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Energy consumption has become a requirement in the modern world, and

without it, the economies of developing nations cannot prosper. Consistent

economic growth is a challenge for countries of all economic levels, not just the

less developed ones. We test the EKC hypothesis by analyzing the relationships

between GDP growth, energy consumption, agricultural output, and the

consequences of carbon dioxide (CO2) emissions. From 1991 to 2016, we

used panel and quantile regression analysis to compare emissions in nine

developing countries with those in 13 developed countries. There is the

beginning of a reverse U-shaped relationship between agricultural energy

use and greenhouse gas emissions. As a result, the verified EKC hypothesis

paves the way for a watershedmoment in the progress of industrialized nations’

economies. As an added bonus, agricultural results have a positive impact on

CO2 emissions from using liquid fuels. It has a negative impact on CO2

emissions by 19.12% and causes a 4.802 percent increase in environmental

degradation. Feed cropping, deforestation, biomass burning, and deep soil and

cropping also have negative effects on the environment, especially in

developing countries. There is a negative correlation between CO2

emissions and economic growth in developing countries and their energy

consumption. Although the EKC hypothesis for CO2 emissions was rejected

at lower quantiles, it was validated for Qatar, Canada, China, and other high-

emitting economies according to the empirical estimation of quantile

regression. The findings of this study have important policy implications for

reducing carbon dioxide emissions, suggesting that policymakers account for

the stage of economic growth currently being experienced when formulating

measures to cut energy use and protect the environment. In particular, policies

aimed at reducing energy consumption could.
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1 Introduction

Both in developing and developed nations, the link between

economic growth and CO2 emissions remains debatable and

doubtful. Economies can use this correlation to develop policies

for managing energy consumption and advancing their secure

energy resources (Gnangoin et al., 2022; Shahbaz et al., 2022;

Tutak and Brodny, 2022; Xia et al., 2022). This study measures

countries’ economic growth based on their agricultural sector,

cereal yield, renewable energy, manufacturing, and commerce.

Quantile regression techniques with panel data have not been

studied in this field, despite the fact that a number of recent

studies have performed in-depth analyses of the relationship

between economic growth and CO2 emissions (Liu et al., 2022a;

Raghutla et al., 2022). The current Environmental Kuznets Curve

(EKC) theory suggests that economic growth is associated with a

decline in environmental effectiveness (Bradley, 2021; Liu et al.,

2022b). Consequently, there is less concern for the profound

exhaustion of oil or magnesium, and more concern for air

quality, global warming, and the divine emanations of

mechanical and industrial production.

In addition to the industrial sectors, modern agriculture is a

major contributor to greenhouse gas emissions; in many

developing countries, agriculture is now the single largest

source of CO2 emissions. Particularly unsustainable

agricultural practices—such as bush burning, deforestation,

and the burning of biomass fuel—account for 21% of the

world’s greenhouse gas emissions, and are responsible for the

oxidation of organic compounds in soil. Soil organic compounds

from cultivated land can mitigate environmental CO2 emissions

from agricultural production and modification. In this light, both

developing and developed nations need to investigate the

connection between rising agricultural output and increasing

carbon dioxide emissions (Han et al., 2022). Effects of economic

expansion on agricultural output and energy use were analyzed

using quantile regression and the EKC hypothesis. On the other

hand, agriculture is crucial for reasons like non-oil exports, food

security, foreign exchange, etc. plays an important part in a

growing economy, as evidenced by its share of total energy

consumption, as measured by gross national product per

capita, as well as its presence in the manufacturing and

commercial sectors (Koondhar et al., 2021; Pakrooh et al.,

2021). By expanding and improving its spending on

sustainable development, the country can lessen its carbon

footprint and make its infrastructure more resilient to climate

change (Kocak and Alnour, 2022).

Several concepts related to CO2 emissions have been

investigated using the Environmental Kuznets Curve (EKC).

Developing countries would be better off following a different

growth path than the EKC, which advocates for rapid economic

expansion at the expense of environmental sustainability

(Balsalobre-Lorente et al., 2021; Beyene, 2022). The U-shaped

Environmental Kuznets curve (EKC) shows that environmental

degradation is proportional to income, rising as income rises due

to agricultural output and falling once income is no longer a

constraint (Liu and Lai, 2021). But if trade policies and economic

growth are coordinated, the energy sector will benefit. Keeping

the economy growing at its current rate is not conducive to

protecting the environment (Leal andMarques, 2020). Because of

the notorious carbon leakage problem and the embodied carbon

emission in exports not contacted in the production-based

emission accounting, a significant portion of production in

emerging economies goes to satisfy consumption in developed

countries (Adnouni et al., 2023).

Because of its reliance on fossil fuels for its energy needs,

agriculture is also a major contributor to the greenhouse gas

emissions and carbon dioxide emissions of developed economies,

accounting for 16.5 billion tonnes of the world’s total agri-food

production in 2019 (UN, 2021) Although agricultural output fell

by 2% from a decade ago, GHG emissions from farms increased

to 582 million metric tons in 2017. Nonetheless, farmers help

with CO2 emission confiscation efforts through things like

reforestation, wetland restoration, grassland preservation, and

the elimination of greenhouse gases (Aguilera et al., 2021). The

most important takeaway from this research was identifying

issues and CO2 emissions associated with using liquid fuels in

the agricultural, industrial, and commercial sectors of both

developing and developed nations. In addition, the existing

hypothesis and economic factors in the 22 countries influence

the income-induced EKC emissions from agriculture. This study

hypothesized that developing countries would be more

integrated based on a comparison to agriculture production in

developed countries. In addition, the liquid consumption of

developing (Brazil, Argentina, Mexico, and Malaysia)

countries is growing due to agricultural and industrial

production, while the intensity level of CO2 emissions in

developed (Netherlands, Germany, and Canada) and

developing (Russia, Qatar, and Malaysia) countries is higher.

Agricultural goods’ production and consumption trends

in developing and developed countries are compared, as are

the inputs required to produce these goods. Agricultural

output was evaluated across a wide range of cereals,

including wheat, rice, maize, and more. From a global

perspective, nine developing countries and thirteen

developed countries are analyzed for their CO2 emissions

and liquid fuel consumption in the agriculture sector, with

maize being the most intensively studied crop and grain being

the least. Developed countries have a different perspective on

emissions and agricultural output (Figure 1). Estimated

results for all commodities showed a significant slowdown

in the growth rate of cereal production.

Agriculture and cereal output in both developing and

developed nations are also compared. CO2 emissions

associated with farming and grain harvesting are shown in

Figure 2. Using the estimated values for agriculture (AGR) and

cereal (CY), we first calculated the sum of ARG and CY for

Frontiers in Environmental Science frontiersin.org02

Khan et al. 10.3389/fenvs.2022.1065634

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1065634


whole years, and then we divided that number by the total

number of developing and developed countries’ sum of ARG

and CY value. This allowed us to determine the actual

percentage of individual countries in Figures 2, 3, and it

allowed us to examine the highest influence of explanatory

variables with percentages. The highest combined AGR and

CY growth rate is%. China has the highest cereal yield (in

kilograms per hectare) among developing countries due to its

high value-added agriculture, forestry, and fishing. In

addition, 45 percent of agricultural output is the root of

23 percent of C-LF. Furthermore, Turkey has the highest

AGR production at 6%, including 2% each of C-LF and

C-EM (Yu et al., 2020; Meijian Yang et al., 2021; Le, 2022).

There has been conflicting evidence from previous research

on the EKC’s effect on agricultural output. No clear distinction

can be made between the CO2 emissions emitted by agriculture

production and the emissions stimulated by the various methods

of cultivation practice and new mechanical strategies because not

enough research has been done to identify and examine the

impact of environmental degradation on agriculture, industries,

and trade (Gaies et al., 2022; Jiang et al., 2022a; Xu et al., 2022).

The EKC development method was refined on the back of a

FIGURE 1
Agriculture productions. Sources: http://www.fao.org/3/x9447e07.htm#Notep.

FIGURE 2
Carbon emissions with agriculture and cereal production.
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wealth of clean data, an abundance of serious resources, and a

massive natural windfall; as a result, it is a model that other

developing countries should emulate (Shensi Wang et al., 2021;

Chen et al., 2022). The peak energy of intensity theory states that

energy rises during industrialization, reaches a peak, and then

declines, which is borne out by CO2 emissions and EKC.

According to the Sun, a carbon emissions EKC peak occurred

due to abnormal economic and development growth only in

developing countries (Mardani et al., 2019; Mian Yang et al.,

2021; Yirong, 2022).

A portion of the literature investigates the relationship

between EKC and national income, and greater environmental

quality, as well as their effects on developed and developing

nations (Balado-Naves et al., 2018; Balsalobre-Lorente et al.,

2021). The EKC starting point revealed an inverted U-shaped

relationship between per capita income and energy intensity in

developing countries, and the error correction model identified

CO2 emissions (Rashid Gill et al., 2018; Ben Cheikh et al., 2021).

Examining the study and calculating the Kuznets’ ratio, it was

discovered that developed countries tend to have a lower degree

of inequality than developing countries (Farooq et al., 2022).

That the evidence of the inverted U-hypothesis, concerning the

relationship between economic growth and inequality,

contradicts the hypothesis. It indicates that income inequality

was greater in developing nations than in developed nations, but

that after a certain point, economic growth will reduce

environmental pressure (Akram et al., 2020; Liu and Lai,

2021; Tenaw and Beyene, 2021).

(Balogh, 2022) Trade agreements were used to verify the

effects of reducing emissions on the economy, agricultural

production, and climate change (Wu et al., 2021). The

findings revealed a hitherto unrecognized consequence of

trade: The decrease in greenhouse gas emissions caused by

agricultural exports. Agricultural trade has indirect

environmental effects on climate change, such as the

expansion of export crops leading to deforestation and soil

erosion, raising the issue of transportation-related energy use

and emissions, and this trade has grown significantly over the

past few decades and has experienced annual growth

(Muhammad et al., 2020; Wasti and Zaidi, 2020). The impact

of agricultural expansion and commerce on greenhouse gas

emissions, particularly in emerging and developed countries, is

poorly studied despite its significance. It emphasizes the

developing world’s role in the global economy and makes

suggestions for how climate and trade policymakers in the

largest emitter countries might help slow the pace of

economic expansion, agricultural, and trade-related CEM

emissions (Essandoh et al., 2020; Balogh, 2022). Alternatively,

rising economic activity in this economic bloc has a

multiplicative effect on environmental deterioration through

boosting consumption-based carbon emissions (Ali et al.,

2022). This study recommends expanding investment in green

innovations and implementing legislation aimed at reducing

carbon emissions in the agricultural, industrial, and trade

sectors (Huang et al., 2022; Meng et al., 2022).

We examine how agricultural output affects EKC, GDP

growth, CO2 emissions, and energy consumption. CEM

(C-EM and C-LF) is depicted in Figure 3; as a developing

country highest carbon emission is recorded in Qatar, which

accounts for 28% of C-EM and 15% of C-LF, while a developed

country like Canada accounts for 9% of C-EM and 10% of C-LF

(Xu et al., 2019a). The lowest C-EM and C-LF are recorded in

Nigeria and Turkey in developing and developed countries (Billig

et al., 2019; Hao et al., 2020; Shabani et al., 2021). Due to CO2

spillage issues and the need to enclose CO2 emissions, a sizable

portion of the developing world’s economic output is met by the

FIGURE 3
CEM of developing and developed countries.
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generation sector (Amin et al., 2020; Jiang et al., 2021). In this

study, we look at twenty-two different nations and disentangle

the growth in CO2 emissions from the expansion of agricultural

production and the use of machinery in the field. This

implication will aid in shifting the focus of governments and

private organizations in both developing and developed nations

toward effective measures to curb carbon dioxide (CO2)

emissions.

To the best of our information, we found no previous

research that used panel data to examine the effects of the

EKC hypothesis on agricultural output across 22 countries

(9 developing and 13 developed). This paper helps us make

sense of the prior research by critiquing a subset of the EKC

hypothesis, which holds that there is an inverse U-shaped

relationship between national income (after accounting for the

effects of agriculture production) and environmental quality in

developing and developed countries (Jiang et al., 2021; Ridzuan

et al., 2020). As a result, CO emissions will be significantly

impacted by policies geared toward globalization, economic

growth, agriculture, and the use of renewable energy

(Ehigiamusoe and Dogan, 2022). Policymakers in both

developing and wealthy countries are given substantial advice

based on the study’s findings (Adebayo et al., 2022). In light of the

EKC hypothesis, this research seeks to identify important

implications for economic and environmental mitigation

policies by analyzing the connections between economic

growth, agriculture, cereal yield, renewable energy

consumption, industries and trade, and CO2 emissions in

both developing and developed nations. Additionally, this

study uses two distinct technical models to determine the

EKC effects, one of which (total CO2 emissions-C-EM) is per

endogenous variable, and the other (CO2 emission-C-LF) is by

liquid sources.

The following are the most important contributions we made

to this study. The primary benefit of these studies is the adoption

of the panel and quantile regression model as a robust answer to

the problems of agricultural goods, industrial production,

industries and trade, and energy efficiency. Second, most of

these studies emphasize the smart grid system and renewable

energy while fossil energy is the main fuel in economic sectors;

most of these studies highlight the smart grid system and

renewable energy while fossil energy is the main fuel in

economic sectors; and there has been a lack of focus on

agriculture products, industries, and trade with energy

consumption and CO2 emissions and adjusting prices by

using panel quantile regression models. A quantile regression

approach, on which to zero in, could help curb the excessive

demand. Third, the present study is similar to previous research

in that it employs a panel quantile regression approach to identify

a correlation between energy consumption and economic

expansion. Forth, there are fewer gaps in the literature

compared to other studies. While it has already been

mentioned that transportation accounts for a significant

portion of total CO2 emissions, we also considered

agricultural activities as an important source. In addition, the

current study is distinct because of its emphasis on energy

consumption, its use of a more expansive time frame for

precise analysis, and its evaluation of the disparity between

CO2 emissions from developing and developed countries’

energy consumption. For CO2 emissions from different

countries with non-additive fixed effects (FE) and random

effects (RE), a panel quantile regression method is

recommended. The study confirms agriculture productivity

through the use of policy frameworks that are based on panel

estimation (cross-sectional dependence) techniques and focus on

keeping and altering the clad environment in countries. This

study’s panel quantile regression is novel and essential for

foreseeing the development of the agricultural energy market

in both developing and developed nations. Fossil energy

consumption and economic growth, particularly in the

agricultural sector, may be explored further in this study.

Furthermore, it aids policymakers in understanding the energy

and climate challenges they face. It organizes the structure of this

study as follows: Section 2 provides a summary of the relevant

literature; Section 3 demonstrates the procedure for collecting

data; Section 4 provides an overview of the study’s findings, and

Section 5 draws conclusions and makes recommendations.

2 Data and methodology

2.1 Data specification

The years covered by the extracted database (from 1991 to

2010) were chosen at random, and their duration was also

affected by the quantity of available data. As a result of data

scarcity, we focus on just 22 developing and developed nations

across a 25-year span (Boyle, 2022). This study employs two

principal regressors drawn from the World Bank data set

(WorldBank, 2022) and the Joint Research Centre’s (JRC)

report on climate change (2020). The C-LF measure takes into

account liquid consumption in addition to food consumption,

making it similar to the C-EM measure of tons per person.

Previous studies with comparable goals have been used to inform

the selection and analysis of C-EM regressors (Kong and Khan,

2019; Nwaka et al., 2020; Xi Chen et al., 2020; Khan, 2021; Usman

andMakhdum, 2021; Adekoya et al., 2022; Shah et al., 2022). The

maintained C-EM explanatory markers are consistent with prior

findings. Table 1 shows the definition and origin of the data.

The Human Development Index ranks 25 countries

according to their level of social and economic development

(HDI). In terms of education, life expectancy, and level of living,

countries with HDIs of 0.8 or greater are considered developed.

Studying nine low-income (Argentina, Brazil, China, Mexico,

Malaysia, Nigeria, Philippines, Qatar, Russian Federation) and

thirteen high-income (Australia, Canada, Chile, Germany,
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France, Greece, Israel, Italy, Netherlands, Norway, Spain,

Sweden, and Switzerland) developing and developed countries

in terms of environmental pollution (C-EM and C-LF), energy

consumption (REN), and economic growth (GNI, IDC, and

TRD) within the context of the existing hypothesis of EKC

(Khezri et al., 2022). Since the effect of economic

development and adaptation on CO2 emissions tends to

reverse direction at the tipping point, the EKC hypothesis is

gaining importance as a strategy for reducing climate change.

Whether or whether there is a correlation between CO2

emissions and economic growth has been the subject of

numerous research, with varying results (Shi, 2020). For the

reason that agriculture, renewable energy, industry, and trade are

all considered when assessing economic growth in both

developing and developed nations (Nwaka et al., 2020;

Beyene, 2022; Farooq et al., 2022; Rehman et al., 2022).

Since the effect of economic development and adaptation

on CO2 emissions tends to reverse direction at the tipping

point, the EKC hypothesis is gaining importance as a strategy

for reducing climate change (Ridzuan et al., 2020; Nasir et al.,

2021). There have been several attempts to test the EKC

hypothesis between CO2 emissions and economic growth,

but the results have been inconsistent. Because of how

important it is to consider agriculture, renewable energy,

industry, and trade when assessing the progress of

economies in both developing and developed nations (Kong

and Khan, 2019; Xi Chen et al., 2020; Khan, 2021; Usman and

Makhdum, 2021; Adekoya et al., 2022; Shah et al., 2022). C-LF

is the same as C-EM in terms of response variables measured

in metric tons per capita, but C-LF also takes into account

liquid consumption in different economies. Previous studies

with comparable goals have been used to inform the selection

and analysis of C-EM regressors. The maintained C-EM

explanatory markers are consistent with prior findings. In

addition, many studies have attempted to draw a connection

between CO2 emissions and economic growth, but their

findings have been inconsistent. When factors like

agriculture, trade, industry, and renewable energy are

addressed, the economic growth of both developing and

developed countries can be analyzed (Nwaka et al., 2020;

Beyene, 2022; Farooq et al., 2022; Rehman et al., 2022).

In contrast, Explanatory indicators like AGR, CY, REN,

GNI, IDC, and TRD can be investigated in depth in panels A

and B. Table 1. We compute a set of descriptive statistics for

each residual in the dataset. From Table 2, we can see that the

Jarque-Bera statistics rule out the normal distribution

hypothesis for the AGR, CY, REN, GNI, IDC, and TRD

experimental indicators. Furthermore, the log-transformed

experimental indicators make the regression coefficient of

the exponents easy to grasp. Once the data had been log-

transformed to make it more normal, it looked like this. The

CEM’s explanatory factors boost precision, and any shift in

descriptive power may be monitored. All CEM predictors are

employed in both developing and developed nations, with

C-LF having the most influence on the mean ARG value

(Jiang et al., 2021). The covariance method is applied to the

study of bilateral relationships between states. Panel A

focuses on one of the key regressors, while Panel B

focuses on the other (C-EM and C-LF). Table 3 shows

that there is a negative correlation between C-EM and

AGR (−0.124) and that there is a negative covariance

between C-LF and ARG (−3.377). According to the

evidence, both of these correlations are negative. Positive

coefficients are also observed in the covariance of (C-EM and

C-LF) and (CY, GNI, IDC, and TRD). We first use a standard

way to calculate cross-sectional estimators for panel (A and

B), and then we completely alter this strategy by employing

the stimulating covariance technique. Increases in one

indicator have a ripple effect on the others, as shown by

the estimated findings in panel A (C-EM, CY, GNI, IDC, and

TRD) and panel B (C-LF, AGR, CY, and IDC). Panels A and

B always move in the opposite direction when indicator

estimates are negative, indicating that the relationship

between them is inverse. As a result, low-income groups

(LIGs) are the only ones whose CO2 emissions become

nonlinear (Jain et al., 2022; Safar, 2022; Wan et al., 2022;

Wang and Yuan, 2022). The production of carbon dioxide

also seems to be correlated negatively with AGR. Second, we

employed a redesigned OLS method that incorporated

random and fixed effects as well as quantile regression to

compare emerging and developed nations.

TABLE 1 Indicator definition.

Indicators Code Sources

CO2 emissions (metric tons per
capita)

C-EM Metric tons of CO2 divided by
Population

CO2 emissions from liquid fuel
consumption (metric tons per
capita)

C-LF

Agriculture, forestry, and
fishing, value added (constant
2010 US$)

AGR Forestry, hunting, fishing, crop, and
animal production include
agriculture. Value added is Net
output after intermediate inputs are
value-added

Cereal yield (kg per hectare) CY Cereal yield, in kg per hectare

Renewable energy consumption
(% of total final energy
consumption)

REN Share of renewable energy in
ultimate energy consumption

GNI per capita (constant
2010 US$)

GNI Renewable energy consumption
share

Industry (including
construction), value added (%
of GDP)

IDC Manufacturing, industry. After
deducting intermediate inputs, value
added is a sector’s net output

Trade (% of GDP) TRD Trade equals exports plus imports as
a percentage of GDP

Note: All data are obtained from theWorld Bank Development indicator (2020) https://

datatopics.worldbank.org/world-development-indicators/.
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2.2 Methodology

We initially computed C-EM and C-LF in two panels after

calculating descriptive statistics, covariance, and a unit root test

for both developing and developed countries as a whole.

Following this, we calculated FMOLS, RE, FE, and Quantile

regression (QR) for developing and developed nations alike

(Table 4). Under the null hypothesis, we show that there is no

cross-section dependence between developing and wealthy

countries. Specifics of the numerical hypotheses being

evaluated, including the total number of cross-sectional

observations (234 and 334) and the total number of

developing and developed nations (9 and 13, respectively).

Furthermore, using the Breusch-Pagan LM test (Baltagi et al.,

2012), we find that the estimates for both developing and

developed countries, 291.941 and 664.269, are considerably

larger than the upper tail of an X2 36 and 78, respectively,

and so reject the null of no connection at the usual

significance level. The results of the two scaled Breusch-Pagan

(LM) tests and the Baltagi et al. (Greene and McKenzie, 2015).

bias-adjusted LM tests, as well as the test statistics for the

emerging (30.162 and 29.982) and developed (46.939 and

46.679) scenarios, all strongly reject the null at the

conventional levels (Halunga et al., 2017).

In conclusion, the effect of the bias correction on the scaled

LM statistic is small when N and T are comparable in magnitude.

In contrast, the test statistic value of the Pesaran CD test is much

lower than that of the scaled LM test in both developing and

developed countries (6.282 and 10.527, respectively), but it still

rejects the null at conventional significance levels, suggesting that

it may be more useful to focus on these results (Gander, 2013;

Dopierała et al., 2022). Thus, we use Fully modified ordinary least

squares (FMOLS) together with random effect (RE), fixed effect

(EF), and quantile regression (Q25, Q50, and Q75). (Table 4),

and we let the numbers for both sets rest overnight for clarity, so

that the C-EM and C-LF outcomes would be more representative

of underdeveloped and developed countries, respectively

(Table 5). Model description as shown below:

According to the Environmental Kuznets curve (EKC)

model, Eq. 1 looks like this:

Cit � f AGRit, CYit, RENit, GNIit, IDCit, TRDit( ) (1)

The notation, Cit for carbon dioxide emissions is used for

both of our dependent indicators (C-EM and C-LF). Agricultural

value added is calculated by AGR for the entire agricultural

sector, which includes forestry, fishing, hunting, animal farming,

and crop production. Calculated in CY is the cereal crop yield as a

share of the total planted area (Nwaka et al., 2020; Aguilera et al.,

TABLE 2 Summary of descriptive statistics.

Des-statistics C-EM C-LF AGR CY REN GNI IDC TRD

Mean 8.653 3.423 4.92E+10 3962.622 20.512 26006.690 28.976 63.887

Median 6.421 3.099 2.60E+10 3606.800 11.045 23379.790 27.071 56.421

Std. Dev. 10.607 2.824 9.96E+10 1763.868 21.131 21314.980 8.396 34.420

Skewness 3.778 3.153 4.486461 0.660 1.608 0.902 1.526 2.015

Jarque-Bera 6837.624*** 7751.280*** 11537.17*** 42.518*** 337.697*** 79.433*** 639.753*** 1013.352***

Observations 572 572 535 571 550 556 534 569

Note: Table 1 shows the definition of the indicator. Descriptive statistics (Des). Sources: Author’s estimates basis on the dataset.

Notation *** indicates a 1% level of significance.

TABLE 3 Covariance analysis.

Correlation C-EM C-LF AGR CY REN GNI IDC TRD

C-EM 1.000

C-LF 0.566 1.000

AGR −0.124 −3.377 1.000

CY 0.293 0.255 0.092 1.000

REN −0.440 −0.308 0.014 −0.311 1.000

GNI 0.534 −0.813 −0.292 0.399 −0.020 1.000

IDC 0.243 −0.252 0.363 −0.122 0.048 −0.206 1.000

TRD 0.251 0.171 -0.170 0.264 −0.221 0.135 0.322 1.000

Note: Table 1 shows the definition of the indicators. Sources: Author’s estimates.
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TABLE 4 FMOLS, RE, Random Effect; FE, Fixed Effect; Quantile regression across countries.

Variables FMOLS Fixed effect (FE) Random effect (RE) Quantile regression

Coefficient covariance matrix Residual
diagnostic

Coefficient
diagnostic

1st Quarter 2nd Quarter 3rd Quarter

Default
(Hom-V)

Sandwich
(Het-V)

AC Wald
test

Ordinary White CS Ordinary White CS Q25 Q50 Q75

Panel A: Carbon emissions (C-EM)

AGR 6.188*** 22.464*** 0.637 6.188*** −19.129*** −2.391** −5.923*** −1.130** 1.160** 2.027*** 2.925***

CY −1.974** −3.144*** 0.392 −1.974** 1.383** 0.238** 0.263** 0.054** −0.481** 1.131** −2.823***

REN −10.625*** −22.603*** 0.194 −10.625*** −76.284*** −12.352*** −29.537*** −5.205*** −7.731*** −10.766*** −9.996***

GNI 5.551*** 7.360*** 0.138 5.551*** 87.793*** 13.423*** 34.554*** 7.709*** 20.051*** 23.592*** 7.798***

IDC 3.109*** 5.355*** 0.114 3.109*** 66.000*** 3.991*** 24.869*** 2.791*** 1.139** 0.107** 0.125**

TRD −2.932*** −4.250*** 0.045 −2.932*** −15.782*** −2.071*** −6.321*** −1.249*** 1.254** 3.623*** 1.439**

Constant — — — — −10.004*** −0.759** −4.402*** −0.980** 3.287*** 5.834*** 8.844***

Panel B: Carbon emissions from liquid (C-LF)

AGR −2.988* −0.825* 0.530 −2.988* −3.099*** −4.802*** −1.799*** −2.358*** −1.053*** −3.939*** −6.594***

CY −1.210** −1.690** 0.348 −1.210** −1.920*** −2.104** −4.076** −2.951* −5.853*** −5.124*** −4.674***

REN −7.384*** −11.952*** 0.253 −7.384*** −14.084*** −14.192*** −10.569*** −10.148*** −14.976*** −21.757*** −18.201***

GNI 3.090*** 4.670*** 0.201 3.090*** 5.314*** 6.072*** 8.335** 5.021** 26.254*** 34.306*** 22.878***

IDC 4.644*** 7.039*** 0.137 4.644*** 6.248*** 6.433*** 5.421*** 3.591** −1.242*** −0.069* −0.775*

TRD −3.271** −6.742** 0.017 −3.271** −6.175*** −6.156*** −3.928*** −3.993** 0.474*** 1.168* −0.629*

Constant — — — — 14.019*** 15.924*** 9.250*** 7.936** 10.091** 10.432*** 10.465***

Note: To clarify, the indicators are defined in Table 1. The Difference Between Homogenous (Hom-V) and Heterogeneous (Het-V) Variance Author’s projections. Values of R-square for FE (0.629) and RE (0.706) have been calculated using panel A

weighted statistics. Durbin-Watson test probabilities are 0.057 and 0.014. Observation (n = 497) in 22 cross-sections yielded R-square values of 0.970 and 0.288 for FE, and RE, respectively, in Panel B, while the Durbin-Watson statistic was 0.051 and 0.553,

respectively. White’s cross-section and Swamy-Arora’s weighting have been used to calculate the coefficient covariance method of random effect. It uses the correlogram test and the AC (6 lag specification) to derive the residual diagnostic indicators. The

notation *** indicates a 1% level of significance, ** a 5% level, and * a 10% level.
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TABLE 5 FMOLS, RE, Random Effect; FE, Fixed Effect, Quantile regression of developing and developed countries.

Countries Panels Var. FMOLS Fixed effect (FE) Random effect (RE) Quantile regression

Coefficient covariance
matrix

Residual
diagnostic

Coefficient
diagnostic

1st Quarter 2nd Quarter 3rd Quarter

Default Sandwich AC Wald test Ordinary White CS Ordinary White CS Q25 Q50 Q75

Developing P-A (C-EM) AGR 3.091*** 9.481*** 0.564 3.091*** 11.501*** −12.702*** 4.579*** 5.122*** 3.975** 3.597*** 10004***

CY −7.766*** −18.556*** 0.415 −7.766*** −2.853*** −3.003*** −3.435** −3.093*** −2.806*** −2.373** −23563***

REN −3.711*** −11.869*** 0.294 −3.711*** −4.971*** −3.159*** −3.488*** −5.305*** −3.115*** −2.086*** −19.726***

GNI 10.355*** 17.771*** 0.135 10.355*** 9.517*** 10.458*** 17.285*** 5.415*** 17.091*** 11.258*** 38.454***

IDC 0.913* 2.031* 0.109 0.913* 3.967*** 4.356*** 3.901*** 2.597*** 7.076** 2.568** 5.070***

TRD −0.557* 0.950* 0.048 −0.557* 1.115* 1.293** 0.376* 0.279* 2.765** 1.0898* −1.549**

Constant — — — — 5.144** 4.708*** 1.104** 1.276** −1.014*** 0.952*** 9.397***

P-B (C-LF) AGR 31.140*** 42.456*** 0.673 31.140*** 2.867*** 2.533*** 0.817* 1.350*** 1.269*** −1.964*** −1.176**

CY −0.465** −0.890** 0.530 −0.465** −3.265** −3.692*** −0.847** −0.482** −4.167*** −4.455** −2.873**

REN −3.877*** −6.572*** 0.371 −3.877*** 2.166*** 2.746*** −1.608*** −2.561*** −18.425*** −21.268*** −7.869***

GNI −0.250** −0.590** 0.229 −0.250** 5.270*** 4.910*** 2.920** 0.728* 6.782*** 15.955*** 10.872**

IDC 6.296*** 8.720*** 0.136 6.296*** 0.814*** 1.075*** 1.809* 0.951** −3.177*** −4.224** −3.694**

TRD −.183** −0.337** 0.032 −0.183** 5.352*** 6.221** 0.981* 0.744** 3.306*** 8.605*** −3.622***

Constant — — — — 3.139*** 4.331*** 2.322** 1.056** 13.390** 19.806*** 7.117***

Developed P-A (C-EM) AGR −0.140* -0.260* 0.588 −0.140* 1.584* −2.391** −5.923*** −0.086** −4.179*** −6.166*** −10.101***

CY −1.024** −1.205** 0.250 −1.024** 0.219** 0.238** 0.263** −0.856** −3.712** −2.940*** −1.684***

REN −12.186*** −18.080*** 0.020 −12.186*** −22.472*** −12.352*** −29.537*** −26.202*** −19.804*** −9.778** −13.875***

GNI 3.844*** 4.195*** -0.025 3.844*** 6.750*** 13.423*** 34.554*** 5.093*** 11.421*** 20.240*** 18.460**

IDC 4.779*** 5.948*** 0.001 4.779*** 9.718*** 3.991*** 24.869*** 3.812*** 3.759*** 2.393*** 3.737**

TRD 0.535* 0.768* -0.049 0.535* −2.995*** −2.071*** −6.321*** −0.051*** 7.044* 2.930** −0.090**

Constant — — — — 17.504*** -0.759** −4.402*** 8.086** 2.023** 6.572*** 16.148***

P-B (C-LF) AGR −2.967*** −4.905*** 0.371 −2.967*** −7.646*** −10.694*** −4.678*** −7.300*** −17.227*** −15.048*** 18.678***

CY −2.009** −2.375** 0.139 −2.009** 1.255** 1.325** −1.905** -1.369* −3.705*** −2.715** −2.821**

REN −9.845*** −13.675*** 0.068 -9.845*** −16.722*** −19.772*** −10.615*** −9.512*** −14.960*** −12.976*** −9.685***

GNI −3.264** −4.110** 0.067 −3.264** 7.823*** 8.167*** 6.227** 5.805** 32.600** 22.939*** 11.299**

IDC 6.877*** 9.448*** 0.065 6.877*** 8.702*** 14.327*** 6.932*** 6.074** −1.876*** 1.823** 3.644**

TRD 1.254** 1.815** 0.031 1.254** −3.159*** −2.521*** −0.775*** -0.644** −5.690*** −8.488*** −9.917***

Constant — — — — 10.634*** 15.426*** 6.424*** 7.509** 12.393** 16.324*** 13.645***

Take note that the indicators’ definitions are listed in Table 1. Both Panel A (P.A) and Panel B (P.B) are abbreviated as (P.B). Var denotes a set of variables. Using the aforementioned method, the countries of the world are divided between panels A and B,

with developing countries in A and developed countries in B.

Notation *** indicates a 1% level of significance, ** a 5% level, and * a 10% level.
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2021). This includes wheat, maize, rice, and many more. Use of

eco-friendly power sources is measured in REN. The Gross

National Income (GNI) indicator, which is the total annual

income of the country divided by its midyear population,

reflects the non-linear relationship between income and

environmental quality. The International Standard Industrial

Classification of Economic Activities (ISIC) serves as the basis

for the IDC’s value-added industry groupings. One indicator of

this is the Trade-Related Dimension, which tracks the positive

impact trade has on economic growth (export and import).

CEMit � βo + β1AGRit + β2CYit + β3RENit + β4GNIit

+ β6IDCit + β7TRDit+θi + μit (2)

The coefficients of βs in Eq. 2 capture the effect of covariates

on the response indicators (CEMit), where θi and μit are the fixed
effects of the state, and s is the stochastic error term, which has a

mean of zero and a variance of one. Panel data estimated with

Random Effects (RE), Fixed Effects (FE), and Fully Modified

Ordinary Least Squares (FMOLS) estimators were used to

produce unbiased estimates of the distribution of coefficients

(Gozgor et al., 2018; Wu and Xie, 2020). Constraints require a

model with impact in both (cross-session and period)

dimensions, implying fixed and random effects from the

cross-section. The relationship between environmental quality

and output follows an EKC and an inverted U-shape (Jiandong

Chen et al., 2020; Anser et al., 2021). The estimators suggest that

β4 and β5 will have positive and negative values, respectively.

2.3 Panel quantile regression

Based on the study of the conditional mean of analysis

(C-EM and C-LF) indicators across countries, with a focus on

the condition determinates of CO2 emissions, this model is

proposed. Repressors in panels A and B have a linear

relationship because of the increasing approach of this model

to quantiles. Quantile regression (QR) was utilized to generate

neutral estimates in the presence of potential outliers (Hang and

Xue, 2020; Xie et al., 2021). The QR method catches CEM

elements crucial to both industries since environmental

degradation is more severe in underdeveloped countries. More

income and secure economics from expansion are more

conscientious, and this effect grows with the size of the

economy. Accordingly, there may be differences in the

heterogeneities across developing and developed economies to

environmental degradation. Agriculture plays a significant role in

developing economies, and it is crucial to the health of the

environment in many areas. This research departs from the

standard QR in favor of a panel data framework characterized

by non-additive fixed effects and the notion of an inseparable

disturbance. Accordingly, the repressors can interact with the

fixed effects of both developing and developed countries in this

research specification. As a result, the following is the quantile

specification for the panel. Increases in prosperity and economic

stability lead to greater responsibility, and this trend strengthens

as the economy grows (Zhou et al., 2022a). Accordingly, the

responses of emerging and developed economies to

environmental deterioration may be different due to their

respective heterogeneities (Cheng et al., 2021). A healthy

economy and environment are both dependent on agriculture.

Instead of using a conventional QR, this study adopts a panel

data framework with non-additive fixed effects and the concept

of an indivisible disturbance, both of which differ from the norm

in the QR (Singh and Kannadhasan, 2020). Therefore, in this

research specification, the repressors may interact with the fixed

effects of both developing and developed nations. Therefore, the

panel quantile specification is as follows.

Qτ CEMit( ) � AGRitατ μit( ) + Yitβτ μit( ) (3)

Eq. 3 revealed Qτ to be the conditional quantile of CEM such

that τ � (0.25, 0.50, and 0.75). Consequently, country-specific

heterogeneous effects μit � f(Øi, zit) is inextricable from the

indicators in the panel, and AGR is as stated, whereas Y captures

additional co-variables AGR, CY, REN, GNI, IDC, and TR.

2.4 Quantile decomposition

In light of the fact that previous studies on regression analysis

(Koenker and Bassett, 1978; Koenker, 2004; Siriopoulos and

Pomonis, 2009; Nwaka et al., 2020) have found that the

predictions of the ordinary least square (OLS) regression

method are not valid when their assumption is not met, this

study uses the Quantile Regression method to further explore the

conditional determinants of CEM in developing and developed

countries (JW, 2000). If the variance has a heterogeneous

structure, the OLS analysis could not give a good estimate of

the B vector. Alternative regression models are required, and

quantile regression models, which take into account the

heterogeneity structure and quantile structure of the data, can

help (Ani, 2013; Lennart et al., 2008). Estimates from quantitative

regression models are more resilient and flexible than those from

the OLSmodel (Belaïd et al., 2020; Raghutla et al., 2022; Sun et al.,

2022). This is because no assumptions are made about the

distribution of the error term it predicts (John, 2009; Ani,

2013). The conditional mean (anticipated mean value) of the

response of the dependent variable to the independent variable is

used to make predictions in the OLS technique. Quantile

regression (Ike et al., 2020; Sun et al., 2022), on the other

hand, seeks to estimate not just the median but also the 25th,

75th, and 90th quantiles of the response variable, among others

(Iddrisu and Alagidede, 2021; Xu and Lin, 2018).

In the quantile regression, developed by Koenker and Bassett

(Koenker and Bassett, 1978) and further enhanced by Koenker

and Hallock, the sequence of economic variables is not

Frontiers in Environmental Science frontiersin.org10

Khan et al. 10.3389/fenvs.2022.1065634

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1065634


considered to be regularly distributed (Koenker and Hallock,

2001). Quantile regression is used to create models for certain

quantiles in the conditional distribution of the dependent

variable (Xu et al., 2019b; Akram et al., 2021; Cheng et al.,

2021). Panels A and B employ quantile regression methods to

analyze how people of different income levels in developing and

wealthy nations see environmental degradation (as measured by

AGR, CY, REN, GNI, IDC, and TRD). And last, the panel

quantile regression model is represented by Eq. 4.

Qτ(CEM
LIG
it ) − Qτ(CEM

LIG
it ) � Q[ τ(CEM

cHIG
it ) − Qτ(CEM

HIG
it )]

+ Q[ τ(CEM
LIG
it ) − Qτ(CEM

cLIG
it )] (4)

In Eq. 4, t stands for the year, and i might represent either a

developing or developed country. Carbon emissions in low- and

high-income countries are reflected in the regressors, CEMLIG
it

and CEMHIG
it . respectively; the regressor of CEM additionally

shows the counterfactual distributions for LIG and HIG. A

comparison of environmental quality and economic aspects is

required because agriculture is the LIG in these emerging

countries. Quantile regression is captured by, Qτ (first, second,

and third quantiles). Various economic and agricultural factors

produce varying degrees of income capture in developing and

developed countries, consistent with previous research.

3 Finding and results

3.1 Panel cointegration test

After establishing the unit root and passing the non-

stationary test, the indicators in both panels are required to

check for cointegration. In this empirical methodology, in what

we follow, we start testing all explanatory variables in panel data,

in the case of non-stationary, we investigate the long-run

prevailing cointegration relationship and investigate their

magnitude by long-run stationery. The panel cointegration

test with panel unit root test is applied individually on all

variables, which allow the serial correlation among cross-

section i.e., the so-called second generation test. Therefore, it

is essential to estimate the stationary of each explanatory variable

by unit root test. The reliability of variables ensures by the four

unit root test (Levin et al., 2002) which includes the IPS

Augmented test used by cross-sectional. Pesaran (2007) used

for panel unit root test and so far panel cointegration estimated

error-correction by Westerlund (2007), which both account for

possible cross-sectional dependencies for individual explanatory

variables (Im et al., 2003).

Whether the panel data processes are stationary or not

specifies in the selection of the regression model, if the panel

data process is non-stationary, the conformist OLS estimation

method would lead and solve a spurious problem in regression.

Therefore, it is essential to examine each variable and indicate the

stationary level via the unit root test. Four types of determined

panel unit root tests ensure the reliability of results, which

includes. Thus, according to first-generation tests such as

common root-Levin, Lin (LLC), Chu and Breitung, individual

Im, Pesaran, shin (IPS), Augmented Dickey-Fuller (ADF), and

individual root-Fisher-PP and Hadri have been computed

individually from all explanatory variables (Kao, 1995;

Pedroni, 2001; Apergis and Payne, 2009). A statistical method

(Kao) was used to look into the Padroni panel-test; the results

showed that 2.489 with a dynamic residual value; panel B was

used with ADF, PP, and rho statistics. The Padroni panel test for

cointegration is investigated. By taking into account

heterogeneity across countries and over time, as is done in the

dimensional approach to statistics, we can calculate an

autoregressive coefficient for the estimated residual and

conduct a unit root test (Liddle, 2012). Additionally, both

developed and developing nations have contributed to the

modern series analysis of long-run cointegration relationships.

Test results showed that panel A and B models are more likely to

contain spurious data if non-stationary indicators were used.

Fully Modified Ordinary Least Squares (FMOLS) with a focus on

the maximum likelihood method (Choi, 2001; Shaoping Wang

et al., 2021) for estimating cointegration regression. Due to the

linear trend specification by trend variable assumption, non-

stationary estimation uses a triangular system of equations. The

trend coefficient for each cross-section was analyzed separately

for both developing and developed nations. In addition, the

Fisher’s panel cointegration test, a dynamical method that has

been extended to Johansen’s causal technique used. All of the

Johansen test’s individual statistics, including those used for

cointegration estimation, have the same p-value. The

cointegration null hypothesis is also rejected.

3.2 Panels regression

Panels A and B of Tables 4, 5 display the FMOLS regression

and the results for each dependent indicator (C-EM and C-LF,

respectively) under both fixed and random influences,

respectively. The effect of FE and RE regressions is analyzed

and compared using standard error, and the results are stable

against the occurrence of cross-sectional influences (Bui et al.,

2021; Dong et al., 2022). Fully Modified OLS is used to regulate

individual intercepts in the FE estimator. It has improved upon

the non-parametric method of observing panel data for

properties of heterogeneous serial correlation. Both the FE

and the RE demonstrate the FE’s usefulness in relation to the

other model. As a result, the FMOLS will be the basis for the

analysis as estimated and reported by the FE.

The middle of the output is where you can access the

estimated panel coefficients (A and B). The expected

Cointegrating Vector (CV) for C-EM and AGR, CY, REN,

GNI, IDC, and TRD is defined by the coefficients on these

variables. C-EM and C-LF had their standard errors and
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t-statistics (p-values) tested. First, instead of using the

FMOLS transformation, we analyze all of the fit statistics

with the raw data. After removing the deterministic

components from the experimental indicator and the

regressor, the Nonstationary performs standard FMOLS

on the pooled sample. According to Default (homogenous

variance) and a Sandwich (heterogeneous variance) in the

coefficient covariance matrix with d.f., the long-run

covariance is calculated for Pooled FMOLS estimation.

The indicators in both panels A and B are statistically

significant, and their results are not affected by the

estimators used.

The results estimated using C-EM and C-LF for both equations

in panels A and B reveal some latent pragmatic dynamics. The

results of the EKC hypothesis are valid in 22 countries (nine

developing and thirteen developed). However, C-LF is more

prevalent in developing nations and is utilized in all robust

results. The GNI has a positive correlation with the coefficient of

the covariance matrix in panel A, which is 5.551. In panel B,

however, the GNI results revealed a negative correlation

of −0.250. A 1% change in AGR is associated with a 4.802%

increase in environmental degradation, indicating that AGR has

a positive and significant influence on C-LF. In developing nations,

environmental issues are influenced by agricultural activity.

Likewise, deforestation for feed crops, burning of biomass, and

deep soil agriculture (Abdurrahman et al., 2020; Dong et al., 2022;

Hao et al., 2020). According to the research presented here, the

agricultural sector’s reliance on fossil fuels will have disastrous

consequences in the 21st century unless steps are taken to lessen

this reliance (Gnangoin et al., 2022), such as the introduction of new

systems and technologies recycling basic nutrients and organics and

the establishment of a recycling society that can guarantee sufficient

food production regardless of fluctuations in fossil fuel availability

(Mardani et al., 2019). The alternative influence of the C-EM

measure of environmental degradation demonstrates that the

AGR indicator has a negative relationship. This means that a 1%

change in AGR reduces carbon emissions by 19.12% of total

emissions. The results indicate that it does not imply a reduction

in overall carbon emissions in developing and developed nations,

but rather a reduction in mechanization-induced emissions from

agriculture (Rabnawaz, 2021). Agriculture exports may also imply

that the industrial sector (IDC) in developing and developed

economies is fuel-intensive (Shahzad et al., 2020). Across

developing and developed economies, the inverted U-shape is

observed. Nonetheless, this may imply that developing economies

are focused on economic growth rather than ecological quality in the

short-term and long-term effects of sustainable environment

techniques.

Adopting renewable energy (REN) mitigates environmental

degradation using both CEM and industrial revolution indicators.

The high consumption in developing countries, however, degrades

environmental safeguards by increasing the C-LF. In both panels,

the TRD openness decreased. Furthermore, the value added to

industries (IDC), with developing countries (Brazil, Mexico, and

Russia) recording high trade values and developed countries (Spain

and Canada) recording low IDC. A 1% change in trade openness

decreased C-EM andC-LF by 15.78% and 6.17%, respectively. These

outcomes revealed the economic structure and nature of

international trade in developing and developed economies (Jiao

et al., 2020; Kicińska and Wikar, 2021; Zhou et al., 2022b).

Despite the fit that Durbin-Watson FE (0.057) and RE

Coefficient Restriction (CR)/Wald test estimated output results

with a CV of (1,-1) and Coefficient Restrictions (CR) with “C

(1) = 0. t-statistics (p-value) estimates suggest that we do not

accept the panel A and B null hypothesis that the coefficient value

of the co-integrating regressor is equal to 1 under linear

restriction. The estimated result of t-statistics (p-value) is

around 0.000, indicating that we rejected the null hypothesis

of the panel (A and B) that the coefficient value of the co-

integrating regressor is equal to 1 with linear restriction. At lag 6,

d.f. = 6, the residual diagnostic value of Akaike AC’s [−2(l/T)+2k/

T] is estimated (reporting the Correlogram-Q-statistics). Panels

A and B both have p-values below 0.05 (at 0.045 for the TRD and

0.032), indicating that the residuals are random noise and

permitting us to reject the null hypothesis; this holds true for

lags 1 through 6. Fixed Effects (FE) and Random Effects (RE)

models were used to estimate the pool equation. Regressors

(AGR, CY, REN, GNI, IDC, and TRD) and only cross-

sectional identifiers (for the FE) are used to analyze a

regressing model (panels A and B) in both the FE and RE.

We delve deeper into the default coefficient covariance and

White cross-section analysis. The default and White cross-

section are used to evaluate the Coefficient Standard Errors

(CSE) and the Robust Coefficient Covariance (RCC). It is the

cross-sectional, periodic, and idiosyncratic error components of

S.D and Rho in FE and RE that constitute the Effects Specification

(ES). Rho, or intraclass correlation, reveals the fraction of

variation in a regressor.

3.3 Quantile regression

When it comes to estimating the median response, the

least absolute deviation (LAD) estimator that best fits the bill

is the quantile regression (QR) estimator. When compared to

conditional mean analysis, conditional distribution analysis is

a more in-depth method. In panels A and B, the first, second,

and third quartiles are displayed. The model’s 25th, 50th, and

75th percentile response indicators are affected by the

regressors. A strong distributional assumption is not

necessitated by the QR method. The focus here is on a

robust method (RM) for creating such connections. Panels

A and B contain the results of the explanatory indicators, and

their findings are discussed here. In Tables 4, 5, we also show

the 25th, 50th, and 75th percentile values for the diverse

factors that contribute to environmental degraders. This
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variation in quantiles between developing and developed

countries’ determinants of environmental degradation is

reflected in the conditional determinants estimate of panels

A and B’s equations. The effect of AGR on C-EM and C-LF is

highly variable and statistically significant at the Q25, Q50,

and Q75 quartile in the total equations presented in panels A

and B. Consequently, AGR is associated with environmental

degradation and using the 25th, 50th, and 75th quartiles of

real income, we can see how this variable affects C-EM and

C-LF. There, the EKC worked particularly well at Q50 and

Q75 but only moderately well at Q25, proving its validity. The

quantile results for C-LF consumption show that, despite the

greatest influence and having a significant pollution

abatement effect, all indicators, with the exception of CY

and IDC in Q50, where the cereal yield and industries

association have a little low effect, are presented in Figure 2.

Canada, Qatar, Russia, and the Netherlands are among the

top Q50 countries in terms of per-capita carbon emissions, and

the effect of real income in these developing and developed

economies is consistent with the inverted U-shaped pattern

Kuznets Curve (EKC) hypothesis (Mehmood Mirza et al.,

2022). The descriptive statistics shown in Figure 3 indicate

that both Canada and Qatar are among the top carbon

emitters among both developed and developing nations.

Nigeria, the Philippines, Brazil, Chile, and Argentina all had

results that supported the EKC theory. This includes countries

like France, Italy, Norway, and Germany. As quantile-based

mean estimators, AGR, REN, and TRD all show nearly

identical influences.

Panels A and B of Figure 4 show the intensity level of CEM

as determined by the EKC curve. On the x-axis, you can see

developing and developed nations over time, from 1991 to

2016. 2016 in China is where the highest AGR was predicted to

occur, with C-EM and C-LF levels predicted to be

-0.3 and −0.6, respectively. Because China is a developing

nation, it has modified its agricultural technology and

decreased its intensity. With the exception of China, all

other developing countries (including Qatar, Malaysia,

Nigeria, and the Russian Federation) exhibit a high-

intensity level in AGR, CY, TRD, and especially IDC.

Similar to Qatar, 2003 saw the highest intensity, estimated

at 7.7, while 2016 saw the lowest, at 0.3, for C-LF. The highest

C-EM value was also recorded in 2002. However, the

developed countries have a significantly lower level of

intensity in AGR, TRD, CY, and REN than developing

nations like Turkey, Sweden, Norway, etc.

4 Discussion

The quintile decomposition analysis for CEM emissions

reveals that unidentified factors outside of the research model

contribute to the carbon emissions gap between LIG and HIG as

a result of different developing and developed economic

structures and environmental policy frameworks. Nonetheless,

C-LF and C-EM are disproportionately high in comparison to

observed economic factors and agriculture. Table 4 shows the

results of an FMOLS, FE, RE, and cross-country quantile

regression (Q25, Q50, and Q75) analysis for all 22 countries,

including nine developing and 13 developed nations, with panels

A and B providing separate elaboration on the existence of the

EKC hypothesis in terms of CEM. Panel A shows a positive effect

FIGURE 4
Consequences of CEM and economic growth in panels A and B.
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for AGR, GNI, and IDC, while panel B shows a favorable effect

for GNI, and IDC. Based on the projected results, it seems that a

1 percent shift in an explanatory indicator has a far larger impact

on C-EM than C-LF. Results for nine developing nations and

13 developed countries are shown in Table 5. Estimates imply

that developing countries have a greater degree of similarity in

their growth plans and C-EM shifts (Farooq et al., 2022).

Assumptions used in the EKC model of CEM are valid for

low-income nations, but their predicted outcomes fall short of

the achievements of high-income countries. Further explanation

of the empirical investigation of environmental degradation

caused by agricultural output, economic growth, trade

openness, renewable energy, industry, and implications of

trade follows.

1) United Nations Food and Agriculture Organization (FAO)

research shows that emissions from forestry, agriculture, and

fisheries have increased in the last 50 years and are projected

to increase by 30% by 2050. As developing and developed

countries increase their energy demands, CO2 emissions

continue to rise and have reached a record high for the

fourth consecutive year (Rapier, 2020). Consider that Asia

is home to only 4.3 billion people or 60% of the world’s

population. Table 5 reveals that the current EKC hypothesis

predicts that AGR and GNI have the greatest impact on

attitude in panel A, whereas the least optimistic estimates are

seen in panel B, which represents emerging countries. In

addition, the CEM emissions per capita in developing

countries are currently greater than double those in

developed nations due to the percent population growth in

these regions. Concerning AGR, Brazil andMalaysia for panel

A and China and Qatar for panel B had the highest CO2

emissions intensity. To be more ecologically sound, CEM

must strike a balance between mechanization and

inappropriate cultivation practices that call for greater

additives and accuracy (Jiandong Chen et al., 2020; Munir

et al., 2020). The EKC-high effect of AGR output is positive

for all Q25, Q50, and Q75 in China, Qatar, and Malaysia in

panels A and B. High intensity is shown in Turkey, Germany,

and Greece (all developed countries) in Panel A, and in

France, Italy, and Turkey (all developed countries) in

Panel B. Low- and high-income rural and urban farmers

are still needed, especially in developing and developed

nations. This inference may explain why there is a range

in the impact of agriculture on CO2 emissions.

2) The EKC hypothesis for CEM does not hold for developing

countries, and the estimated results do not correspond to what

high-income economies have accomplished. However, empirical

estimation of quantile regression revealed that the EKC

hypothesis for CEM holds true for higher emission quantiles,

where the EKC hypothesis was confirmed for Qatar, Canada,

and China as the highest emitting economies among developing

and developed nations (B. Xu and Lin, 2020).

3) Table 5 shows that the REN, and GNI, of developing nations

like Argentina, Mexico, China, and Nigeria, as well as

developed countries like Germany, France, Italy, and the

Netherland, have a significant impact on the EKC

hypothesis for C-EM. Comparing the developed nations of

Germany, Italy, and Sweden to the developing nations of

Brazil, Qatar, and Nigeria, C-LF reveals the existence of the

EKC hypothesis in all six countries. By comparing the

emission rates of developing and developed countries, we

find that the EKC hypothesis for C-EM and C-LF holds true

for higher emissions, with the EKC hypothesis verified for

Qatar, Italy, and China (Xu and Lin, 2020). Moreover, it

shows that environmental policy formulation has occurred in

both high and low economies and that the heterogeneity of

gaseous and solid fuel use between countries can have a

substantial impact on emissions (Wada et al., 2021).

4) Quantile estimates show that the obtained results at Q25 are

decidedly non-standard and favorable in both panels, even

though the renewable energy is consistently negative in both

panels A and B. Long-term economic growth in developing

countries is positively correlated with renewable energy, while

the cost of renewable energy is negatively correlated with

C-EM and C-LM. As a result, renewable energy interacts with

carbon emissions from the use of liquid fuel to boost

economic growth and social progress in both developing

and developed nations. Panel B’s result, however, is more

consistent because it detects a negative dynamic in CO2

emissions and holds up well across different means of

estimation (Omri and Belaïd, 2021). The value added by

industries has a positive and statistically significant impact

on both panels A and B.

5) It is possible that developing economies’ industrial sectors are

weaker than those of developed economies, according to these

estimates. When looking at quantile Q25, the effect of C-LF

becomes more significant (p < 1), indicating that developing

countries’ energy consumption rises along with technological

advancement (Hu et al., 2021). The industrial revolution has

been crucial to the expansion of the global economy. Liquid

carbon emissions have an impact on economies, as shown by

the negative effect of trade in Q25–75 in panel B. Coefficients

for various economic activities reveal that the effects of

agriculture and international trade are supported by more

robust statistical evidence than those involving any particular

economic sector (Nasir et al., 2021).

Evidence from both developing and developed nations

suggests that high labor productivity in regions with a low

average landholding per farmer requires the use of a greater

quantity of fossil energy per unit of output than does the case in

regions with a high average landholding per farmer, where the

same result can be achieved using a relatively smaller quantity of

fossil energy per unit of output, particularly in developing

nations (Li and Haneklaus, 2021). However, it has lower labor
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productivity because its member nations have less abundant land

resources. However, despite using less fossil fuel per unit of

output than developed nations, countries with high populations

have the lowest rates of labor productivity. A higher rate of labor

productivity appears to necessitate a higher rate of fossil energy

inputs per unit of output generated when the amount of available

land per farmer decreases (Jiang et al., 2022b; Sharno and

Hiloidhari, 2022). From this vantage point, it would appear

that the use of fossil energy per unit of production is greater

for a technical path driven by land scarcity and based mostly on

land-saving procedures than for a technical path driven by labor

scarcity and based primarily on labor-saving inputs (Li and

Haneklaus, 2022).

It appears that there is a tradeoff between the amount of land

available and the amount of energy used in agricultural production,

given a particular level of labor productivity. Nonetheless, the data

seems to back the theory that in developing countries, the cost of

agricultural production in terms of fossil energy use is higher when a

land constraint is involved relative to the population than when a

labor force constraint is involved (Yoon, 2022). Any gain in

agricultural output due to “emancipation” from a lack of

farmland comes with a higher “biophysical cost” of food

production, in the sense that more fossil fuel is needed to create

the same amount of food. This also means a greater reliance on

stored energy. Another “biophysical cost” associated with feeding

the worldmight be thought of in these words (Wang, 2022).Massive

input use has a negative effect on the environment, as shown by

previous research. Soil erosion, depletion of water tables, reduction

of biodiversity at the ecosystem level, and degradation of genetic

variation in the species of cultivated plants can all result from the

oversimplification of agroecosystems through the widespread

adoption of monocultures (Behroozeh et al., 2022). With the

measurement of land productivity, the output energy to input

energy ratio becomes an environmental loading indicator (Zheng

et al., 2022). The intensity with which agricultural practices impact

natural ecological processes can be measured, for example, by

measuring the amount of exosmotic energy applied per hectare

of agroecosystem (Koondhar et al., 2021).

As a result, the trend in the development of comprehensive

energy systems in both developing and developed countries is

toward the integrated energy system of agricultural electrification,

which combines the integrated energy system and rural

electrification based on the rural distribution network (Cheng

et al., 2022). Energy efficiency, mechanical stability, and

electronic intelligence are three directions in which agricultural

machinery is headed. Further, this model improves the industry’s

positive effects on the environment and society (Işık et al., 2021). It

has great potential as a tool for achieving carbon neutrality in

agricultural output on a local scale. To effectively lower carbon

emissions from agricultural production, alternative energy sources

should be used to replace conventional fossil fuels (Wu et al., 2021).

To that end, the trend in the development of comprehensive energy

systems in both developing and developed countries is toward the

integrated energy system of agricultural electrification, which

combines the integrated energy system and rural electrification

on the basis of the rural distribution network (Ike et al., 2020).

Energy efficiency, steadiness, and smart technology are unavoidable

directions for the evolution of agricultural machinery (Dong et al.,

2020). The economic benefits of the sector, as well as its positive

social and environmental effects, can all be enhanced by adopting

this idea. In the future, it could be an essential resource for reaching

carbon neutrality in agricultural output on a regional scale. Reduced

use of conventional fossil fuels and increased use of alternative

energy sources would result in considerable reductions in

agricultural carbon emissions.

5 Conclusion and recommendation

Impacts on agriculture (AGR), cereal yield (CY), renewable

energy consumption (REN), gross national product (GNP),

industrial output (IDC), and international trade (TRD) are

analyzed for both developing and developed nations. Using

sinusoidal data from 22 to nine developing and 13 developed

countries, it examines environmental degradation from two

sources of CEM (C-EM and C-LF) from 1991 to 2016. This

research used panel quantile decomposition methods with FMOLS

to examine the gap in CO2 emissions between low (LIG) and high

(HIG) economies, as well as the relationship between AGR and

economic factors at varying income and CO2 emitter levels. As the

estimated results show, there is a wide range of factors that contribute

to environmental quality across both developing and developed

countries, from those with high to those with low levels of CO2

emissions. These recommendations are presented as an expected

result of the aforementioned. To begin, the developed (France, Italy,

and Spain) and selected (China, Brazil, and Nigeria) countries must

eliminate crude agricultural practices caused by land fragmentation.

In addition, the increased production of agricultural goods and the

widespread practice of burning brush have debilitating ecological

consequences. More farming needs to be done in developing nations,

both in terms of cultivating techniques and applying new sustainable

methods. Second, the government in developing countries should be

given the authority and the means to implement strategies to prevent

and reduce the risk of CO2 emissions in urban areas. In addition, the

ongoing evolution of eco-friendly practices that safeguard soil, cut

greenhouse gas emissions, and lessen energy use.

Third, the AgriCare conservative agriculture approach, based on

strip cropping and no-till farming, needs to be introduced to

developing countries along with improved precision agriculture

techniques. In addition, expanding populations and booming

economies are major contributors to rising levels of carbon

dioxide in the atmosphere. In this scenario, the effects of

widespread technological adoption on carbon emission reduction

are outweighed by population and economic growth. In this study,

we find that the developedworld is cutting back on carbon emissions

thanks to the countervailing effects of technology and nuclear power
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plants on their use of oil and other energy sources, while the impact

of alternative energy sources on the consumption patterns of

developing nations is significant but in flux. Human activity

cannot be discounted as a significant contributor to global

warming’s onset at an earlier stage in the industrial revolution

and economic development. Nonrenewable fossil fuels are the

primary source of carbon emissions; depending on their

abundance characteristics, oil, gas, coal, and nuclear all contribute

differently to temperature rise in industrialized nations.

More importantly, both the private and public sectors are

committed to fostering positive change in agriculture via natural

methods and advancingmore sustainable economicmodels. In fourth

place, it is important to promote the adaptation of renewable energy

innovations in underdeveloped nations, as well as the use of energy-

saving practices and all-natural strategies for preventing and reversing

environmental degradation. It would make the switch to a cleaner

industrial economy in developing countries possible. To solve the

fundamental issues of low industrial capacity, food shortage, and

unsustainable manufacturing practices, agricultural and industrial

products in both developing and developed countries should be

stable. Furthermore, 22 countries, both developed and developing,

may gain social stability and employment opportunities as a result of

modernized technologies. As a final goal of our research, we hope to

encourage developed countries to take environmental protection

measures by using environmental performance as a test case for

the EKC hypothesis in future studies.

There are caveats to this study. First, the HDI provides a

comparative economic and social development map of the

world’s 25 most populous countries. HDIs of 0.8 or greater

indicate development in terms of life expectancy, education, and

level of living, as mentioned in the methodology section. However,

not all 25 nations were included in the analysis due to a lack of data.

Second, the study covers a period of time that is now more than

7 years past (from 1991 to 2016), so its results may not apply to

similar situations in the future. Though the data is outdated, the

investigated connections may still be robust. We point you in a few

different directions to further your exploration of this topic. From an

academic point of view, we propose to include other variables (such

as manufacturing industries, fossil fuel energy use, degree of

enforcement, cost of access to renewable energy sources, etc.) to

see if these additional variables further influence the analyzed

connections. The generalizability of our results to more recent

crises is a potential area for future study. If implemented, it

would measure how much of an effect agricultural subsidy

program in developing nations have on global carbon emissions.

The most significant agricultural sectors in both developing and

developed countries should be analyzed to determine how

agricultural land-use change contributes to emissions.

Globalization-oriented policies have had a sizable effect on

agriculture, which is increasingly important in both developing

and developed countries as shown by the results of the present

study. Researchers in the future may include various types of energy

and health infrastructure variables (as regressors) and ecological

footprint (as regress) in their models. However, there are many

interconnected aspects of energy consumption, such as the interplay

between fossil fuels, renewable resources, clean technology, and new

energy sources, as well as the connections between these elements

and energy production and energy policy. The next steps of our

research will involve developing a grey prediction model for the

energy system that takes into account a wider range of influences.

This article’s empirical findings should be double-checked using

other methods, such as the decoupling approaches with Gann

principles and/or the GMM model of analysis, which may be

recommended for future study. To the best of our knowledge,

the few existing apps for quantile unit root and cointegration

tests for time series do not include analysis for evaluating

quantiles in panels. Panel quantile unit root tests and

cointegration tests may be performed in further research by

creating an algorithm that takes into account data structure at

the lower tail, the median tail, and the upper tail, or at different

threshold regimes for each cross-section in panel data (Adnouni

et al., 2023).
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