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Using provincial panel data spanning from 1995 to 2020, this paper examines

the nonlinear interrelationship between logistics carbon dioxide emissions and

output growth. For this purpose, we conduct a nonlinear co-integration test in

heterogeneous panels; our results suggests a long-run relationship between

these two variables. In contrast, adjustment to the equilibrium is inherently

nonlinear. Furthermore, we estimate a panel smooth transition vector error

correction model. Our major contributions, as we know, are the first study

confirming the existence of a dynamic mechanism between logistics carbon

dioxide emissions and regional output growth and the Environmental Kuznets

Curve in China. Last, the interaction between logistics carbon dioxide emissions

and regional output growth varies over the output growth in Chinese provinces

and autonomous regions. Our results highlight the importance of considering

possible nonlinearities in analyzing output-carbon dioxide emissions causality

nexus and designing energy policies.
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Introduction

In recent years, global warming and environmental pollution have renewed interest in

the low-carbon economy, which has primarily been discussed by the Chinese government

and academic communities. China is responsible for 15% of global greenhouse gas

emissions, of which CO2 emissions make up 80%.

In the past decade, the average annual growth rate of CO2 emissions has been 17.8% in

China, which is at the forefront of the world (Zhao and Hu, 2013). The Chinese

government pledged at the Paris Conference on Climate Changes in November

2015 that carbon dioxide emissions would peak around 2030. In April 2016, China

formally ratified the Paris Agreement, and in September 2020, the 75th United Nations

General Assembly vowed to take stronger action and work toward becoming carbon

neutral before 2060.

However, China is still under intense pressure to reduce emissions in order to meet

this target.
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Logistics is a high-energy-consuming industry that also

generates a significant amount of CO2 emissions. In China,

the logistics sector has emerged as one of the biggest

consumers of energy resources, according to Xu and Yu’s

calculation of the CO2 emissions of the industry in 2020.

According to the International Energy Agency’s 2009 report

“Transport, Energy, and Carbon Emissions: Towards

Sustainability,” the transportation sector accounts for

approximately 25% of global CO2 emissions. In light of this,

all counties are working toward creating a cleaner logistics sector.

To address these worries. Alinaghian and Goli (2017) proposed

an uncertain integrated model for locating temporary depots in

affected areas, allocating affected areas to these centres, and

routing required goods through such centres.

The proposed model pursued to reduce the time required to

reach the last relief centre. Goli et al. (2021) specifically address

the prediction of dairy product demand to improve logistics

systems for dairy product transportation, allowing for a brief

consumption period, as a result of their insights into green

logistics. Furthermore, Tirkolaee et al. (2022) developed a

novel mathematical model based on Pareto-based algorithms

to design a sustainable mask Closed-Loop Supply Chain Network

during the COVID-19 outbreak for the first time. Their efforts

contribute to the reduction of environmental degradation

through green transportation.

Our research here is primarily connected to two strands of

the literature. The first strand concerns to the existence of the

Environmental Kuznets Curve, which has piqued the interest of

academics, practitioners, and regulators since Kyoto Protocol was

signed.

Understanding the link between CO2 emissions and

economic growth helps economies in developing energy

policies and sustainable energy resources. Pao and Tsai (2010)

studied the relationship between pollutant emissions, energy

consumption and output growth in BRIC countries. This

study shows that energy consumption has a positive long-

term effect on CO2 emissions, being statistically significant. In

contrast, the relationship between actual output and CO2

emissions shows an inverted U-shaped relationship with a

threshold income effect. Wang et al. (2011) used a data set of

28 provinces in China. They found that there is an inverted

U-shaped relationship between CO2 emissions in energy

consumption and output growth by a panel co-integration

test. They ascribed higher per capita CO2 emissions in China

to the overuse of energy resources. Using a data set from

12 countries in the Middle East and North Africa, Arouri

et al. (2012) showed that energy consumption influences CO2

emissions positively in the long run. A quadratic relationship

exists between actual GDP and CO2 emissions, confirming the

EKC hypothesis. Based on the autoregressive distributed lag

model, Baek and Kim (2013) confirmed that the EKC

relationship held in South Korea over the past 40 years.

Recently, Khan and Eggoh (2021) re-assessed the relationship

between economic growth and pollution emissions using a large

panel of 146 economies from 1990 to 2016. Their empirical

findings support the existence of the Environmental Kuznets

Curve hypothesis for the global sample as well as for income-

specific sub-samples. Rahman et al. (2020) investigates the

impact of CO2 emissions, population density, and trade

openness on the economic growth of five South Asian

countries from 1990 to 2017. The obtained results reveal that

CO2 emissions and population density positively, and trade

openness negatively affect the economic growth in South Asia.

Further, Anwar et al. (2022) investigated the major determinants

of CO2 emissions in Far East countries in the period of

1980–2017, finding that urbanization, economic growth and

trade openness significantly determine CO2 emission in the

selected countries.

Although in recent years, numerous studies have thoroughly

investigated the nexus between economic growth and CO2

emissions, and concluded a positive relationship between CO2

emissions and economic growth in various degrees, many studies

conclude quite different from the conventional view. Lu (2000)

specified a state-space model between per capita carbon

emissions and per capita GDP and found that the relationship

between the two is not simply inverted U-shaped but tells a more

complicated story. Choi et al. (2010) explored the EKC

relationship between China, a newly industrialized country,

South Korea, and Japan, a developed economy, using data

from 1971 to 2006. Their findings suggest that the EKC

relationship exhibits different temporal patterns across

different countries, which vary according to the countries level

of economic development.

The results show that China has an N-shaped curve, Japan

has a U-shaped curve, and Korea has an inverted U-shaped

curve. Wang (2012) conducted the most comprehensive study

(98 countries involved), examining the non-linear relationship

between CO2 emissions from oil and GDP while accounting for

population growth. This study found that a threshold effect exists

in the relationship between emissions and growth and it was

concluded that the impact of CO2 emissions varies from low-

income to wealthy countries. Similarly, Li and Ya (2012)

investigated the long-term equilibrium relationship between

the carbon emissions from China’s manufacturing,

construction, and transportation industries and output growth

from the standpoint of harmoniously industrial development.

CO2 emissions stimulate economic growth in the short term, but

their influence gradually fades and finally becomes stationary in

the long term. The contribution of CO2 emissions from the

transportation and construction industries to economic growth

decreases initially before increasing as a result of the industrial

adjustment. Muhammad (2019) examined the link between

economic growth, energy consumption and CO2 emissions for

the panel of 68 countries between 2001–2017, that included

developed, emerging and Middle East and North Africa

(MENA) countries. Economic growth in developed and
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emerging countries increased energy consumption, while

declining in MENA countries; due to an increase in energy

consumption CO2 emissions increased in all countries.

Adebayo et al. (2021) re-examine the relationship between

urbanization, CO2 emissions, gross capital formation, energy use,

and economic growth in South Korea using data from 1965 to

2019, finding that CO2 emissions trigger economic growth and

that the energy-induced growth hypothesis is validated, but the

EKC relationship collapses. Sun et al. (2021) examined the

dynamic relationship between carbon emissions, trade, energy

consumption, urbanization, and output growth from 1992 to

2015. The Environmental Kuznets Curve (EKC) assumption is

confirmed only in three panels, and output growth has a

significant positive effect on environmental pollution in all

panels.

The second strand is associated with the nexus between CO2

emissions and output growth in the logistics industry. Abbes and

Bulteau (2018) investigates the dynamic effects of GDP growth,

motorization rate, transport pollution coefficient, and energy

intensity on CO2 emissions from the transport sector in Tunisia.

In the long run, the statistically insignificant effects of per capita

GDP on transport carbon emissions in the long run suggest that

these emissions can be controlled without disrupting economic

growth.This can be accomplished by developing short-sea

shipping between major cities in order to reduce traffic

congestion and carbon emissions.

Liu et al. (2019) examine the impact of income and region on

environmental logistics performance index scores and discuss the

potential for reduction in oil consumption intensity and carbon

intensity in those countries. The main finding is that the

environmental logistics performance index generally perform

well in the environmental logistics performance index.

The environmental logistics performance index, like the

logistics performance index, is closely related to income and

region. Similar to the characteristics of the logistics performance

index, the environmental logistics performance index is also

closely related to income and region. Liu et al. (2021) employ

a Global Malmquist-Luenberger Index approach to evaluate the

green productivity growth of road transportation in China at the

provincial level based on the Data Envelopment Analysis and

Directional Distance Function, finding that, at the regional level,

the road transportation industries in Western and Central China

achieved green productivity growth because of the catch-up effect

and the economies of scale, respectively. Wang (2021) confirms

that, with the growth of GDP per capita, the degree of coupling

and coordination between the logistics and financial industries

has promoted the increase of carbon emissions in various

regions. Still, the promotion effect is an inverted U-shaped

trend that first increases and then decreases. Recently, Awan

et al. (2022) investigate the nexus between transport sector-based

carbon dioxide emissions, economic growth, innovation, and

urbanization. Furthermore, the study analyzes the

Environmental Kuznets Curve (EKC) hypothesis for the

transport sector in balanced panel data of 33 high-income

countries from 1996 to 2014 using a robust and novel

quantile methodology. Findings reveal the validity of an

N-shape EKC curve for the transport sector. The study

recommends shifting to public transportation systems to help

curb environmental degradation through green transportation.

Aydin et al. (2022) investigate the impact of energy intensity on

the relationship between logistic growth and environmental

pollution in 45 countries that support the One Belt One Road

project proposed to revitalize the historical Silk Road between

2007 and 2018. According to the findings of the study, the

relationship between logistics growth and environmental

pollution is not linear, and energy intensity level plays an

important role in this relationship (Tirkolaee et al., 2022).

Hassan et al. (2022) examine the dynamic linkage among

nuclear energy, public service transportation, real income, and

innovative technology with CO2 emissions in China. Results

show that innovative technology mitigates environmental

pollution. As a result, different perspectives from previous

studies lead to different theoretical insights into the

relationship between output growth and CO2 emissions, and

no definitive policy framework exists to address the escalating

problem of greenhouse gas emissions. Furthermore, in the

logistics sector, the existing literature focuses primarily on

different aspects of logistics such as transportation (Fleisher

and Chen, 1997; Lu et al., 2019), and telecommunication (Jing

and Ab-Rahim, 2020).

However, the literature lacks a deeper examination of the

logistics sector’s output using a large panel dataset. Most of

relevant studies focus on the relationship between energy

consumption and output growth at a national level. Yuan

et al. (2008) discovered a co-integration relationship between

energy consumption and output growth between 1978 and

2004. Other studies concentrate on a large number of

countries at the same time. Li et al. (2021) investigate the

economic and environmental impacts of green logistics

performance for One Belt and Road Initiative (OBRI)

countries from 2007 to 2019. According to the findings,

green logistics performance improves OBRI economic

growth while enhancing environmental pollution in these

countries. Their studies, however, assume that model

parameters do not change over time and, as a result, ignore

China’s heterogeneity across regions, which is one of the main

causes of estimation bias. To overcome the limitations of their

studies, we use the panel smooth transition regression model

(PSTR) proposed by Gonzalez et al. (2005). This model is lent to

analyze the relationship between CO2 emissions and output

growth of the logistics sector in different regions to investigate

the heterogeneity and time-varying parameters of the PSTR

model across regions. It is of great significance to clarify the

debate on whether an EKC relationship exists between CO2

emissions of the logistics sector and output growth based on our

econometric framework.
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Econometric framework

Nonlinear panel co-integration test

Consider the following panel regression model:

yi,t � αi + βixi,t + ui,t (1)

where i � 1,/, N, t � 1,/, T, yi,t and xi,t represent the

observed I(1) variables, β � (β1, β2,/, βm) are the parameters

to be estimated, ui,t is the error term, yi,t is a scalar, xi,t �
(x1,t, x2,t,/, xm,t) is a (m × 1) vector, and αi symbolizes

individual fixed effect. Further, suppose that a (n × 1) vector zi,t′ �
(yi,t,/, xi,t) is generated by a process zi,t � zi,t−1 + εi,t, where εi,t
is a error term with zero mean and a positively definite variance

covariance matrix, and E(εi,t)s <∞, for s> 4.
If the error term ui,t is stationary in Eq. 1, the vector zi,t is co-

integrated, ui,t is called the equilibrium error. In this paper, we

assume that ui,t can be generated using the following non-linear

process:

ui,t � γiui,t−1 + ψiui,t−1F(ui,t−1; θi) + ξ i,t (2)

Where ξi,t is the error of zero mean, and F(ui,t−1; θi) is a smooth

transition function of ui,t. According to the previous literature

(e.g. Kapetanios et al., 2003; Kapetanios et al., 2006; Maki, 2010)

dealing with the nonlinear co-integrated relationship, we assume

a exponential transition function F(ui,t−1; θi) as follows,

F(ui,t−1; θi) � 1 − exp{ − θiu
2
i,t−1} (3)

Furthermore, assume that ui,t follows a stochastic process

with zero mean, and the parameter θi determines the speed at

which the function changes its values from an extreme to

another. A exponential function has excellent properties that

the speed at which its values are adjusted to a long-run

equilibrium state depends on the degree of the disequilibrium.

Substituting Eq. 3 into Eq. 2 and reparameterizing Eq. 2, we

obtain the following model:

Δui,t � φiui,t−1 + ψiui,t−1[1 − exp{ − θiu
2
i,t−1}] + ζ i,t (4)

Imposing a constraint on Eq. 4 that ui,t follows the unit root

process in the medium regime, i.e. φi � 0, and further

considering the possible sequential correlation of the error

terms in Eq. 4, we obtain a regression model as follows:

Δui,t � ψiui,t−1[1 − exp{ − θiu
2
i,t−1}] +∑p

j�1
ρijui,t−j + ζ i,t (5)

The test of co-integration is based on the parameter θi, which

is equal to 0 under null hypothesis of the presence of the co-

integration relationship, and is positive under alternative

hypothesis. However, it is not feasible to test null hypothesis

directly, since the parameter ψi is unidentified under null

hypothesis. According to Luukkonen et al. (1988)’s

methodology dealing with this problem, the first-order Taylor

expansion can be applied to the transition function Eq. 3.

Under null hypothesis, the first-order Taylor approximation

yields the following auxiliary regression equation:

Δui,t � δiu
3
i,t−1 +∑pi

j�1
ρijΔui,t−j + ei,t (6)

where ei,t is composed of the disturbance term and Taylor

approximation error in Eq. 5. In regression Eq. 6, each term

is allowed to have a different lag order pi. Specifically, the null

and alternative hypotheses can be expressed, respectively, as:

H0: δi � 0, for all i, implies no co-integration relationship;

H1: δi < 0, for some i, implies that a nonlinear co-integration

relationship exists.

In practice, an appropriate lag order should be selected for

the auxiliary regression model Eq. 6. Following Uçar and Omay

(2009), the average of the co-integration test statistics is first

taken over the entire panel data, and then the nonlinear panel co-

integration test statistics can be computed. The standardized t

statistic (see Kapetanios et al., 2003) is defined as:

ti,NL � Δu′
iMtu3

i,−1
σ̂ i,NL(ui,−1′ Mtui,−1)3/2 (7)

where σ̂2i,NL � Δu′iMtui
T−1 , Mt � IT − τT(τ′TτT)−1τ′T,

Δui � (Δui,1,Δui,2,/,Δui,T)′, and τT � (1, 1,/, 1).
According to Pesaran (2007), we use the t statistic in Eq. 7 to

compute the panel unit root test statistic, and �tNL statistic can be

symbolized as follows:

�t(N,T) � 1
N

∑N
i�1
ti(N,T) (8)

A common obstacle encountered in panel regression is the

presence of cross-section interdependence, which invalidate

traditional unit root and co-integration tests. This paper

follows the methodology proposed by Pesaran (2004), whose

test statistic is represented as:

CD �
									

2T
N(N − 1)

√ ⎛⎝ ∑N−1

i�1
∑N
j�i+1

ρ̂ij⎞⎠ (9)

where ρ̂ij is the correlation coefficient between the error terms

of Eq. 1 for individuals i and j. Using the Uçar and Omay

(2009)’s method, this paper applies Sieve bootstrap to deal with

cross-section dependence. Considering that the long-term

equilibrium relationship and the short-term dynamic

relationship between variables might be potentially

nonlinear, we propose a nonlinear panel smooth transition

vector error correction model (PSTRVEC) to study the regime

dependent relationship between CO2 emissions from the

logistics sector and output growth. We turn to the

specification and estimation of the PSTRVEC model in the

next subsection.
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Nonlinear panel smooth transition vector
error correction model

According to Gonzalez et al. (2005), we specify the panel

smooth transition vector error correction model (PSTRVEC) as

follows:

Δgdp � μ1i + β1ec1i,t−1 +∑pi
j�1
θ1jΔgdpi,t−j +∑qi

j�1
ϑ1jΔCO2i,t−j + G(Si,t; γ, c)

{~β1ec1i,t−1 +∑pi
j�1

~θ1jΔgdpi,t−j +∑qi
j�1

~ϑ1jΔCO2i,t−j} + ξ1it

ΔCO2i,t � μ2i + β2ec2i,t−1 +∑ri
j�1
θ2jΔgdpi,t−j +∑si

j�1
ϑ2jΔCO2i,t−j + G(Si,t; γ, c)

{~β2ec2i,t−1 +∑ri
j�1

~θ2jΔgdpi,t−j +∑si
j�1

~ϑ2jΔCO2i,t−j} + ξ2it

(10)

for i � 1, . . . , N, and t � 1, . . . , T, where N and T denotes the

cross-section and time dimensions of the panel, respectively;

gdpi,t is output in the logistics industry; while CO2i,t symbolizes

the carbon dioxide emissions of logistics industry. μ1i and μ2i
capture fixed individual effects; ec1i,t and ec2i,t are the error

correction terms1 from regression Eq. 1; ξli,t and ξ2i,t are

disturbance terms assumed to be martingale difference processes

with respect to the history of the variables with mean zero and

variance, σ2i . We consider that the errors of N equations have a

simultaneous correlation (namely, cov(ξli,t, ξlj,t) ≠ 0, l � 1, 2

for i ≠ j).

To model regime-shifts in the short-run and long-run,

Gonzalez et al. (2005) and Omay and Kan (2010) consider the

employment of the following logistic transition function:

G(Si,t; γ, c) � [1 + exp{ − γΠ
m

j�1(Si,t − cj)}]−1
, γ> 0, cm ≥/≥ c1 ≥ c0

(11)

where c � (c1,/, cm)′ is a m-dimensional vector of location

parameters and the slope parameter, γ, denotes the smoothness

degrees between regimes.m � 1 or 2 usually meet usual modes of

regime-shifts. When m � 1, Eq. 11 is the first-order logistic

transition function, and the extreme regimes correspond to

the maximum and minimum of the transition variable Si,t. As

Si,t increases, the coefficients of the PSTRVEC model (10) transit

smoothly from βj, θj and ϑj to βj + ~βj, θj + ~θj and ϑj + ~ϑj
respectively. When γ → ∞, the first-order logistic transition

function G(Si,t; γ, c) becomes an indicator function I[A].
When an event A occurs, it is valued at 1; otherwise, it is

equal to 0. Hence, the PSTRVEC model is simplified into the

two-regime threshold model (Hansen, 1999).

Form � 2, on the other hand, the logistic transition function

takes a value of 1 for both low and high values of Sit, minimizing

at (c1 + c2)/2. In such a case, if γ → ∞, the model reduces to a

three-regime panel threshold model. In contrast, if γ → 0, the

transition function G(Si,t; γ, c) is a constant, therefore, the

PSTRVEC model is simplified into a linear panel regression

model. The specification and estimation of the PSTRVEC model

follow the following steps:

Firstly, specify an appropriate linear panel model which fits

the selected data excellently; Secondly, test null hypothesis of a

linear panel model. If linearity is rejected, select an appropriate

transition variable Si,t and a form of transition function; Finally,

estimate the specified PSTRVEC model.

In the second step above, the complexity of testing null of

linearity results from unidentified ‘notorious’ parameters under

null hypothesis. To overcome this problem, the transition

function may be replaced with the appropriate Taylor

approximation (Luukkonen et al., 1988). For example, the kth

order Taylor approximation of the first-order logistic transition

function around γ � 0 results in the following auxiliary

regression:

Δzi,t � λi + π,
0eci,t−1 +∑pi

j�1
ψ0jΔzi,t−j +∑k

h�1
~π,
hS

h
i,teci,t−1

+∑k
h�1

∑pi
j�1

~ψhjS
h
i,tΔzi,t−j + ei,t (12)

where zi,t � (gdpi,t, CO2i,t)′, and λ, π′,ψ, ~π and ~ψ is

reparameterization of original parameters μi, β, θj, ϑj,
~β, ~θj, ~ϑj, γ

and ci respectively; ei,t consists of the original disturbance term

ξi,t and errors from the Taylor approximation. Thus, testing null

hypothesis H0: γ � 0 in (10) is equivalent to testing null

hypothesis H0: ω1 � ω2 � ω3 � 0, where ω1,ω2,ω3

corresponds to ωi ≡ (~πi, ~ψi) in Eq. 12, respectively. LM test is

desired to test null hypothesis, which approximately follows a F

distribution:

LM � (SSR0 − SSR1)/kp
SSR0/(TN −N − k(p + 1))
~ F(kp, TN −N − k(p + 1)) (13)

where SSR0 and SSR1 is the sum of the squares of residuals under

null hypothesis and alternative hypothesis, respectively. In order

to select an appropriate transition variable Si,t, LM statistics can

be calculated using different transition variables, where the

transition variable with the lowest p-value accompanying the

LM statistic should be selected to estimate Eq. 12.

When the transition variable Si,t is selected appropriately, the

next step is to choose m � 1 or m � 2. Teräsvirta, 1994 suggests

using various inference rules for Eq. 12. Following these rules, we

test null hypothesis H0
*: ω1 � ω2 � ω3 � 0 by estimating the

auxiliary regression Eq. 12 with k � 3. If it is rejected, we test

null hypothesis H03
*: ω3 � 0. If H03

* is rejected, other null

hypothesis are tested further, H02
*: ω2 � 0|ω3 � 0, and

1 In Eq. 1, yit and xit are represented by gdpit and CO2it respectively, and
then the dependent variable and independent variable are swapped to
obtain two equations, and two residuals are estimated.
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H01
*: ω1 � 0|ω2 � ω3 � 0, respectively. These tests are inferred

using F statistic, denoted as F, F3, F2 and F1, respectively.

Finally, the inference proceeds as follows: If the p-value

associated with F2 is minimum, the exponential transition

function should be used in the PSTRVEC model; in all other

cases, the first-order logistic function should be chosen.

The methodology to estimate the panel
smooth transition vector error correction
model

The PSTRVEC model can be estimated using nonlinear

least square methodology once the transition variable and

the appropriate function form is selected, and the

optimization algorithm requires that the initial values of

the model parameters be chosen accurately. And then a

two-dimensional grid search technique is adopted to

search for the initial values of parameters γ and c, which

minimizes the sum of squares of residuals from Eq. 10.

Once the parameters γ and c are given in the transition

function, the PSTRVEC model becomes a linear panel data

model with parameters μi, β, θj, ϑj,
~β, ~θj, ~ϑj, and, therefore,

can be estimated using the least square method. To

overcome the cross-section dependence, this paper

simultaneously estimates the output and CO2 emissions

equations by a nonlinear generalized least squares iterative

method.

Empirical results

In this section, we use the annual dataset of 30 provinces and

autonomous regions in Mainland China except for Tibet during

the sample period from 1995 to 2020, and apply empirical

techniques specified in the previous section to examine the

dynamic interrelationship between logistics CO2 emissions

and output growth. Using the gross national product data of

provinces and autonomous regions to measure the output

(gdpi,t), which are obtained from the Database of China

Economic Network. The CO2 emissions of the logistics

industry are calculated by multiplying the energy

consumption of the logistics industry by the carbon emission

factors (CEF) of various energy resources. The logistics industry

consists of transportation, storage and postal services. The energy

consumption data come from China Energy Statistical Yearbook

during the sample period (see data availability statement below).

According to the research findings of IPCC (2006), the carbon

emission factors of various energy resources are shown in

Table 1. Both GDP and carbon emissions are taken natural

logarithm in following processes of model estimation and

hypothesis tests.

The panel unit root test and panel co-
integration test

We first test the stationarity of output (gdpi,t) and CO2

emissions. For comparison, we use both the traditional IPS linear

unit root test (Kim et al., 2003) and the nonlinear unit root test

(CPLS test for short) proposed by Cerrato et al. (2009). The CPLS

test can be carried out according to the procedure shown by Eqs.

2–8. These panel unit root test results are tabulated in Table 2,

which shows that both carbon emissions and output of the

logistics industry are I(1) processes regardless of which forms

are specified in testing models. Considering the low power of the

traditional linear test, we turn to test whether there exists

nonlinear co-integration between output (gdpi,t) and CO2

emissions. To do so, we first estimate the panel regression

model, and then obtain residuals û1i,t and û2i,t, as shown in

Table 2.

Closed in parentheses beneath estimated coefficients in

Table 2 are their companion t-statistics. We collect the

residuals obtained from panel regression equations and

implement a nonlinear co-integration test based on Eq. 8 and

the linear co-integration test proposed by Pedroni (1999). These

tests indicate a statistically significant cross-section dependence

[measured by the CD statistic, (Pesaran, 2004)]. Indeed, the CD

statistic of the CO2 emissions (after being taken logarithm) is

90.286 (the companion p-value is 0.000); The CD statistic for the

logarithm of output is 94.252 (the companion p-value is 0.000).

In the presence of cross-section dependence, the bootstrap

algorithm should be used to obtain the p values associated

with the two test statistics, which are shown in Table 3.

Although the IPS test shows that there is no co-integration

relationship between CO2 emissions and output of the logistics

industry, the CPLS test shows the presence of co-integration

between these two series. We estimate the nonlinear panel error

correction model expressed by Eq. 10 allowing for nonlinear co-

integration. Before estimating the PSTRVEC model, we estimate

an appropriate linear model and perform linearity diagnosis first.

The optimal lag orders of linear models are selected according to

the AIC criterion, and parameter estimates are shown as follows:

Δgdp � 0.0827 − 0.0467***eci1,t−1 + 0.3323***Δgdpi,t−1
(0.0092) (0.0299)

−0.0223***ΔCO2i,t−1
(0.0149)

ΔCO2i,t � 0.1227 − 0.7007***ec2i,t−1 − 0.0721ΔCO2i,t−1
(0.1419) (0.0513)
−0.1154Δgdpi,t−1

(0.2347)
*** denotes significance at 1% level, ** denotes significant

level at 5%, * denotes significance at 10% level. The values in

brackets are standard deviations.
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The coefficients associated with error correction terms

have correct signs in both equations and are statistically

significant. Their negative coefficients indicate that a

reverse adjustment dynamics exits between output growth

and CO2 emissions growth in the logistics sector. when they

converge to the long-term equilibrium. Furthermore, other

coefficients are statistically significant and have the expected

signs.

Results of linearity tests

Although the linear models can achieve expected estimates to

a certain extent, we test the linearity underlying the regression

models in Eq. 12 yet on the safe side. For k � 1, 2, 3, the lagged

output growth, the lagged CO2 emissions growth and the lagged

error correction terms are selected as transition variables

alternatively, which can reflect the sources of all possible

TABLE 1 Carbon emissions factors of various energy resources.

Energy
resources

Raw
coal

Gasoline Kerosene Diesel
Oil

Fuel
oil

Natural
gas

Electric
power

CEF 0.7559 0.5538 0.5714 0.5821 0.6185 0.4438 2.2132

TABLE 2 Linear and nonlinear unit root tests.

Critical Values

IPS test CPLS test

Intercept W-statistic Intercept and time trend t-statistic Intercept and time trend
t-statistic

cv10-1.690 cv5-1.730 cv1-1.820 cv10-2.330 cv5-2.380 cv1-2.460 cv10-2.13 cv5-2.00 cv1-1.80

gdp −0.5397 −1.5753 −2.3815***

(0.1989) (0.3048) (0.0014)

Δgdp −2.4710*** −4.2340*** −2.0123**

(0.2846) (0.2801) (3.1358)

ΔCO2 −1.9216** −2.8117 −1.5832*

(0.2353) (0.1811) (0.0008)

CO2 −5.3329 −5.6313 −1.9175**

(0.1879) (0.3367) (2.9667)

The values in brackets are standard deviations, *** denotes !% significance level; ** denotes %5 significance level; * denotes 10% significance level. cv10, cv5 and cv1 denotes critical values at

10%, 5% and 1% significance level, respectively.

TABLE 3 Panel co-integration test results.

Linear Co-integration test Nonlinear Co-integration test

t-statistic t-statistic

Specification
Critical Values (cv10 cv5 cv1)

Intercept, Trend and 1-order Lag Intercept, Trend and 1-order Lag

−2.330 −2.380 −2.460 −2.13 −2.00 −1.80

û1i,t −2.6752 (0.3938) −2.2519**(0.3804)

û2i,t −2.7775 (1.7968)*** −1.9287**(0.7361)

*** represents significance at 1% level, ** represents significance at 5% level, * represents significance at 10% level. cv10, cv5 and cv1 represent critical values at 10%, 5% and 1% significance

level, respectively. û1i,t � gdpi,t + 0.0088 − −0.6145CO2i,t and û2i,t � CO2i,t − 0.8481 − 0.7996gdpi,t .
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nonlinear relations between CO2 emissions and output. For

example, the lagged output growth as a transition variable can

indicate that it is in which phase of business cycle that the non-

linear relationship has happened between variables considered; If

the lagged error correction term is used as a transition variable,

the nonlinear relationship between CO2 emissions growth and

output growth depends on the degree of deviation from the long-

term equilibrium level. If the lagged CO2 emissions growth is

used as a transition variable, the nonlinear dynamic relationship

between CO2 emissions growth and output growth depends on

CO2 emissions growth. All these results estimated are listed in

Table 4.

As Table 4 shows, the null hypothesis of linearity can be

rejected at the traditional significance level for both the output

growth equation and the CO2 emissions growth equation. As

many studies show, there may be many reasons for the

nonlinearity between output growth and CO2 emissions

growth. Specifically, identified nonlinearity arises mainly from

output growth (i.e. different phases of the economic cycle).

However, in CO2 emissions growth equation, the nonlinear

relationship is mainly caused by CO2 emissions growth.

Considering that the nonlinear relationship in different

equations attributes to different transition variables, we choose

output growth and CO2 emissions growth as the transition

variables in two equations respectively, and implement a

series of F tests proposed by Teräsvirta (1994) to select a

specific form of the transition function. The F test statistics

are reported in Table 5 below.

The estimates of the panel smooth
transition vector error correction model

Table 5 shows that among all F tests, the companion p-value

of F1 is the smallest. According to the inference rule proposed by

Teräsvirta (1994), the logistic function is the most appropriate

candidate. Further, we move on estimating the PSTRVECmodel.

Considering the possible cross-section correlation in panel data,

we use the iterative generalized nonlinear least squares method to

estimate the PSTRVEC model. The optimal lag orders of the

model are selected by the AIC criterion. Table 6 reports our

results.

As analyzed by the previous subsection, the relationship

between output growth and CO2 emissions growth varies over

different phases of business cycle. Hence, it is reasonable to apply

the estimated logistic transition function below,

G(Δgdpi,t−1; γ, c)
� (1 + exp( − 29.7774(Δgdpi,t−1 − 0.0684)))−1,

to two PSTRVEC equations, and estimated results are shown in

Table 7.

TABLE 4 Linearity test results.

Transition variables Output growth equation

k � 1 k � 2 k � 3

Δgdpi,t−1 7.6703 (0.0082) 15.6620 (0.0000) 7.6437 (0.0000)

Δgdpi,t 304.2680 (0.0000) 140.0065 (0.0000) 166.0479 (0.0000)

ΔCO2i,t−1 6.5324 (0.0130) 4.6571 (0.0110) 4.8992 (0.0029)

ec1i,t−1 0.7962 (0.4124) 1.6972 (0.2704) 3.6274 (0.0027)

Transition Variables CO2 Emissions Growth Equation

Δgdpi,t−1 3.3354 (0.1182) 4.0768 (0.0346) 6.0586 (0.0017)

ΔCO2i,t−1 34.1832 (0.0000) 29.6681 (0.0000) 23.1685 (0.0000)

ec2i,t−1 45.0067 (0.0000) 24.6833 (0.0000) 19.8601 (0.0000)

F test is used for testing linearity of the panel data model, and the values in brackets are p-values associated with F tests. The optimal lag orders are selected according to AIC criterion.

TABLE 5 Choice of transition functions.

Equations F F1 F2 F3

Output 1.4581 (0.0631) 0.4588 (0.6475) 0.8354 (0.4997) 2.8579 (0.0132)

CO2 Emissions 8.1026 (0.0000) 18.7408 (0.0000) 3.2862 (0.0092) 6.9044 (0.0000)

Closed in brackets are p-values.
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As discussed above, the regime shifts of the PSTRVECmodel

are captured by transition function G(si,t; γ, c), where the

parameter γ determines the speed of switching from an

extreme to another, while the positional parameter c

determines the location of the midpoint of transition. In CO2

emissions growth equation, the estimated positional parameter

ĉ � −0.0223 is very close to 0, indicating that the lowest regime in

the estimated PSTRVEC model corresponds to the negative

TABLE 6 Estimated Parameters of the PSTRVEC model.

Independent variables Output growth equation (transition
variable Δgdpi,t−1)

CO2 emissions growth equation
(transition variable ΔCO2i,t−1)

Regime 1 Regime 2 Regime 1 Regime 2

eci,t−1 −0.0370* 0.0338 −0.9205*** 0.0895

(0.0188) (0.0157) (0.1434) (0.0987)

Δgdpi,t−1 0.1716*** 0.1715*** −0.8834*** 0.8498**

(0.0552) −0.0689*** (0.2685) (0.3236)

ΔCO2i,t−1 0.0109 (0.0228) −0.7576*** 0.6855***

(0.0132) (0.1061) (0.1338)

μ 0.1120*** 0.1340**

(0.0056) (0.0485)

γ̂ 29.7774 19.6761

ĉ 0.0684 −0.0223

*** represents significance at 1% level, ** represents significance at 5% level, * represents significant at 10% level, and the values in brackets are standard deviations.

TABLE 7 Empirical results of CO2 emissions equation when the transition variable is output growth.

eci,t−1 Δgdpi,t−1 ΔCO2i,t−1 μ

Regime 1 −0.9335***(0.1403) 1.3353*(0.8915) −0.2061 (0.2170) 0.0491 (0.0937)

Regime 2 0.0866 (0.1973) −1.1434*(0.8126) 0.1083 (0.3717)

*** denotes significance at 1% level, ** denotes significance at 5% level, * denotes significance at 10% level, and the values in brackets are standard deviations.

FIGURE 1
The scatter graph of the estimated transition function in the CO2 emissions growth equation of the logistics sector.
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growth rate of CO2 emissions in the logistics industry, while the

highest regime matches the positive growth rate of CO2

emissions. In fact, when the growth rate of CO2 emissions is

less than −0.1728, the value of G(si,t; γ, c) is less than 0.01; while

when CO2 emissions growth rate is greater than 0.2518, the

function G(si,t; γ, c) is greater than 0.99. The estimated

parameter γ̂ � 19.6761 indicates a smooth transition between

two extreme regimes, as shown in Figure 1. Similarly, the

transition speed parameter in the output growth equation is

29.7774, indicating that switching between two extremes is

relatively smooth. The transition midpoint (the estimated

positional parameter) is 0.09526, indicating that the impacts

of CO2 emissions on output growth in the logistics sector are

mainly concentrated in those states of higher output growth, as

shown in Figure 2.

We discuss the estimated coefficients of the PSTRVECmodel

Eq. 10. First, consider the output growth equation. When the

economy is in a low output growth phase (i.e. when the output

growth rate is lower than the mid-point value of the transition

function, G(si,t; γ, c) ≈ 0), the estimated coefficient of the error

correction term is −0.0370, which is statistically significant. The

negative coefficient of the error correction term means that the

economy adjusts output in the opposite direction, once the

output growth deviates from the long-term equilibrium level.

The mechanism of automatic stability is essential for the

economy to escape from the low output growth phase. The

estimated coefficient for CO2 emissions growth in the logistics

sector is 0.0109, which is statistically insignificant, implying that

output growth increases as CO2 emissions growth soars in the

phase of the lower regime of output growth, although the evidence

is (statistically) weak. When the economy is in the expansionary

phase (i.e. when the output growth rate is higher than themidpoint

value of regime transition function,G(si,t; γ, c) ≈ 1), the estimated

coefficient of the error correction term becomes −0.0032

(=−0.0370 + 0.0338), indicating that, in the higher economic

growth phase, the mechanism of automatic stability is

weakened and governmental policies for macroeconomic

regulation are required. The estimated coefficient of CO2

emissions growth is −0.058 (=0.0109–0.0689), which is

statistically significant, indicating that CO2 emissions impose a

negative effect on output growth in the higher economic growth

phase. Therefore, the Environmental Kuznets Curve (EKC) is

proved to be true in China. In the initial phase of economic

development, the output growth increases as CO2 emissions soar.

However, once output growth reaches a certain critical value, the

reversed relationship can be discerned between output growth and

CO2 emissions growth.

Now consider the CO2 emissions growth equation. When

CO2 emissions growth is at a low level, the estimated coefficient

of the error correction term is equal to −0.9205, which is expected

and statistically significant, indicating that the relationship

between output growth and CO2 emissions growth can be

adjusted to a long-term equilibrium in the opposite direction.

When CO2 emissions growth is in a higher regime, the estimated

coefficient of the error correction term is −0.831 (= −0.9205 +

0.0895), and its sign is as still expected. There exists a automatic

stability mechanism between economic growth and CO2

emissions growth such that the economy approaches to a

long-term equilibrium, but at slower speed than in the lower

regime of CO2 emissions growth. This finding is very

informative, implying the necessity of macroeconomic

intervention once CO2 emissions of the logistics industry are

at a higher growth level. In the lower regime of CO2 emissions

growth, the estimated coefficient of output growth is −0.8834,

which is statistically significant. In comparison, in the higher

regime of CO2 emissions growth, the estimated coefficient of

FIGURE 2
The scatter graph of the estimated transition function in the output growth equation.
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output growth becomes −0.0336 (= −0.8834 + 0.8498). This

finding indicates that, when CO2 emissions growth is low, an

increase in output growth might lead to a decrease in CO2

emissions growth in the logistics sector, because output

growth benefits CO2 emissions reduction in the long term.

However, if the CO2 emissions growth is in a higher regime,

the effect of output growth on CO2 emissions reduction will be

substantially reduced (shown by the fact that, when CO2

emissions growth is in higher regime, the estimated coefficient

is −0.0336).

When taking output growth Δgdpi,t−1 as a transition variable
and plugging it into the CO2 emissions growth equation of the

logistics sector, we can check how the output growth influences

CO2 emissions growth at different phases of the business cycle. In

its lower phase, output growth influences CO2 emissions growth

positively, which is discerned from the positive coefficient of

Δgdpi,t−1 (1.3353), statistically significant at the significance level
of 10%. The empirical finding indicates that output growth leads

to an increase in demand for logistics services and an increase in

CO2 emissions simultaneously. However, when the output

growth reaches a certain critical level, that is, when it is in a

state of the higher regime, the pro-cyclical effect of CO2

emissions growth in the logistics industry falls into a decline

quickly, where the estimated coefficient of Δgdpi,t−1 is only

0.1919 (1.3353–1.1434), statistically significant at the

significance level of 10%. As results, accompanied with output

growth, the logistics demand increases, but CO2 emissions do not

increase proportionally, which again shows that the

Environmental Kuznets Curve holds in China.

Conclusion and implications

We use a panel dataset from 30 provinces and autonomous

regions examining the dynamic relationship between CO2

emissions growth and output growth in the logistics sector

over the period 1995–2020. The panel co-integration test is

implemented using a nonlinear smooth transition regression

model. In the presence of nonlinear co-integration between

two variables considered, the PSTRVEC model is specified

and estimated. The PSTRVEC model can explore the

nonlinear and asymmetric dynamic relationship between CO2

emissions growth and output growth in the logistics sector.

Several findings can be drawn from previous empirical analyses:

Firstly, only when the possible asymmetric relationship

between CO2 emissions growth and output growth of the

logistics sector is considered, can we identify a nonlinear co-

integration underlying the dynamic path approaching to their

long-term equilibrium state. This empirical finding suggests that

an emissions reduction policy will have an asymmetric impact on

China’s output growth of the logistics industry.

The green logistics performance significantly impacts on

output growth, but when output growth rounds the critical

point, the impacts become positive. In the logistics sector, CO2

emissions growth and output growth react differently to the

deviation from the equilibrium path approaching their stable

state in a different way. Hence, such an automatic stability

process is very complex. This adjustment mechanism depends

on which phases output growth and CO2 emissions growth situate,

respectively. In the higher regime of output growth, the automatic

stability mechanism is weaker than in the lower phase of

output growth. When CO2 emissions growth in the logistics

industry is at a higher level, the speed of adjustment to the

equilibrium path is much slower. In addition, from a cross-

sectional perspective, the relationship between CO2 emissions

growth and output growth in the logistics sector varies over

geographical regions, depending on different levels of output

growth. In developed regions, the adjustment speed of the

equilibrium between CO2 emissions growth and output growth

is slower, and the response of the output growth rate to the

equilibrium deviation from the equilibrium sate is lower than

in less developed regions.

Secondly, as the nonlinear panel unit root test shows, the

dynamic relationship between CO2 emissions growth and output

growth in the logistics industry is nonlinear. We are able to reject

null hypothesis of a linear relationship when using three alternative

transition variables. This finding suggests that researchers and policy

makers must take into account the possible non-linear relationship

between CO2 emissions growth and output growth in the logistics

industry. In the output growth equation, the null hypothesis of

linearity is more convincingly rejected when the lagged output

growth is used as a transition variable. In the CO2 emissions

growth equation, when the lagged CO2 emissions growth is used

as a transition variable, the null hypothesis of a linear relationship is

more convincingly rejected. These findings suggest that the EKC

hypothesis holds in China. In the lower phase of output growth, the

CO2 emissions growth of the logistics industry is pro-cyclical, while

when the output growth rounds a critical point, the CO2 emissions

growth might become counter-cyclical.

Empirical results can appeal to policymakers to a more

integrated and sustainable perspective, which gives higher

priority to economic growth by reducing CO2 emissions in the

logistics sector. When exploring the relationship between CO2

emissions growth and output growth in logistics sector, we find

that the traditional linear relationship is not suitable. Our

conclusions are important for policy authorities to consider

potential asymmetries. The automatic stability mechanism of

the dynamic relationship between CO2 emissions and output

growth in logistics industry is weaker during periods of higher

output growth (or developed regions), indicating that China can

conduct energy conservation policies to reduce CO2 emissions

in the logistics industry without worrying about damaging

the long-term output growth. Energy conservation policies for

CO2 emissions reduction should not only limit the adverse

effect on output growth in the short run, but also not harm

output growth in long-term. In addition, we find that, when
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the initial output growth is relatively low, the output growth does

not increase the CO2 emissions of the logistics industry in the

short term at all. However, in the long run, this is another story. In

different output growth stages and different regions, the

relationship between CO2 emissions growth and output growth

in the logistics industry reveals different patterns, which requires

the government to consider regional gaps when designing

energy saving and emission reduction policies. The Chinese

government should focus on reducing CO2 emissions of the

logistics industry in economically developed areas, and

formulate measures in favor of those developed areas and green

logistics performance.
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