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Land use change is one of the crucial factors affecting carbon emissions. The

continuously increasing CO2 and global warming have raised concerns about

carbon emission reduction in the process of urbanization. In this research, the

Markov and multi-objective optimization models were conducted to predict

the demands for land use in Nanjing in 2030 and 2060 under the natural growth

(NG) andminimumcarbon emission (MCE) scenarios to coordinate the needs of

economic development, ecological protection and food security as well as the

target of carbon emissions reduction in the future. The spatial distribution of

land use simulated by the FLUS (Future Land Use Simulation) model was used to

evaluate the effects of future land use on carbon emissions. The results showed

that 1) The demands for each type of land use in the NG scenario were

significantly different from those in the MCE scenario. Considering the goals

of food security and ecological protection in the future, the total amount of

cultivated land would not decrease in the MCE scenario, and the area of

construction land was significantly smaller than that in the NG scenario. 2)

The carbon emissions of Nanjing under the MCE scenario would decrease by

3.94 and 11.80 million tons in 2030 and 2060, respectively, accounting for

9.97% and 27.17% of the total carbon emissions. The optimization of land use

patterns can effectively reduce carbon emissions in the process of urbanization.

KEYWORDS

carbon emissions, land use change, FLUS model, multi-objective optimization model,
Markov model

OPEN ACCESS

EDITED BY

Xiaowei Chuai,
Nanjing University, China

REVIEWED BY

Mingzhu He,
Peking University, China
Hui Yang,
Max Planck Institute for
Biogeochemistry, Germany

*CORRESPONDENCE

Qing Huang,
huangqing@njxzc.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Environmental Economics and
Management,
a section of the journal
Frontiers in Environmental Science

RECEIVED 09 October 2022
ACCEPTED 31 October 2022
PUBLISHED 18 November 2022

CITATION

Dong H, Huang Q, Zhang F, Lu X,
Zhang Q, Cao J, Gen L and Li N (2022),
Path of carbon emission reduction
through land use pattern optimization
under future scenario of multi-
objective coordination.
Front. Environ. Sci. 10:1065140.
doi: 10.3389/fenvs.2022.1065140

COPYRIGHT

© 2022 Dong, Huang, Zhang, Lu, Zhang,
Cao, Gen and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 18 November 2022
DOI 10.3389/fenvs.2022.1065140

https://www.frontiersin.org/articles/10.3389/fenvs.2022.1065140/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1065140/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1065140/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1065140/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1065140/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.1065140&domain=pdf&date_stamp=2022-11-18
mailto:huangqing@njxzc.edu.cn
https://doi.org/10.3389/fenvs.2022.1065140
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.1065140


1 Introduction

The continuous increase in global CO2 concentrations and

the resulting climate warming have become one of the most

severe challenges faced by human society in the 21st century

(Tigchelaar et al., 2018). Under the Paris Agreement on climate

change, various countries pledged to keep global warming well

below 2°C and preferably to 1.5°C compared to pre-industrial

levels (Park et al., 2018). The Chinese government announced

that China would strive to reach its CO2 emissions peak by

2030 and achieve carbon neutrality by 2060. Thus, how to reduce

carbon emissions has become a main focus of Chinese

government.

Land is the carrier of major anthropogenic carbon emissions,

and land use effects on carbon emission differ significantly

(Chuai et al., 2015b). Land use transitions among different

types affect anthropogenic carbon emissions. Previous studies

have shown that the cumulative carbon emissions from land use

change since 1959 accounted for 19% of global anthropogenic

carbon emissions (Friedlingstein et al., 2020). The reasonable

planning and layout of limited land resources and the

optimization of land use structure can effectively reduce

carbon emissions and promote the coordinated development

of the socio-economy and eco-environment (Xiao et al., 2007;

Chuai et al., 2015a; Wang and Han, 2021). Therefore, research on

the carbon emission effects of land use change is of great strategic

significance for controlling carbon emissions to achieve carbon

neutrality goals.

Land use/land cover change is an important component of

global environmental change, land use change simulation plays a

key role in analyzing the impacts of land use change for a wide

variety of socioeconomic and ecological processes (Liang et al.,

2021; Houghton et al., 2012). The cellular automata (CA) model

has distinct advantages in dynamically simulating nonlinear

complex geospatial systems (Liu et al., 2017; Liang et al.,

2021) and has been widely used in the simulation of land use

change. Many studies have focused on the transformation rules

and parameter optimization of the CA model. The methods have

been developed from heuristic or linear methods (e.g., logistic

regression (Mirbagheri and Alimohammadi, 2017), grey model

(Li and Yeh, 2000)) to intelligent or nonlinear methods (e.g., ant

colony algorithm (Liu et al., 2007), ensemble Kalman filter

(Zhang et al., 2015), machine learning (Morshed et al., 2022).

These studies mainly focus on the simulation of the expansion of

construction land and aims to analyze the sprawl of the city. In

recent years, the CA model not only was developed to be able to

simulate changes of different kinds of land use but also greatly

improved the accuracy of simulation by combining with the

intelligent algorithm (Li et al., 2017; Liu et al., 2017). As one of the

most typical representative of CA model, the FLUS model

(Future Land Use Simulation) showed high adaptability in

simulating future land use under different scenarios through

continuous model improvement (Liang et al., 2018a; Liang et al.,

2018b; Liu et al., 2018) and has been widely used in the

simulation of land use change (Liang et al., 2018a; Liang

et al., 2018b; Zhang D. et al, 2020a; Chen et al., 2020; Liao

et al., 2020).

However, less consideration has been given to ecological

protection and food security in the simulation of land use

change in previous studies (Verburg et al., 2002; Pijanowski

et al., 2006; Schaldach et al., 2011). In the context of global

greenhouse gas emissions control and China’s carbon peak and

carbon neutrality goals, how to optimize future land use

structure and layout while considering the balance among

economic development, ecological protection and food

security has become an urgent problem for effectively

reducing carbon emissions.

Urbanization level is highly correlated with land use change.

Urban expansion necessarily occupy other land use spaces, which

results in large amounts of carbon emissions. Since the 1980s, both

domestic and international studies have begun to focus on the

carbon emission effect of land use change and have found that land

use change is one of the dominant factors changing the total

amount of CO2 in the air (Campbell et al., 2000; Watson et al.,

2000; Ali and Nitivattananon, 2012). Many studies indicated that

the carbon emission effects of land use had remarkable differences

from urban (Hutyra et al., 2011; Zhao et al., 2014), regional (Chuai

et al., 2016; Li et al., 2020), and national (Leite et al., 2012) to global

(Houghton et al., 2012) scales. For example, Zhao et al. (Zhao et al.,

2014) explored the optimization of land use structure by using

linear programming approach in order to form a low-carbon land

use pattern. Cui et al. (Cui et al., 2018) found that the increase in

urban land in the Yangtze River Delta urban agglomeration in the

past 20 years contributed to approximately half of the total urban

carbon emissions. Lai et al. (Lai et al., 2016) considered that the

increase in the total amount of carbon emissions in China during

1990–2010 was mainly due to land use conversions among

different types. However, current studies have mainly focused

on the carbon emission effects of land use structure change,

and the effects of different land use transfers spatially are still

unclear. The optimization of the layout and structure of future land

use and its carbon emission effects still need further research.

In this study, we used both the Markov model and the multi-

objective optimization model to forecast the land use demands in

Nanjing in 2030 and 2060, and the FLUS model was employed to

spatially allocate the land use in the natural growth (NG) and

minimum carbon emission (MCE) scenarios. We investigated

the differences in land use changes between the two scenarios and

quantitatively evaluated the carbon emission effects of land use

patterns in the two scenarios. Our results highlight challenges in

using the multi-objective optimization model to coordinate the

needs of future urban expansion in the constraints of food

security, ecological protection and economic development.

Additionally, this research provides some possible paths for

urban expansion with minimal carbon emissions for the cities

of China in the future.
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2 Materials and methods

2.1 Study area

The study area of Nanjing, Jiangsu Province, with a total land

area of approximately 6,587.02 square kilometres, is located at

118°22”~119°14″E, 31°14”~32°37″N. It is an important

intersection zone between the Yangtze River economic belt

and the “Belt and Road”, which has an important strategic

position (Figure 1). According to the data in the Nanjing

Statistical Yearbook (http://tjj.nanjing.gov.cn/), Nanjing had a

resident population of 9,319,700 and a gross regional product of

148.18 billion CNY in late 2020. And the urbanization rate of

Nanjing has increased from 78.5% in 2010 to 86.8% in 2020,

Continued reduction of cropland and expansion of construction

land in this region have gradually increased the pressure on

resources and the environment.

2.2 Data sources

The FLUS model used in this paper was driven by land use

data, driving factor data (including topography, transportation

data, etc.) and socioeconomic data. The land use data were

interpreted from Landsat TM/ETM remote sensing images

and obtained from the Resource and Environmental Science

Data Center (https://www.resdc.cn/) and were reclassified into

seven land use types: cultivated land, woodland, grassland,

waters, urban construction land, rural residential land, and

unutilized land. The area of each land use type is shown in

Figure 2. The transportation factor data were the distances to

major roads (including railroads, highways, national roads,

provincial roads, and county roads) and distances to city,

district, and county centres, which were calculated using

Euclidean distance. Other driving factors included

topographical factor data, e.g., elevation, slope and aspect, and

FIGURE 1
The geographic location of Nanjing in Jiangsu province.
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population density data. The elevation data were obtained from

the Geospatial Data Cloud (http://www.gscloud.cn/), and the

slope and aspect data were generated by using terrain analysis

tools. The spatial distribution data of population density were

obtained from World Pop (https://www.worldpop.org/), and the

gridded dataset was generated by remotely-sensed data and

geospatial data using Random Forest model. All data were

mapped to the interval (0, 1) by the normalization method.

2.3 Methods

In this paper, future urban development scenarios were set

up as the natural growth scenario (NG) and the multi-objective

collaborative minimum carbon emission scenario (MCE). The

Markov model was used in the NG scenario to predict future land

use demands based on the trend of the historical period. The

multi-objective optimization model was used in the MCE

scenario to predict future land use demands under the

constraints of food security, ecological protection, and

economic development, and the minimization of carbon

emissions was used as the objective function to balance

different land use demands. Then, the FLUS model was used

to simulate the spatial distribution of land use in 2030 and

2060 based on the areas of each land use type under the NG

andMCE scenarios. The flowchart of the methods in this study is

illustrated in Figure 3.

2.3.1 Markov model
The Markov model, i.e., the Markov chain (Oliveira Barros

et al., 2018), based on probability theory, was used to simulate

future land use changes in a stochastic state (that is, a shift with a

certain probability from one period to another), and this state

was related only to the present and not related to the past and

future. This model is fit for predicting long-term trends and has

been widely used to simulate future land use change (Iacono

et al., 2015; Durmusoglu and Akın Tanrıöver, 2017). The

probability transfer matrix is the key to this model. The

mathematical formulas are as follows:

S(t+1) � Pij × St (1)

Pij � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P11 / P1n

..

.
1 ..

.

Pn1 / Pnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where S(t+1) denotes the land use in period t+1, St denotes the

land use in period t, and Pij is the land use transfer probability

matrix, with range values from 0 to 1, i, j = 1,2,3...,n.

2.3.2 Multi-objective optimization model
The multi-objective optimization model was used to predict

the future land use demand in Nanjing by considering the

constraints of multi-objective demands for food security,

ecological protection, and economic development and the

minimization of carbon emissions. This model was expressed

in mathematical Formula (3), and the optimal solution was

FIGURE 2
The area of each land use type in 2010 and 2020.
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obtained when the value of variable xi met the requirement of the

extreme values of the objective function F(X):

F(X) � f(x1, x2, x3 . . . , xn) (3)

The area of seven land use types (i.e., cultivated land X1,

woodland X2, grassland X3, urban construction land X4, rural

residential land X5, water X6, and unused land X7) were selected

as the decision variables. The multi-objective demands on land

use of food security, ecological protection, and economic

development were set as the constraints, and the minimization

of carbon emissions was used to construct the objective function.

2.3.2.1 Multi-objective constraints

(1) Total land area constraint. According to the spatial

distribution data of land use in Nanjing in 2010 and

2020, the total land area was approximately 659,051.37 ha.

The sum of the land areas of all types should be equal to the

total area, which should be unchanged under future

scenarios. The constraint equation of the total land area is

as follows:

∑7

j�1Xj � 659051.37, Xj > 0

(2) Cultivated land demand constraint. Considering the

demands of land use for food security, the amount of

cultivated land in Nanjing should not be reduced in the

future. Therefore, the amount of cultivated land in 2020

(334,310.49 ha) was set as the lower limit of the cultivated

land demand. Generally, the increment of cultivated land

derived from the consolidation of rural settlements and the

FIGURE 3
The flowchart of methods in this study.
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reclamation of abandoned industrial and mining land was

offset by the occupation of urban construction land. The net

increase in cultivated land was mainly derived from the

development of unused land. Therefore, from the perspective

of maximizing the supplementation of cultivated land,

assuming all the unused land would be converted to

cultivated land in future scenarios, the summed area of

cultivated land and unused land was set as the upper

limit of the cultivated land demand. The constraint

equation of cultivated land area in Nanjing is as follows:

334310.49≤X1 ≤ 336737.2

(3) Woodland demand constraint. In view of the demand for

land use for ecological protection, the amount of woodland

in Nanjing should not be reduced in the future. Therefore,

the amount of woodland in 2020 (66,464.37 ha) was set as

the lower limit of the woodland demand. To match the

requirements in carrying out greening programs and

enhancing the carbon absorption capacity of ecosystems,

which was outlined in the 14th Five-Year Plan (2021–2025)

and the Long-Range Objectives through the year 2035 for

Nanjing, there should be an increase in the area of woodland

in the future. Considering the increased potential of

woodland derived from the construction of ecological

corridors along the Yangtze River shoreline and traffic

arteries and vegetation restoration of mining areas, the

average growth rate of the woodland area is expected to

be 0.3% in future years, and this value was used as the upper

limit of the woodland demand. The constraint equation of

woodland area in Nanjing is as follows:

66464.37≤X2 ≤ 66663.76

(4) Grassland demand constraint. The grassland area of Nanjing

in 2020 was 5,809.14 ha, accounting for only 0.88% of the

total land area. Meanwhile, there was a smaller-magnitude

change in the grassland area during 2010–2020, with an

average annual change rate ranging from −0.09% to 1.37%.

According to the abovementioned change rate range of

grassland area, the constraint equation of grassland

demand in Nanjing was established as follows:

5759.92≤X3 ≤ 6655.67

(5) Urban construction land demand constraint. With the

development of economy, Nanjing should not shrink in

size in the future as the capital of Jiangsu Province and

the mega-city in the Yangtze River Delta, the current size

should be the minimum area of urban construction land in

the future. We extrapolated the demand for urban

construction land in Nanjing in the future based on the

urban resident population and the per capita urban

construction land use standards (see Supplementary Table

S1). The time series data of the resident population size and

urbanization rate in Nanjing from 2000 to 2020, as well as the

trend extrapolation method and logistic model were used to

predicate the resident population (10.93 million) and

urbanization rate (90%) of Nanjing in 2030. And then the

urban resident population (multiply of resident population

and urbanization rate) was calculated to be 9.837 million in

2030 in Nanjing. According to the per capita urban

construction land area (112.38 m2 per capita) in Nanjing

in 2020 and the Urban Land Classification and Planning

Construction Land Standard (GB50137-2011), the

magnitude of the per capita urban construction land area

should reduce by −15 m2 for the increasing of resident

population. Combined with the above calculation and the

ratio of urban construction land, the constraint equation for

the urban construction land was established as follows:

105, 516.26≤X4 ≤ 118, 258.49

(6) Rural residential land demand constraint. With the progress

of urbanization, a large number of rural populations shift to

cities and towns, and there should be a declining trend of

rural residential land. The future demand for rural

residential land in Nanjing was also extrapolated based on

the future rural resident population and the expected per

capita rural residential land. Using the above predicted

resident population and urbanization rate, we obtained

the rural resident population of Nanjing in 2030

(1.093 million). To meet the requirements of new-type

urbanization and land use intensification, the rural

residential land area and per capita rural residential land

in Nanjing should be decreased with the decrease in the rural

population. The per capita rural residential land was set to

decrease by 10% in 2030, which was used to identify the

lower limit of the rural residential land demand. The amount

of rural residential land in 2020 (72,669.15 ha) was set as the

upper limit, and then the constraint equation of rural

residential land was as follows:

58129.41≤X5 ≤ 72669.15

(7) Water demand constraint. The water area of Nanjing in

2020 was 74,768.04 ha, and it had an average annual decrease

rate of 0.23% during 2010–2020. The decrease in water was

mainly due to the transfer of rural ponds to other lands, but

the amount of water change was small. Then, assuming that

the future water change would be consistent with the historic

change trend, the water area extrapolated by the average

annual decrease rate was set as the lower limit, and the water

area in 2020 was set as the upper limit of water demand. The

constraint equation of the Nanjing water demand was

established as follows:

73091.51≤X6 ≤ 74768.04
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2.3.2.2 Objective function of carbon emissions

minimization

Research on the carbon emission intensity of different land

use types has been extensively conducted at the national (Lai,

2010), regional (Chuai et al., 2015b), and urban (Zhao et al.,

2013) scales, and related results are shown in Table 1. The values

of carbon emission intensity of the different land use types used

in the manuscript mainly referenced the results of Zhao et al.

(2013) for considering the differences in carbon emission

intensity of land use in different regions. Due to the

differences in land use classification systems, the carbon

emission intensity of urban construction land might be

overestimated when incorporating other construction land,

such as transportation, into urban construction land.

Therefore, the weighted average method was used to adjust

the carbon emission intensity of urban construction land. The

carbon emission intensity parameters of different land use types

in Nanjing are given in Table 1.

Based on the parameters of carbon emissions of each land use

type, the objective function of carbon emission minimization in

multi-objective collaboration was constructed as follows:

Min(F) � 2.24X1 + 0.14X2 + 6.77X3 + 365.76X4 + 7.22X5

+ 0.95X6 (4)

Where F is the sum of total carbon emissions generated by

different land use types, and X1, X2... X6 are the demand of

different land uses. This model was solved by LINGO (Linear

Interactive and General Optimizer), an interactive linear and

general optimization solver that is widely used to solve linear,

nonlinear, and integer optimization models.

2.3.3 FLUS model
In the manuscript, the FLUS model was used to simulate the

future spatial distribution of land use in Nanjing, which was

improved based on the CAmodel by Liu et al. (2017). This model

considers the effects of human activities and natural factors and

can be applied to simulate the spatial changes in land use under

historical and future scenarios (Li et al., 2011; Liu et al., 2017; Liu

et al., 2018). Based on the spatial distribution of land use and

driving factor data in the baseline period (2010, 2020), the

backpropagation artificial neural network algorithm (BP-

ANN) was employed in the FLUS model to calculate the

suitability probabilities of various land types and then to

transfer land use types by the roulette method (Zhang et al.,

2022). The main calculation modules of the FLUS model are as

follows.

(1) BP-ANN-based suitability probability calculation

The ANN algorithm consists of the input and the implicit

and output layers and can be formulated as follows:

sp(p, k, t ) � sigmoid(netn( k, t ))
× ∑

n
wn,k ×

1

1 + e−netn( k,t ) (5)

TABLE 2 Neighbourhood factor parameters in FLUS model.

LULC Neighbourhood
factor parameters

LULC Neighbourhood
factor parameters

Cultivated land 0.5 Waters 0.5

Woodland 0.5 Urban construction land 1

Grassland 0.5 Rural residential area 0.1

Unutilized land 0.1

TABLE 1 Carbon emission parameters of different land use patterns (t/hectare).

Variable LULC Carbon emissions factor

Lai (2010) Chuai (2015) Zhao (2013) This paper

X1 Cultivated land 0.50 −0.03 2.24 2.24

X2 Woodland 0.03 −0.09 0.14 0.14

X3 Grassland − 0.02 0 0

X4 Urban construction land 55.81 202.43 399.84 365.76

X5 Rural residential land 8.28 27.91 7.22 7.22

X6 Waters 0.72 −0.12 0.95 0.95

Research Area China Coastal area of Jiangsu Nanjing Nanjing
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where sp(p, k, t ) is the suitability probability of land use type k
in grid cell p at time t; wn,k is the weight between the hidden layer

and the output layer; sigmoid is the activation function from the

implied layer to the output layer; and netn(k, t) represents the

signal in the nth implied layer received from grid cell p at time t.

The sum of suitability probabilities for all types of land use in

the BP-ANN algorithm was 1, i.e.,

sp(p, k, t ) � 1 (6)

The training samples were randomly selected by ANN. The

sampling proportion was set to 20%, and the number of hidden

layers was empirically set to 12. The suitability probabilities of

different land use types were obtained by inputting the

normalization of all driver factor raster data into the FLUS model.

(2) Self-adaptive inertia and competition mechanism

The core of the self-adaptive inertia mechanism in the FLUS

model is the inertia coefficient, which is adjusted based on the

differences between the actual distribution and the expected

demand of different land uses to achieve the predetermined

targets of the amount of land use. The formula was defined as

follows:

Itk �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

It−1k if
∣∣∣∣Dt−1

k

∣∣∣∣≤ ∣∣∣∣Dt−2
k

∣∣∣∣
It−1k ×

Dt−2
k

Dt−1
k

ifDt−1
k <Dt−2

k < 0

It−1k ×
Dt−1

k

Dt−2
k

if0<Dt−2
k <Dt−1

k

(7)

where Itk denotes the inertia coefficient of land use type k at

time t, and Dt−1
k 、Dt−2

k denotes the area difference between

the number of grid cells and the demand at times t-1 and

t-2.

After calculating the total suitability probability in the ANN

model, each land use type was allocated to each cell through

several iterations of the CA model. The overall conversion

probability in the occupied cells of a specific land type was

estimated by using the following equation:

FIGURE 4
Actual and simulated land use patterns in Nanjing in 2020. (A,B) represent their respective regions; (A1, A2) represent the actual and simulated
land use patterns in region (A); and (B1, B2) represent the actual and simulated land use patterns in region (B).
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TPt
p,k � sp(p, k, t) × Ωt

p,k × Itk × (1 − scc→k) (8)

where TPtp,k is the overall probability of conversion to type k of

cell p at time t; sp(p, k, t ) is the probability of suitability of

cell p to type k; Ωt
p,k denotes the neighbourhood influence

factors; Itk is the self-adaptive inertia coefficient; scc→k is the

conversion costs from type c to type k; and Ωt
p,k is the

neighbourhood influence (Zhang X. R. et al., 2020b) and is

expressed as follows:

Ωt
p,k �

∑N×Ncon(ct−1p � k)
N × N − 1

× wk (9)

where ∑N×Ncon(ct−1p � k) denotes the number of cells of type k

in the N×N window after the last iteration, and wk denotes the

parameters of the neighbourhood factors of different land types

(Cao et al., 2019), with a range of values from 0 to 1.

In this study, a 3 × 3 window-based neighbourhood was used,

and the number of iterations was set to 300. The parameters of

the neighbourhood factors of each land type outlined in Table 2

were set based on the future development trend.

Kappa coefficients were used to verify the simulation

accuracy by comparing the actual distributions of land use in

2020 with the simulated results with 2010 as the base year. The

expression of Kappa was as follows:

Kappa � po − pc

pp − pc
(10)

where po is the ratio of the number of correctly simulated cells to

the total number of cells, i.e., the correct rate of simulation; pc is

the expected correct rate of simulation in the random state, and

the value in this study was set to 1/7 considering seven land types;

and pp is the ratio of the number of correctly simulated cells to

the total number of cells in the ideal state, with a value as 1.

3 Results

3.1 Accuracy verification of the FLUS
model

The FLUS model simulated spatial distributions of land use

in Nanjing in 2020 by using 2010 as the base year, and the results

were verified against the actual situation for accuracy. The

TABLE 3 Transition matrix of land use types in Nanjing from 2010 to
2020.

Unit/km2 CL WL GL UC RR WA UL

CL 3,283.85 8.10 0.17 122.83 90.58 12.45 0.18

3,316.19 6.18 2.40 111.46 81.93 0.00 0.00

WL 7.99 652.11 0.19 6.89 4.62 1.04 0.25

4.96 655.77 0.00 12.04 0.31 0.00 0.00

GL 0.24 0.12 52.19 0.94 0.26 0.85 0.00

0.13 0.05 54.16 0.02 0.00 0.24 0.00

UC 8.84 1.62 0.04 882.12 1.03 1.57 0.06

0.99 0.99 0.20 892.44 0.66 0.00 0.00

RR 27.68 1.41 0.08 2.40 624.63 1.33 0.03

13.47 0.34 0.02 0.16 643.58 0.00 0.00

WA 14.31 1.01 5.42 8.18 5.56 730.42 0.02

7.46 0.40 1.04 8.41 0.18 747.44 0.00

UL 0.20 0.27 0.00 2.68 0.01 0.01 23.73

0.18 0.92 0.00 1.50 0.03 0.00 24.27

Note: the upper row of each land use type in the matrix is the actual situation, and the

lower row is the simulated situation presented in italics. CL, cultivated land; WL,

woodland; GL, grassland;WA, water; UC, urban construction land; RR, rural residential

land; UL, unutilized land.

FIGURE 5
The demand for each land use type in Nanjing in 2030 and 2060 under future scenarios (hectare).
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comparative results indicated that the simulated spatial

distributions of land use had good agreement with the actual

situation, with a high simulation accuracy of 0.91 (shown in

Figure 4), which met the needs of land use simulation.

Additionally, the conversions of cropland to urban

construction land and rural residential land were the two

main transfer paths (shown in Table 3), of which the

simulation errors compare with the actual situations were

9.25% and 9.54%, respectively. The FLUS model had good

adaptability in this study.

3.2 Land use demand in nanjing in future
scenarios

The demand for type of land use in Nanjing in 2030 and

2060 in the NG scenario was significantly different from that in

the MCE scenario, as shown in Figure 5 and Table 4. In the NG

scenario, compared with 2020, the area of cultivated land

decreased by 4.76% and 16.74%, whereas the area of urban

construction land increased by 11.94% and 43.42%, and the

area of rural residential land increased by 8.41% and 28.10%

in 2030 and 2060, respectively. In the MCE scenario, the area of

cultivated land decrease less than 1%, the rural residential land

also decreased by 5.45% and 18.40%, and the urban construction

land increased slightly by 1.53% and 12.28% in 2030 and 2060,

respectively.

3.3 Spatial distribution of land use in
nanjing under future scenarios

Based on the actual situation of land use and driving factor

data in 2020 and the predicted land use of each type in the NG

and MCE scenarios, the respective spatial distributions of land

use in Nanjing in 2030 and 2060 simulated by the FLUS model

are shown in Figure 6. Although the land use patterns in the NG

and MCE scenarios were approximately similar, the scale of

construction land expansion in the NG scenario was larger than

that in the MCE scenario. Additionally, there were some

differences in the method of construction land expansion in

the two scenarios, as shown in Figure 7. In the NG scenario, the

urban construction land expanded outward along the current

urban boundary, resulting in the occupation of a large amount

of cultivated land. In contrast, in the MCE scenario, the

expansion of urban construction land mainly came from the

scattered rural residential land surrounding the urban

boundary.

3.4 Land use changes in nanjing in future
scenarios

According to the actual spatial distribution of land use in

2020 and the simulated spatial distribution of land use in

2030 and 2060 in the NG and MCE scenarios, Sankey

diagrams of the land transfer matrix of Nanjing in

2020–2030 and 2020–2060 in the two scenarios were

established, as shown in Figure 8. Overall, the land use

structure of Nanjing in future scenarios was relatively

stable. The area of cultivated land was the largest,

accounting for approximately 50%–51% of the total land

area, and the area of urban construction land was the second

largest, accounting for approximately 15%–17%. The

proportions of rural residential land, water and woodland

were all approximately 10%, and the area of grassland and

unused land was relatively small.

However, the transfer paths of land use in Nanjing in the

different scenarios differed significantly. In the MCE

scenario, the conversions of rural residential land,

cultivated land, and unutilized land to urban construction

land were the main paths of land use transfer from 2020 to

TABLE 4 The area of land use of each type in Nanjing under future scenarios (hectare).

LULC Actual situation Land use demand in theMCE
scenario

Land use demand in the NG
scenario

2020 2030 2060 2030 2060

CL 334310.49 336737.2 334310.5 318380.76 278357.67

WL 66464.37 66663.76 66663.76 65641.14 63293.58

GL 5,809.14 6,655.67 5,759.92 6,098.94 6,948.18

WA 74768.04 74768.04 73798.82 73100.07 68431.05

UC 102603.51 105516.3 134341.1 114853.05 147153.06

RR 72669.15 68710.44 44177.28 78783.03 93087.54

UL 2,426.67 0 0 2,194.38 1780.29
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2030, where rural residential land transfer accounted for

65.66% of the total area transferred to urban construction

land. Furthermore, during the period 2020–2060, the

conversion of rural residential land to urban construction

land was the more dominant path of land use transfer, with a

proportion of 90.71% of the total area transferred to urban

construction land. Additionally, the interconversions

between cultivated land, rural residential land and waters

were very active. Compared with the MCE scenario, the

interconversions between different land use types were

FIGURE 6
Spatial distribution of land use in Nanjing in 2030 (A,C) and 2060 (B,D) in the NG (C,D) and MCE (A,B) scenarios.
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remarkably different in the NG scenario because no

constraints were set on land use change. The significant

characteristics of land use transfer in the NG scenario were

that the area of cultivated land decreased considerably due to

the urban construction land expansion, and a large area of

woodland was also converted to urban construction land.

FIGURE 7
Two enlarged views of land use simulation in 2030 and 2060 in the NG and MCE scenarios.

FIGURE 8
Sankey diagrams of land transfer matrix of Nanjing during 2020–2030 (A,C) and 2020–2060 (B,D) in the NG (C,D) and MCE scenarios (A,B).
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3.5 Carbon emission effects of land use
change in nanjing under future scenarios

The carbon emission effects of land use in Nanjing in

2030 and 2060 using the coefficients of carbon emissions of

each land use type are shown in Table 5. Under the NG scenario,

the carbon emissions from land use in Nanjing in 2030 and

2060 were 43,410,600 tons and 55,239,200 tons, respectively,

where the carbon emissions from urban construction land were

the largest, up to 42,008,700 tons and 53,822,700 tons in 2030 and

2060, respectively, accounting for 96.77% and 97.43% of the total

carbon emissions. The carbon emissions generated by woodland

were minimal, with amounts of 9,200 tons and 8,900 tons in

2030 and 2060, respectively. In contrast, under the MCE

scenario, the carbon emissions of land use in Nanjing in

2030 and 2060 were 39,472,800 tons and 43,437,500 tons,

respectively, where urban construction land was still the land

use type with the largest carbon emissions, with amounts of

TABLE 5 Carbon emissions from different land uses in Nanjing in 2030 and 2060 under different scenarios.

Land use type In the NG scenario In the MCE scenario

Area (hm2) Carbon emissions (104t) Area (hm2) Carbon emissions (104t)

CL 2030 318380.76 71.32 336737.79 75.43

2060 278357.67 62.35 336740.67 75.43

WL 2030 65641.14 0.92 66663.72 0.93

2060 63293.58 0.89 66663.72 0.93

GL 2030 6098.94 4.13 6082.11 4.12

2060 6948.18 4.70 5759.91 3.90

WA 2030 73100.07 6.94 74768.04 7.10

2060 68431.05 6.50 73798.83 7.01

UC 2030 114853.05 4200.87 104168.97 3810.08

2060 147153.06 5382.27 115202.97 4213.66

RR 2030 78783.03 56.88 68710.41 49.61

2060 93087.54 67.21 59294.52 42.81

UL 2030 2194.38 0.00 1920.33 0.00

2060 1780.29 0.00 1590.75 0.00

TABLE 6 Carbon emissions of land use change in Nanjing during the periods of 2020–2030 and 2020–2060 under the MCE scenario.

Carbon emissions Change/104 t CL WL GL WA UC RR UL

CL 0.00 −0.04 0.00 0.00 12.29 0.01 0.00

0.00 −0.03 0.00 0.00 11.51 0.01 0.00

WL 0.10 0.00 0.00 0.00 6.23 0.00 0.00

0.07 0.00 0.00 0.00 6.11 0.00 0.00

GL −0.01 −0.01 0.00 0.00 0.07 0.00 0.00

0.00 -0.01 0.00 −0.03 0.36 0.00 0.00

WA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.07 0.00 0.02 0.00 16.14 0.00 0.00

UC −4.78 −4.22 −1.53 0.00 0.00 −7.48 0.00

-8.33 -8.15 -0.07 0.00 0.00 −35.19 0.00

RR −1.11 −0.13 0.00 0.00 57.45 0.00 0.00

−0.91 −0.11 0.00 0.00 456.48 0.00 0.00

UL 0.00 0.00 0.00 0.00 12.00 0.00 0.00

0.00 0.00 0.00 0.00 13.41 0.24 0.00

Note: The time interval of the upper row of each land use type in the matrix is 2020–2030 and that in the lower row is 2020–2060.
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38,100,800 tons and 42,136,600 tons in 2030 and 2060,

accounting for 96.52% and 97.01% of the total carbon emissions.

Although the proportion of carbon emissions from urban

construction land to total carbon emissions did not change

significantly under the two scenarios, the total carbon

emissions in the MCE scenario in 2060 increased by only

3,964,700 tons compared to that in 2030, while that in the

NG scenario increased by 11,814,000 tons. The total carbon

emissions from urban construction land in Nanjing in 2030 and

2060 in the MCE scenario were 3,937,800 tons and

11,801,700 tons less than those in the NG scenario, respectively.

The carbon emissions effects of different land use transfers in

Nanjing in 2030 and 2060 under the NG and MCE scenarios are

shown in Tables 6, 7. In the MCE scenario, the carbon emissions

from land use change in Nanjing by 2030 increased slightly, where

the carbon emissions from the conversion of rural residential land

to urban construction land were approximately 574,500 tons. By

2060, the increment of carbon emissions from the conversion of

rural residential land to urban construction reach 4,564,800 tons.

In contrast, the main land use type transferred to urban

construction land in the NG scenario was cultivated land, from

which the increment of carbon emissions reached 3.801 million

tons and 13.4262 million tons in 2030 and 2060, respectively.

4 Discussion

4.1 Comparison of simulation results
under different scenarios

The simulated structure and spatial distributions of land use

in Nanjing in 2030 and 2060 showed that the urban construction

land and rural residential land continued to increase and the

cultivated land decrease considerably in the NG scenario,

whereas in the MCE scenario, the cultivated land was

protected effectively due to the constraint of land use in food

security, the growth of urban construction land was slower and

the rural residential land did not increase instead decrease.

Additionally, in the NG scenario the expansion of urban

construction land mainly came from the conversion of

cultivated land and woodland, whereas in the MCE the

expansion of urban construction land mainly came from rural

residential land and the cultivated land changed slightly.

Compared with in the NG scenario, the demand for each type

of land use in the MCE scenario contributed more to the

coordination of economic development with resource

conservation and environmental protection to meet the needs

of sustainable development.

4.2 The optimization of land use pattern
for the reduction of carbon emissions

The areas of cultivated land, woodland, water, and unused land

in Nanjing during 2010–2020, showed decreasing trends to different

degrees, while the areas of urban construction land, rural residential

land and grassland showed increasing trends. In the past 10 years,

China has experienced rapid urbanization, and the conversion of

cultivated land to urban construction land has been themain path of

urbanization development. However, with the proposal of the food

security strategy, the protection of cultivated land protection is

strengthening, so the probability of the conversion of cultivated

land to other land types should decrease in the future. Additionally,

according to the requirements of new-type urbanization and land

TABLE 7 Carbon emissions of land use change in Nanjing during the periods of 2020–2030 and 2020–2060 under the NG scenario.

Carbon emissions Change/104 t CL WL GL WA UC RR UL

CL 0.00 −0.13 0.10 0.00 380.01 3.64 0.00

0.00 −0.13 0.18 0.00 1342.62 9.84 0.00

WL 0.10 0.00 0.00 0.00 45.02 0.02 0.00

0.09 0.00 0.02 0.00 124.27 0.14 0.00

GL −0.01 0.00 0.00 −0.01 0.08 0.00 0.00

0.00 −0.01 0.00 −0.04 0.09 0.00 0.00

WA 0.09 0.00 0.03 0.00 32.07 0.01 0.00

0.08 0.00 0.33 0.00 171.27 0.28 0.00

UC −4.78 −4.22 −1.53 0.00 0.00 −7.48 0.00

−2.68 −3.31 −7.99 0.00 0.00 −24.59 −0.03

RR −0.68 −0.02 0.00 0.00 2.24 0.00 0.00

−0.30 −0.02 0.00 0.00 2.22 0.00 0.00

UL 0.00 0.00 0.00 0.00 4.35 0.00 0.00

0.00 0.00 0.00 0.00 19.42 0.02 0.00

Note: same as in Table 6.
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use intensification, the area of rural residential land in Nanjing

should significantly decrease in the future. Furthermore, with the

enhancement of environmental protection and the carbon neutral

target, woodland, as one of the most important carbon sinks in

terrestrial ecosystems, should gradually increase. For above reasons,

it is unlikely to predict the future land use based on the change trend

of the past 10 years, which was inconsistent with the future goals of

food security and ecological protection, and the predicted land use in

the MCE scenario was more reasonable. And the carbon emissions

of land use in the MCE scenario could be effectively reduced in the

future.

5 Conclusion

In this paper, the Markov model and the multi-objective

optimization model were used to predict the future land use

demand in Nanjing under the NG and MCE scenarios,

respectively, and the FLUS model was used to simulate the spatial

distribution of land use in Nanjing under the two scenarios in

2030 and 2060. Based on the above results, the carbon emissions

effects of land use changes under the different scenarios were

analysed, and the following conclusions were obtained.

(1) Nanjing has experienced rapid urbanization in the past

10 years, and a large amount of cultivated land has been

converted to urban construction land during this period.

The area of cultivated land predicted in the NG scenario

continued to decrease, and the area of urban construction land

and rural residential land continued to increase, which was

inconsistent with sustainable development goals, including

food security and ecological protection. The estimation of land

use demand based on the multi-objective optimization

method can balance the needs of future urban development

under the constraints of food security, ecological protection,

and economic development. Under this condition, the

cultivated land was protected, and the expansion scale of

construction land was effectively controlled.

(2) The total carbon emissions from land use change in Nanjing

predicted in the MCE scenario were much less than those in

the NG scenario. Thus, the optimization of land use structure

and spatial distribution can effectively reduce carbon

emissions in future economic development and is an

important path to help achieve the carbon peaking and

carbon neutrality goals of China (Figure 1).
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