Hai River Basin from 1961 to

2011. Li et al. (2017) employed the Budyko framework and

proposed that vegetation restoration significantly reduced the

water yield coefficient during the growing season in the Yangtze

River source region, with a decrease from 0.37 ± 0.07 in

1982–1999 to 0.24 ± 0.07 in 2000–2012.

For identification of attributes related to water yield

capacity, common methods include scenario analysis (Yang

J. et al., 2021; Shao and Yang, 2021), model analysis (Sun et al.,

2019; Wang X. et al., 2022), and statistical analysis (Rizzo

et al., 2020; Deng et al., 2022). Dai and Wang (2020) studied

the influence of climate factors and land use factors on water

yield using the geographic detector model and reported that

precipitation and evapotranspiration were the primary

driving factors in the Hengduan Mountain region. Zhang

et al. (2021) used the automatic linear and geographically

weighted regression models to evaluate the interactive effects

of diverse driving factors on water yield and observed that

annual precipitation and urban expansion were the dominant

factors in the Yangtze River Basin during 2000–2015.

However, the evolution and attribution of the future water

yield coefficient remain unclear.

The Yiluo River Basin is the largest tributary below the

Sanmenxia Dam of the Yellow River Basin, which is mainly

composed of the Yi River and the Luo River. The study area

plays an important role in flood control, water resource

allocation, and water-sediment regulation in the lower

reaches of the Yellow River Basin (Wang et al., 2019; Hou

et al., 2021). To prevent soil erosion and improve the

ecological environment, large-scale water and soil

conservation work has been carried out in the basin. Along

with climate variation and urban expansion, water yield and

consumption properties have been altered, which has greatly

impacted the watershed water yield coefficient. Our aim was to

analyze the spatio-temporal variation of historical and future

water yield coefficients and identify driving factors affecting

water yield in the Yiluo River Basin.

2 Data and methods

2.1 Study area

The Yiluo River Basin (109°43′-113°10′ E and 33°39′-
34°54′ N) flows through more than 20 counties of the

Henan and Shaanxi provinces; it covers an area of

18.9 thousand km2 (Figure 1). The Yiluo River is a typical

“twins river,” where the north bank is the Luo River and the

south bank is the Yi River; the Yiluo River results from the

convergence of the two rivers. The trunk stream (Luo River)

originates in the Shaanxi Province and has a total length of

446.9 km and an area of 11.9 thousand km2. The main

tributary (Yi River) originates in Henan and has a total

length of 264.8 km and an area of 6.1 thousand km2. The

Yiluo River Basin is in the continental monsoon climate zone.

The climate is hot and rainy in summer due to the warm and

humid flow of the Pacific Ocean and cold and rainless in

winter due to cold air from the north. The annual average

temperature is 13.1°C, and the annual average precipitation is

688.1 mm. The precipitation occurs mainly from May to

October, accounting for more than 80% of the annual

precipitation. During 2000–2020, the watershed land use

categories primarily consisted of cultivated land and

woodland, with proportions exceeding 38.2% and 48.3%,

respectively, while grassland, urban land, and bodies of

water accounted for a relatively small proportion.
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2.2 Data

The data collected in this research included historical climate

data, underlying surface data, water resource data, and future climate

data (Table 1). Historical climate data were obtained from the China

Meteorological Data Service Center. Underlying surface data

included land use, the digital elevation model (DEM), and soil

and bedrock depth. Land use data were derived from the National

Geomatics Center of China. The DEM was obtained from the

Geospatial Data Cloud, and the slope and aspect were generated

from the DEM. Soil data was obtained from the National

Cryosphere Desert Data Center; bedrock depth was obtained

from an article in Scientific Data (Yan et al., 2020). Water

resource data included soil water content and the amount of

FIGURE 1
Location, main cities, meteorological stations, major rivers, basin boundary, and elevation of the Yiluo River Basin.

TABLE 1 Study data description and sources.

Category Name Year Data source Description

Historical
climate

Precipitation 1961–2020 China Meteorological Data Service Center (http://data.cma.cn/) Daily data from 10 meteorological
stationsTemperature

Underlying
surface

Land use 2000, 2010,
2020

National Geomatics Center of China (http://www.ngcc.cn/) With a resolution of 30 m

DEM 2000 Geospatial Data Cloud (http://www.gscloud.cn/) With a resolution of 90 m

Slope Generated by DEM

Aspect

Soil 2009 National Cryosphere Desert Data Center (http://www.ncdc.ac.cn) Chinese soil data set based on world soil
database

Depth to
bedrock

2018 Scientific Data (http://globalchange.bnu.edu.cn/research/cdtb.jsp) With a resolution of 100 m

Water resources Water resources 1990–2020 Water Resources Bulletin Provincial and municipal

Soil water United States Geological Survey (https://www.usgs.gov/) With a resolution of 1,000 m

Future climate Precipitation 2021–2050 Coupled Model Intercomparison Project Phase 6 (https://esgf-node.
llnl.gov/projects/cmip6/)

With a resolution of 0.1°m

Temperature
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TABLE 2 Global climate models selected for this study.

Number Mode Institutions Resolution

1 ACCESS-CM2 CSIRO-ARCCSS, Australia 1.2° × 1.8°

2 ACCESS-ESM1-5 CSIRO, Australia 1.2° × 1.8°

3 BCC-CSM2-MR BCC, China 1.12° × 1.12°

4 CanESM5 CCCma, Canada 2.8° × 2.8°

5 CESM2-WACCM NCAR, United States 0.94° × 1.25°

6 CMCC-CM2-SR5 CMCC, Italy 1.0° × 1.0°

7 FGOALS-g3 CAS, China 2.25° × 2°

8 IITM-ESM CCCR-IITM, India 2° × 2°

9 MIROC6 MIROC, Japan 1.4° × 1.4°

10 MPI-ESM1-2-HR MRI-M DWD DKRZ, Germany 0.9° × 0.9°

11 MPI-ESM1-2-LR MRI-M AWI DKRZ, Germany 1.9° × 1.9°

12 MRI-ESM2-0 MRI, Japan 1.125° × 1.125°

13 NorESM2-LM NCC, Norway 1.9° × 2.5°

14 NorESM2-MM NCC, Norway 0.9° × 1.3°

15 TaiESM1 RCEC-AS, Taiwan, China 1.3° × 0.9°

FIGURE 2
Research workflow.
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gross water resources; soil water content was derived from the

United States Geological Survey. The data on gross water resources

were obtained from the Water Resources Bulletin.

Future precipitation and temperature data used in the future

climate model was provided by Coupled Model Intercomparison

Project Phase 6 (CMIP6). The authentic data considered the

Representative Concentration Pathways (RCPs) and the Shared

Socioeconomic Pathways (SSPs), which confront the challenges

of future climate variation more comprehensively. Fifteen models

of CMIP6 (Table 2) were selected to decrease uncertainty in the

future climate model data. The scenarios SSP126, SSP245, SSP370,

and SSP585 were considered in this study. The equidistant

cumulative distribution function (EDCDF) method was used for

downscaling correction (Li et al., 2010; Piao et al., 2021), and

historical climate data were used for correction and verification

of the CMIP6 data.

2.3 Methods

The research workflow of this study included model simulation,

trend analysis, and attribution identification (Figure 2). First, based

on the water yield coefficient calculationmodel, the watershed water

yield coefficients for 2000–2020 and 2030–2050 were simulated.

Next, the temporal and spatial variations of the historical and future

water yield coefficients in the basin were analyzed. Finally, the

impacts of different driving factors on the basin’s historical and

future water yield coefficients were identified based on the

geographical detector model.

2.3.1 Calculation of the water yield coefficient
The water yield coefficient refers to the proportion of regional

water yield to precipitation. The methods are described as follows:

WYC(i) � WY(i)
Pre(i)

where WYC(i), WY(i) (mm), and Pre(i) (mm) refer to the

annual average water yield coefficient, water yield, and

precipitation of grid cell i, respectively. The water yield was

calculated using the water yield module of the InVEST model.

Based on the water balance, the water yield was obtained by

subtracting the actual evapotranspiration from the precipitation

of each grid cell. The formulae are as follows (Redhead et al.,

2016; Wang H. et al., 2022):

WY(i) � (1 − AET(i)
Pre(i) ) × Pre(i)

AET(i)
Pre(i) � 1 + PET(i)

Pre(i) − [1 + (PET(i)
Pre(i) )

ω]1/ω

where: AET(i) (mm) and PET(i) (mm) represent the annual

average actual evapotranspiration and potential

evapotranspiration of grid cell i, respectively, and ω represents

the non-physical parameters of natural climate-soil properties.

The calculation method is as follows:

ω(i) � Z ×
AWC(i)
Pre(i) + 1.25

PET(i) � Kc(ιx) × ET0(i)
where AWC(i) refers to the soil water content available to

vegetation on grid cell i, the Z value reflects the local climate

patterns and hydrogeological properties, and the value of Z for

this calculation was set as 6. Kc(ιx) denotes the

evapotranspiration coefficient of a particular land use type

in raster cell i, and ET0(i) (mm) represents the reference

evapotranspiration of raster cell i. The Thornthwaite method

was applied to simulate the reference evapotranspiration

considering data availability, which is an empirical formula

based on the monthly temperature. The formula is as follows:

ET0 �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, Ti < 0℃

1.6 × LD × (10Ti

I
)α

, 0≤Ti ≤ 26.5℃

Ld × ( − 415.85 + 32.24Ti − 0.43T2
i ), Ti > 26.5℃

I � ∑12

i�1(Ti

5
)1.514

α � 0.49 + 1.79 × 10−2 × I − 7.71 × 10−5 × I2 + 6.75 × 10−7 × I3

where Ti (°C) is the monthly average temperature, I is the

coefficient of temperature efficiency, α is the function of the

heat index, and Ld is the adjustment coefficient related to day

length and latitude.

2.3.2 Future land use simulation
In this study, the future land use simulation (FLUS) model was

applied to simulate the future land use distribution in 2030 and 2050.

First, the model employed the neural network algorithm to obtain

the suitability probability between the land use types and their

driving factors. Second, the Markov model was used to calculate the

pixel number of each land use type in the prediction year. Last, the

land use types were allocated to each pixel on the strength of a

roulette selection method (Liu X. et al., 2017; Liang et al., 2018).

Based on the land use data in 2010, the land use in 2020 was

simulated. Then, the actual data in 2020 was used to verify the

simulation result. On this basis, the calibrated and verified model

was used to simulate future land use in 2030 and 2050 by adjusting

the input parameters.

2.3.3 Geographical detector
A geographical detector is a new statistical method to detect

spatial differentiation and reveal its driving factors. The model

includes single-factor detection, interaction detection, risk

detection, and ecological detection (Wang et al., 2016; Wang and

Xu, 2017). This study used primarily single-factor and interaction

detection. Single-factor detection is used to determine the
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explanatory power of the driving factor X on the variable Y. The q

valuemeasures the explanatory power, and a higher q value indicates

a better explanatory power of X on Y. Interaction detection

determines the explanatory power of the combined effect of two

driving factors, X, on the variable Y. In this study, the geographical

detector method was applied to identify the impacts of precipitation

(X1), temperature (X2), elevation (X3), slope (X4), land use types

(X5), Shannon’s diversity index (SHDI) of landscape pattern (X6),

and topsoil sand fraction (X7) on water yield coefficient (Y).

3 Results

3.1 Spatio-temporal evolution of the
historical water yield coefficient

The relative error between the volume of simulated water

yield and the amount of gross water resources was within 5% in

the Yiluo River Basin during 2000–2020 (Table 3), indicating that

the model has good simulation capability and is useful for

subsequent simulation and prediction. Further, the model for

water yield coefficient calculation was used to obtain the water

yield coefficient of the basin for 2000–2020 (Figure 3). We found

an annual average water yield coefficient of 0.23 in 2000–2020,

with spatial distribution higher in the east and lower in the west.

The water yield coefficient in the most recent 20 years has shown

an increase of 8.53%. Within this time span, the coefficient

increased by 26.75% in 2000–2010 and decreased by 14.38%

in 2010–2020 (Figure 3A–C). In terms of different land use types,

the water yield coefficient of urban land was the highest (0.67),

followed by farmland (0.26), grassland (0.20), and woodland

(0.15). Bodies of water had the lowest water yield coefficient.

During the study period, the water yield coefficients of woodland

and grassland decreased by 8.93% and 1.12%, respectively. The

coefficients of cultivated land, urban land, and bodies of water

increased by 10.47%, 3.24%, and 2.85%, respectively (Figure 3D).

TABLE 3 Water yield results verification.

Period Actual water resources
(billion m3)

Simulated water yield
(billion m3)

Relative error (%)

1990–2000 2.52 2.43 −3.53

2001–2010 3.24 3.40 4.85

2011–2020 2.66 2.72 2.01

FIGURE 3
Water yield coefficient of the Yiluo River Basin during 2000–2020. (A–C) Water yield coefficients of 2000, 2010, and 2020, respectively. (D)
Water yield coefficients of different land use types.
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Spatially, the trend in variation of the water yield coefficient

in the Yiluo River Basin showed obvious spatial heterogeneity

(Figure 4). During 2000–2020, the water yield coefficients in

57.93% of the regions were increasing. Approximately 41.7% of

the regions showed decreasing trends. The trends were

distributed mainly in the middle reaches of the Yiluo River

Basin (Figure 4C). During the 20-year span, the water

coefficients were mostly increasing in 2000–2010 (Figure 4A),

and then decreasing in 2010–2020 (Figure 4B). In addition, the

area proportion of water yield coefficient variation in different

land types was calculated. During 2000–2020, the coefficients of

cultivated land, grassland, and bodies of water had increasing

trends that accounted for 82.4%, 60.8%, and 96.2% of those land

types, respectively; in contrast, the coefficients of woodland and

urban land showed primarily decreasing trends that occurred in

66.8% and 59.9% of those land types, respectively (Figure 4D).

3.2 Spatio-temporal evolution of the
future water yield coefficient

The Kappa coefficient was 0.87 between the simulated and

actual land use in 2020, which indicated that the FLUS model

provided a reliable simulation of the spatial distribution of land

use in the Yiluo River Basin. The land use in 2030 and 2050 was

then simulated. By using predicted future climate data, the water

yield coefficient model was applied to simulate the spatial

distribution of the water yield coefficient during 2030–2050.

We used the SSP126, SSP245, SSP370, and SSP585 scenarios

(Figure 5). The results indicated that the water yield coefficient of

the Yiluo River Basin in 2030–2050 had spatial distribution that

was higher in the east and lower in the west, therefore similar to

that of the historical period. The multi-year average water yield

coefficient was highest under the SSP370 scenario (Figure 5G–I)

and lowest under the SSP585 scenario (Figure 5J–L). Compared

with the historical periods, the coefficients of the two scenarios

increased by 12.2% and 2.0%, respectively. In 2030–2050, the

water yield coefficient increased by 4.9% under the

SSP126 scenario (Figure 5A–C). The water yield coefficient

decreased by 0.4% and 3.2% under the SSP245 (Figure 5D–F)

and SSP585 scenarios and continuously increased by 8.1% under

the SSP370 scenario.

Considering different land use types, the multi-year average

water yield coefficient was highest under the SSP370 scenario and

lowest under the SSP585 scenario in 2030–2050 (Figure 6).

Compared with 2000–2020, the water yield coefficients of

cultivated land and forestland changed the most. Under the

SSP370 and SSP585 scenarios, the coefficients of cultivated

land increased by 13.2% and 2.7%, respectively. Similarly, the

coefficients of forestland decreased by 0.9% and 14.6%,

respectively. The coefficients of grassland, urban land, and

bodies of water changed slightly. During the study period, the

water yield coefficients of different land use types showed a

primarily increasing trend under the SSP126 and

SSP370 scenarios. The coefficient of forestland showed the

greatest change under the SSP126 scenario, with an increase

FIGURE 4
Spatio-temporal variation of the water yield coefficient in the Yiluo River Basin during 2000–2020. (A–C) Trends in change of the water yield
coefficient in 2000–2010, 2010–2020, and 2000–2020, respectively. (D) Area proportion of the water yield coefficient variation in different land use
types. CL, FL, GL, WB, and UL indicate cultivated land, forestland, grassland, water body, and urban land, respectively.
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of 2.6%. Similarly, cultivated land showed the greatest change

under the SSP370 scenario, with an increase of 7.1%. The water

yield coefficients of different land use types showed primarily

decreasing trends under the SSP245 and SSP585 scenarios, and

the coefficients of forestland with the greatest change showed

decreases of 11.1% and 8.2%, respectively.

FIGURE 5
Water yield coefficient of the Yiluo River Basin in 2030–2050. (A–L) Coefficients for 2030, 2035, and 2050 under the SSP126, SSP245, SSP370,
and SSP585 scenarios, respectively.

FIGURE 6
Water yield coefficients of different land use types in 2030, 2035, and 2050 under the SSP126, SSP245, SSP370, and SSP585 scenarios.
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3.3 Detection of driving factors of the
water yield coefficient

The impacts of precipitation, temperature, elevation, slope,

land use, SHDI, and topsoil sand fraction on the water yield

coefficient in the Yiluo River Basin were analyzed based on the

geographical detector model. Single-factor detection results

showed that the land use types in the Yiluo River Basin had

the strongest explanatory power on the water yield coefficient

(Figure 7). The q value reached 26.5% in 2000–2020 and is

projected to exceed 29.5% in 2030–2050. After land use type, the

factors with greatest impact were elevation, slope, precipitation,

and temperature, which had q values between 5% and 25% in the

historical and future periods. The q values of the topsoil sand

fraction and the SHDI were less than 5%.

Based on the interactive detection module of the

geographical detector model, the interaction of each driving

factor with the water yield coefficient in the Yiluo River Basin

was analyzed (Figure 8). The results show that the interaction

between different driving factors presented mainly bilinear

and nonlinear enhancements. These enhancements indicate

that the interaction between any two factors was stronger than

a single-factor effect on the water yield coefficient. The

interactions of the land use types with other driving factors

were the strongest. Explanatory values of 27%–35% in

2000–2020 (Figure 8A) and 30–44% in 2030–2050 were

obtained under the SSP126 (Figure 8B), SSP245

(Figure 8C), SSP370 (Figure 8D), and SSP585 (Figure 8E)

scenarios. The results indicated that interaction between land

use and other driving factors had enhanced influence on the

spatial variation of the water yield coefficient in the Yiluo

River Basin. Precipitation, temperature, elevation, slope, and

the interaction between these driving factors with other

factors had additional impact, with explanatory value of

more than 8%.

4 Discussion

4.1 Influence of climate factors on the
water yield coefficient

The explanatory values of the precipitation and temperature

factors on the water yield coefficient were 11.9% and 5.1%,

respectively, in 2000–2020, and accounted for 14.0%–15.1%

and 8.7%–9.4%, respectively, in projections for 2030–2050.

Moreover, the effects of interaction between climate factors on

the water yield coefficient were stronger than the effects of a

single factor. These results were consistent with previous studies

(Fang et al., 2021; Wang X. et al., 2022). According to the

definition of the water yield coefficient, precipitation intensity

affects the water yield coefficient directly. The watershed

precipitation increased by 3.4% in 2000–2020, and is projected

to increase by 5.8%–8.5% in 2030–2050 compared with the

historical period. The precipitation variation tendency was

consistent with the trend in change of the water yield

coefficient. Simultaneously, rising temperature resulted in

precipitation being increasingly allocated to evapotranspiration

rather than water yield (Liu L. et al., 2017; Ouyang, 2021). From

2000 to 2020, the average annual temperature of the basin

increased by 3.2%, and the actual evapotranspiration increased

by 1.3%. Compared with the historical period, the temperature is

projected to increase by 4.4%–8.6%, and the evapotranspiration

to increase by 4.7%–5.8% in 2030–2050. In addition, climate

warming has led to an increased frequency of extreme weather

events in the Yiluo River Basin, and changed the precipitation

regimes, which further exacerbated the trend in change of the

water yield coefficient (Tian et al., 2018; Xu et al., 2020; Yu et al.,

2022).

4.2 Influence of land use factors on the
water yield coefficient

Land use types had the strongest explanatory power affecting

the water yield coefficient in the Yiluo River Basin; the q value

reached 26.5% in 2000–2020 and the value is projected to exceed

29.5% in 2030–2050. Moreover, the interaction between land use

types and other driving factors resulted in enhanced influence on

water yield coefficient spatial variation. The results were

consistent with previous studies (Gao et al., 2020; Yu et al.,

2020; Liu et al., 2022). In the historical period, the population and

Gross Domestic Product (GDP) of the basin increased by 76%

and 269%, respectively. With economic development and

population growth, urban land area increased by 86%. In the

future, the urban land area will continue to expand, with a

projected increase of 41% between 2020 and 2050. The

expansion of urban land will primarily involve conversion

from cultivated land. In the lower reaches of the Luo River,

the expansion of urban land was associated with a large amount

FIGURE 7
Summary of q values for each driving factor assessed for
effects on water yield coefficients. X1, X2, X3, X4, X5, X6, and
X7 indicate precipitation, temperature, elevation, slope, land use
type, Shannon’s diversity index, and topsoil sand fraction,
respectively.
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of impervious area, resulting in a decrease in infiltration and an

increase in water yield (Zang et al., 2019; Yang Y. et al., 2021).

The Grain for Green Project implementation in 1999 and

increasing public awareness of the need to protect forest

resources led to an increase of 0.39% in woodland area from

2000 to 2020. Compared with 2020, further increase in forestland

area is projected, with a forecast of approximately 1% increase in

2050. Forestland area has increased mainly in the middle reaches

of the Yi River. With the increase of forest area, canopy

interception of moisture and evapotranspiration has increased,

resulting in decreased water yield. In this study, the landscape

pattern index SHDI had weak explanatory power in affecting the

water yield coefficient (the q value was less than 5%), which may

be due to the large size of the calculated raster (Xu et al., 2019;

Zong et al., 2020).

4.3 Effects of topography and soil factors
on the water yield coefficient

The q value of the elevation and slope factors on the water yield

coefficient in the historical and future periods was 15%–30%, and

the q value of the topsoil sand fraction factor was less than 5%. The

regional elevation and slope jointly determined the land use and

vegetation types, which are closely related to the capacity for water

yield and consumption (Gao et al., 2021; He et al., 2022). The upper

reaches of the Yiluo River Basin are mountainous, with large slopes,

and the primary land utilization type is woodland. The lower reaches

are plains with gentle terrain, and the main land use types are

cultivated and urban. The spatial distribution of elevation and slope

was consistent with the water yield coefficient. The topsoil sand

fraction determined the soil category and texture, which affects

infiltration rate. In this study, the topsoil sand fraction factor had a

weak explanatory power in affecting the water yield coefficient,

which may be due to the extended time scale (Qi et al., 2020; Li

J. et al., 2021).

5 Conclusion

Our research focused on the Yiluo River Basin and trends in

spatial and temporal variation of the historical and future water

yield coefficients were analyzed. We also assessed the influence of

climate, topography, land use, and soil composition on the water

yield coefficient. Our main conclusions are:

(1) The annual average water yield coefficient of the Yiluo River

Basin is 0.23, which has increased by 8.53% in the last

FIGURE 8
Detection of interaction among different driving factors. X1, X2, X3, X4, X5, X6, and X7 indicate precipitation, temperature, elevation, slope, land
use type, Shannon’s diversity index, and topsoil sand fraction, respectively. (A–E) Historical and future periods under the SSP126, SSP245, SSP370,
and SSP585 scenarios, respectively.
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20 years. Compared with the historical period, the coefficient

is projected to increase by 2.0–12.2% from 2030 to 2050.

(2) During the study period, the water yield coefficients of

farmland and forestland changed the most. The coefficient

of farmland increased by 10.47% and that of the forestland

decreased by 8.93% from 2000 to 2020. Compared with the

historical period, the water yield coefficient of farmland is

projected to increase by 2.7–13.2% and that of the forestland

projected to decrease by 0.9%–14.6% in 2030–2050.

(3) Based on our model, increasing precipitation (10.6%–13.4%)

and urban expansion (163%) from 2000 to 2050, are, and will

continue to be, the immediate causes of increased water yield

coefficients in the Yiluo River Basin. At the same time, the

rate of increase of the water yield coefficient will be inhibited

by rising temperature (5.6%–9.9%). Increased water

consumption caused by forest construction (4.1%) was

one of the main reasons for decrease in water yield

capacity in the upper reaches of the Yi River.

(4) Future studies are needed to analyze dynamic mutual

feeding mechanisms of water and land resources in

greater depth.
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