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Due to the differences in economic development, resource endowment, and

historical accumulation, different types of countries have significant technical

heterogeneity in carbon emissions. Identifying the driving factors of carbon

emission changes, under the premise of distinguishing national heterogeneity,

can provide a basis for the formulation of the “Differentiated Responsibilities”

emission reduction policies. Therefore, this study introduces the idea of Meta-

frontier into the traditional production-theoretical decomposition analysis, and

constructs a new influencing factor analysis framework. Based on the newly

built method, the empirical study of 60 representative countries draws the

following three meaningful conclusion: 1) Different types of countries have

obvious heterogeneity in technology, efficiency and change trend of energy

use. Specifically, countries with higher energy intensity values generally have a

quicker decline rate than those with lower energy intensity values. There exists

“catch-up” effects for the backward to the advanced countries. 2)

Decomposition results show that potential energy intensity (PEI) is the

dominant factor reducing carbon emissions, especially for those large

economic output with large energy consumption (Group-L) countries

(0.604). Economic activity effect (ECA) is the most significant driving force

for countries with small economic output and small energy consumption

(Group-S), reaching 1.806. Meanwhile, the attribution results showed

different characteristics in different groups of countries. The impact of

various factors that reflect the heterogeneity of production process on

carbon emissions mainly comes from the contribution of Group-L. 3) We

suggest that, in the process of carbon reduction, large energy consumption

countries should pay more attention to the gap between the development and

speed of the world’s cutting-edge technologies.
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Introduction

Global warming seriously restricts the sustainable

development of social and economic and has become a

serious challenge for the 21st century. In 2022, IPCC (2022):

Mitigating Climate Change, stated that without immediate

action, it is impossible to limit global warming to 1.5°C

(IPCC, 2022). This will threaten human livelihood and health,

such as accelerating sea level rise (Fuchs et al., 2020; IPCC, 2021).

The main cause of greenhouse effect is the excessive carbon

dioxide (CO2) emission produced by the combustion of

traditional fossil energy (Goh et al., 2018; Udemba and Tosun,

2022a). According to the scenario analysis by Huo et al. (2022), in

2030, global carbon emissions are most likely to increase by 30%

above the 2010 level. Therefore, energy saving and CO2 emission

reduction have become the consensus of all countries in the

world.

A growing number of countries are taking active steps to

address the challenge of climate warming. For example,

many responsible countries have signed legislations and

treaties to reduce greenhouse gas (GHG) emissions,

including the United Nations Framework Convention on

Climate Change (UNFCCC), the Kyoto Protocol, the

Copenhagen Accord, and the Paris Agreement. Under

these emissions constraint frameworks, measures and

policies to deal with global climate change have been

effectively deployed (Chen, 2021).

In the process of economic development, the conflict

between emission reduction and economic growth may be

exacerbated by the specific development policies adopted by

countries. This conflict poses a huge challenge to countries in

addressing the trade-off between emissions reductions and

economic growth. In addition, due to the diverse

socioeconomic backgrounds, development pattern and

resource endowments, there is huge production

heterogeneity in different countries (Liu et al., 2022). For

example, less developed Asia and Africa countries, such as the

Philippines, Indonesia, Mongolia, Congo, and India, are

characterized by a weaker economy and lower

socioeconomic status, but with sufficient natural mineral

resources and cheap labor (Huang et al., 2021). Compared

with those technology-intensive and capital-intensive

countries (suah as Japan, Germany, and America), these

countries generally belong to a labor-intensive mode of

production. According to Lin and Zhu (2021), the same

Gross Domestic Production (GDP) output in different

types of production modes should have different types of

energy consumption and carbon emission process (i.e., the

heterogeneity of energy intensity and carbon intensity). As

such, in order to comprehensively formulate regional

emission reduction policies, it is necessary to deeply

understand the root causes of differences in carbon

emission change in different types of countries.

However, regarding the global carbon emission changes, the

production heterogeneity of carbon emissions in different

countries have been barely discussed, especially in the

heterogeneity related driving factors identification. Thus three

questions are raised for the global carbon emission reduction, as

follows: 1) is there any heterogeneity in carbon emissions of

different types of countries, and what is the change trend of such

heterogeneity? 2) What are the core driving factors influencing

the change of global carbon emissions? And how do the factors

related to heterogeneity affect the change of carbon emissions? 3)

From the overall carbon emission control perspective, how to

identify the source of emissions for a certain influencing factor,

that is, how is the contribution heterogeneity of different

countries?

To reply the above three questions, considering the

production heterogeneity between different countries, this

paper constructs a new decomposition framework to explore

the drivers of the global carbon emission changes. As such, the

contribution of this paper mainly lies in three aspects:

First, previous decomposition analysis methods generally

cannot explore the heterogeneity related factors. To address

this issue, this study constructed a new comprehensive

decomposition model to investigate the driving factors of

carbon emission changes. Specifically, a new pre-defined

factors, i.e., the technology gap effect (TEG) has been further

discussed. This is able to yield additional insights about the

impact of production heterogeneity changes on carbon

emissions. In addition, the proposed decomposition method

can also be used to study changes of specific indicators in

other different fields. Especially for those with significant

heterogeneity characteristics, which needs further explore the

“technology catch-up effect.”

Second, in terms of driving factors of carbon emission

changes, few studies have discussed them from the “process”

perspective. In fact, the whole carbon emission process contains

different stages, which played different roles in the change of

carbon emissions. The identification of process contribution can

make the responsibility of carbon emission reduction clearer. As

such, this study constructs a new decomposition framework and

systematically decomposes the influencing factors of carbon

emission changes from three processes, i.e., the energy input

process, the production process, and the economic output

process.

Third, in existing studies, there has been an increasing focus

on the internal relationship between energy consumption,

economic output, and carbon emissions. However, few studies

have accurately identified the transmission mechanism between

them. Considering that the direct and indirect causes of carbon

emissions are energy consumption and economic development

respectively, this study all-around measures their internal

relationships. This can help policymakers to formulate more

balanced emission reduction policies from multiple dimensions

of energy consumption and economic development.
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Literature review

There are complex connections among energy consumption,

carbon emissions, and economic development (Debone et al.,

2021). In recent years, there has been an increasing focus on the

field of environment protection and economic development,

especially on the internal relationship between them (Ajmi

et al., 2015; Acheampong and Boateng, 2019). Econometrics

(Zhu et al., 2014; Dong et al., 2016) and decomposition

analysis (Su and Ang, 2012; Wang et al., 2018) methods are

the two mainstream tools to conduct the influencing factors

analysis.

By comparison, the decomposition analysis method is to

decompose the drivers according to the identical deformation,

which can effectively avoid the subjective selection of influencing

factors in the econometric method (Liu et al., 2022). And the

decomposition results are conducive to the horizontal

comparison of related research topics between different

studies. As such, decomposition analysis method has been

widely applied in the field of influencing factor analysis of

carbon emission change (Shao et al., 2016; Wang et al., 2018;

Long et al., 2022). Index decomposition analysis (IDA) and

structural decomposition analysis (SDA) are the two popularly

used decomposition methods, which are different but related

(Debone et al., 2021). The detailed description and review of the

two decomposition methods can refer to the literatures of

Hoekstra and Bergh (2003), Wang et al. (2017a).

However, as a type of economic accounting method, existing

SDA and IDA studies cannot capture the impact of technical

factors on carbon emissions (energy consumption) change. To

solve this problem, Pasurka (2006) introduced the

decomposition idea into the production framework for the

first time, which can identify the impact of technological

progress and technical efficiency changes on carbon emissions.

On this basis, Zhou and Ang (2008) further introduced Shepherd

directional distance function and defined it as the production-

theoretical decomposition analysis (PDA) method. Compared

with the SDA and IDA methods, the main advantage of PDA is

that it can separate the technical effect from other driving factors

and accurately depict the impact of technical factors on carbon

(energy) intensity (Kim and Kim, 2012). Nevertheless, the PDA

method is only applicable to the multiplicative decomposition

form. Lin and Du (2014) solved the this limitation by combining

IDA and PDA methods. The combination of IDA and PDA

methods is an important supplement to the existing research and

application (Wang et al., 2017b; Hang et al., 2019).

Representative studies including Liu et al. (2018), which

proposed a joint approach combined PDA and IDA and

further decomposed carbon emissions change into nine drivers.

Using the above research methods (IDA, SDA, and PDA),

from the perspective of carbon emission change influencing

factors, the driving factors can mainly be summarized into

three aspects: the structure effect (Bulut and Muratoglu,

2018), the technology effect (Sueyoshi et al., 2019), and the

scale effect (Xiao et al., 2020). But for the importance of the

three, studies from different research perspectives give different

answers.

Specifically, the structural effect is mainly reflected in the

impact of changes in energy structure and economic structure on

carbon emissions. Wang et al. (2020) pointed that gradually

increasing the proportion of alternative fuels and reducing the

proportion of high carbon emission industries in the economy

are the keys to achieving the carbon peaking and carbon

neutrality in China. From the perspective of energy structure,

Wang et al. (2019) indicated that reducing energy consumption is

not a wise manner for sustainable society development, especially

for those developing countries. Meanwhile, for the industry

structure, the results of Liu et al. (2018) showed that at the

same rate of economic growth, the better the industrial structure

is adjusted, the larger the carbon emission “decline range”

becomes. As to the technology effect, most existing studies

showed that technological advances can reduce carbon

emission from the source and improve carbon efficiency in

the process, thus reducing carbon emissions (Hang et al.,

2019; Sueyoshi et al., 2019). Representative example by Ang

(2015), which combined environmental theory and modern

endogenous growth model to study the influencing factors of

carbon emission (intensity) from 1953 to 2006. The results show

that there is a negative correlation between carbon emissions and

the ability to digest and absorb advanced technologies. Wang

et al. (2018) also proves that technological progress plays an

important role in reducing carbon emissions; the rebound effect

of carbon emissions reduces these positive effects. Meanwhile,

economic development, investment level, population size, and

trade level will affect the carbon emission through their scale

changes. The conclusions of mainstream studies unanimously

indicated that scale growth is the most important factor to

promote carbon emissions (Sarkodie et al., 2020; Xiao et al.,

2020).

However, the above related existing research results few

deeply analyze the impact mechanism of production process

on carbon emissions; in other words, they ignored the

influence of regional technology heterogeneity in the

analysis of factors affecting carbon emissions. Due to the

differences in market conditions, legal constraints, resource

endowments and openness, production technologies related

to carbon emissions are often heterogeneous in different

countries or regions (Calvo-Sotomayor et al., 2019; Wei

and Liu, 2022). And this in turn will inevitably generate

different effect on energy consumption and hence carbon

emissions in different countries (Oh, 2010; Lisenkova et al.,

2013; Wongboonsin and Phiromswad, 2017). For example,

typically the level of carbon emission rises with the

consumption of fossil fuels; it is therefore a natural

conjecture to link carbon emissions to energy endowment

and energy consumption structure of a region (Wei et al.,
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2018). Under such conditions, it is insufficient to put

countries or regions with large differences under the same

production technology frontier to measure carbon emission

performance, which is not conducive to the realization of the

principle of “differentiated responsibility” (Shuai et al., 2017;

Wang et al., 2019). Hayami (1969) first proposed the concept

of a Meta-frontier to solve the problems that may arise from a

single production frontier1. Subsequently, the meta-frontier

thought has been widely used in many fields (Wang and Feng,

2021; Xia et al., 2022). Therefore, combined with the meta-

frontier and the decomposition analysis method, the

heterogeneity related factors in the carbon emissions

change can be effectively identifed. However, the relevant

research is still relatively rare. From a policy development

perspective, highlighting what drives carbon emission with

taking into consideration distribution heterogeneity will be

more practical significant (Udemba and Tosun, 2022b).

Based on the above research context, considering the

heterogeneity of carbon emission process, a new

comprehensive decomposition framework by combining

production theoretical decomposition analysis (PDA) and

meta-frontier data envelopment analysis is constructed to

identify the influencing factors among different types of

countries. Additionally, in order to provide a reference for the

differentiated designing of carbon emission reduction policy for

different countries, we further apply attribution analysis method

to measure how different type countries contribute to each factor.

Finally, empirical analysises are carried out based on the panel

data of global representative 60 countries from 2007 to 2014, and

the results can help policymakers to formulate targeted emission

reduction plans.

Methodology

Production technology considering
heterogeneity

Assuming that there areN countries as decision making units

(DMUs), and each country invests capital (K), labor (L), and

energy (E) to produce desirable output—gross domestic

production (GDP, denoted by Y). Meanwhile, undesirable

output is inevitable in the production process, such as

representative CO2 emissions (C). According to Färe et al.

(2007), the production technology set (T) of this production

process can be expressed as Eq. 1.

T � K, L, E, Y, C( ): K, L, E( ) can produce Y, C( ){ } (1)

Based on production theory, T is generally a closed and

bounded set, assumed to have three mathematical

properties, i.e., 1) all the inputs and desirable outputs are

strongly disposable; 2) undesirable outputs are weakly

disposable; 3) T has null-jointness2. However, T lacks an

explicit form and cannot be used directly for empirical

analysis. A popular way to overcome this problem is to

introduce non-parametric data envelopment analysis

(DEA) method to model the production technology, T

(Oh, 2010). Following Färe et al. (2007), the production

technology (under the constant return scale assumption)

can be expressed as Eq. 2.

T � K, L, E, Y, C( ):{ ∑N
n�1

λnKn ≤K,∑N
n�1

λnLn ≤ L, ∑N
n�1

λnEn ≤E,

∑N
n�1

λnYn ≥Y, ∑N
n�1

λnCn � C,

λn ≥ 0, n � 1, 2,/, N},
(2)

Where λn is the weight coefficient, ensuring that the production

frontier is a convex shape. The equality constraint of undesirable

output (∑N
n�1λnCn � C) reflects the weak disposability and zero

connectivity.

The above production technology has been widely

applied in the field of energy and environment research

(Hang et al., 2019; Shironitta et al., 2019). However,

constrained by the actual production process (such as

differences in economy, geography, and market), it is not

appropriate that all the DMUs share a common production

technology (O’Donnell et al., 2008). Meta-frontier is

generally used to describe the technical heterogeneity of

different groups, and it has been widely used in the problem

of regional production technology heterogeneity (Liu et al.,

2022).

Following Liu et al. (2022), based on the differences in

production technology, we first classify all the DMUs into H

subgroups. The number of DMUs in the h-th group is Nh, and∑H
h�1Nh � N. As such, the h-th subgroup forms its own

production technology frontier, corresponding to the

production technology set Th. The DMUs belonging to the

same subgroup have a homogeneous technology level under

the group frontier. Specifically, O’Donnell et al. (2008)

pointed that if Tm denotes the set of production technology

under the meta-frontier: 1) for any subgroup-h, if

(K, L, E, Y, C) ∈ Th, then (K, L, E, Y, C) ∈ Tm; 2) if

(K, L, E, Y, C) ∈ Tm, then for some cases of h≥ 1,

(K, L, E, Y, C) ∈ Th; 3) the overall set of production
1 The basic idea of meta-frontier is that all the decision making units

(DMUs) can be divided into different groups according to their inherent
attributes, such as region, type, scale, etc. Each group forms a group
production frontier. As such, a meta-frontier is obtained by enveloping
all the group production frontier of different groups. 2 Details see the research by Liu et al. (2022).
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technology can be expressed as Tm � T1 ∪ T2/TH{ }, satisfying
the over-arching requirement.

Production-theoretical decomposition
analysis method considering
heterogeneity

Based on the extended Kaya identify (Liu et al., 2022),

global carbon emission changes can be decomposed as

follows:

Ct � ∑I
i�1

Ct
i

Et
i

×
Et
i

Yt
i

× Yt
i � ∑I

i�1
ENSti × ENIti × ECAt

i , (3)

where C denotes carbon emission; E denotes energy

consumption; Y denotes GDP; i and t denotes the i-th

country and time t, respectively. As such, on the right hand of

Eq. 3, the first component (Ct
i /E

t
i ) is defined as the i-th country’s

carbon emission factor in year t. In fact, a certain type energy is

generally assumed to have an unchanged carbon emission factor,

therefore Ct
i /E

t
i denotes energy consumption structure (ENS).

Et
i /Y

t
i is the i-th country’s energy consumption per GDP in year t,

which reflects energy intensity (ENI). The last component (Yt
i) is

the i-th country’s GDP scale in year t, defined as economic

activity (ECA).

According to Lin and Du (2014), changes in energy intensity

are complicatedly influenced by the production process related

factors, including the production heterogeneity between different

countries. As such, this study introduced meta-frontier DEA

technology into traditional PDA framework, the variation of

carbon emissions in the i-th country in year t can be decomposed

as follows:

Ct � ∑I
i�1

Ct
i

Et
i

×
Et
i

Yt
i

× Yt
i � ∑I

i�1
ENSti × ENIti × ECAt

i ,� ∑I
i�1

Ct
i

Et
i

,

×
Et
i/ Dt

m Et
i , K

t
i , L

t
i , Y

t
i , C

t
i( ) × Dt+1

m Et
i , K

t
i , L

t
i , Y

t
i , C

t
i( )[ ]1/2

Yt
i

,

×
Dt

m Et
i , K

t
i , L

t
i , Y

t
i , C

t
i( )

Dt
g Et

i , K
t
i , L

t
i , Y

t
i , C

t
i( ) × Dt+1

m Et
i , K

t
i , L

t
i , Y

t
i , C

t
i( )

Dt+1
g Et

i , K
t
i , L

t
i , Y

t
i , C

t
i( )⎡⎣ ⎤⎦1/2,

× Dt
g Et

i , K
t
i , L

t
i , Y

t
i , C

t
i( ) × Dt+1

g Et
i , K

t
i , L

t
i , Y

t
i , C

t
i( )

Dt
g Et

i , K
t
i , L

t
i , Y

t
i , C

t
i( )⎡⎣ ⎤⎦1/2,

× Yt
i ,

≡ ENSt × PEIt × TEGt × GEFt × GTCt × ECAt.

(4)

Compared with Eq. 3, the ENI is further decomposed into

four new factors in Eq. 4, i.e., the potential energy intensity

(PEI), the production technology gap between group and

meta-frontier (TEG), the group energy efficiency (GEF),

and the group technology (GTC). As is shown in Figure 1,

from the production heterogeneity perspective, the change of

energy intensity not only reflects a country’s own technology

and efficiency level, but also synthesizes the gap between itself

and the external optimal frontier in the actual production

process.

Therefore, according to the research by Wang et al. (2018),

changes in carbon emissions from time t to t + 1 can be expressed

as follows:

FIGURE 1
Process and influencing factors of carbon emissions.
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Dt,t+1
tot � Ct+1

Ct ,

�
∑I
i�1
ENSt+1i × PEIt+1i × TEGt+1

i × GEFt+1
i × GTCt+1

i × ECAt+1
i

∑I
i�1
ENSti × PEIti × TEGt

i × GEFt
i × GTCt

i × ECAt
i

,

≡ Dt,t+1
ENS︸��︷︷��︸

Energy input

× Dt,t+1
PEI × Dt,t+1

TEG × Dt,t+1
GEF × Dt,t+1

GTC︸�������������︷︷�������������︸
Production process

× Dt,t+1
ECA︸��︷︷��︸

Economic output

.

(5)
Combined with the Logarithmic Mean Divisia Index (LMDI)

decomposition method, the contribution of each influencing

factor in Eq. 5 can be accurately calculated. Supplementary

Appendix S1A detailed expressed the entire calculation

process. As such, the influencing factors of carbon emission

changes during the period of t to t + 1 can be decomposed into six

components and divided into three categories, summarized in

Table 1.

Data description

Although the total global carbon emissions continued to

grow, there were significant fluctuations between 2007 and

2014, so it is necessary to identify the key drivers of their

anomalies. As such, the research period of this study spans

from 2007 to 20143. And this study sample included

60 countries (listed in Supplementary Appendix S1B). Both

economic volume and carbon emissions of these 60 countries

all account for more than 80% of the global total, especially in

2014, accounting for 82.4% and 88.7%, respectively.

Therefore, these countries can represent the overall

development trend of global economic development and

carbon emissions.

Following Liu et al. (2022), we assume the production process

uses labor (collected from the International Labor Organization,

ILO), real capital formation (collected from the World Bank,

WB), and energy consumption (collected from IEA) to product

GDP (collected fromWB) and undesirable output CO2 emissions

(collected from World Resource Institute, WRI). The variables

for real capital formation and real GDP are subtracted from the

2000 consumer price index to eliminate price effects. The

deflation is shown in Eqs 6, 7.

Yi,b � dYi,n, (6)
d � 1∏n

m�b+1 pm/100( ), (7)

where Yi represents the value added in country i. The superscript

b represents the value added in the base year price, and the

superscript n refers to the value added at current prices. d

represents the deflator derived from consumer price index pm.

pm refers to the chained price index (previous year = 100) of the

m-th year, ranging from the base year to the n-th year.

Following the idea of Liu et al. (2022), we choose energy

intensity, a comprehensive index to measure energy and

economy, to categorize the group boundaries. Specifically,

60 countries were divided into three types using K-Means

cluster analysis (see Supplementary Appendix S1B)4. Group-L

is composed of 14 countries, most of the countries in Group-L are

large economic output countries with relatively large energy

consumption (e.g., China and America); Group-M is

composed of 20 countries, most of the countries in Group-M

are middle scale economic countries with middle scale energy

consumption (e.g., Sweden and Switzerland); Group-S is

composed of 26 regions, most of the countries in Group-S are

TABLE 1 Connotations of carbon emissions change influencing factors.

Factors Connotation (during the period of t to t + 1)

Energy input Dt,t+1
ENS

The effect of energy structure on the carbon emission changes

Production process Dt,t+1
PEI

The effect of potential energy intensity on the carbon emission changes

Dt,t+1
TGE

The effect of technology gap on the carbon emission changes

Dt,t+1
GEF

The effect of group energy efficiency on the carbon emission changes

Economic output Dt,t+1
GTC

The effect of group technology progress on the carbon emission changes

Dt,t+1
ECA

The effect of economic output on the carbon emission changes

3 Another reason is that, some representative studies have done the
relevant studies and focused on this period (such as Liu et al., 2022;
Duan et al., 2022), facilitating our comparative analysis.

4 Some articles use geography to divide countries into different groups
(Oh, 2010). However, Lin and Du (2013) proved that a country’s
technological level has no direct relationship with its geography. As
for the number of clusters, following the idea of Tibshirani et al. (2001),
we adopted the Gap Statistic algorithm. And the results show that
when K = 3, the value of Gap Statistic is the largest. Therefore, the
60 sample countries were divided into three categories in this study.
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small scale economic countries with small scale energy

consumption (e.g., Nepal and Uruguay).

Table 2 shows the statistical characteristics of the four key

indicators in different groups. Obviously, the differences of these

indicators between different groups are significant. Among them,

Group-L had the highest average energy intensity value, followed by

Group-S, and Group-M. This is mainly because Group-L includes

developing economies with large levels of energy consumption, such

asChina, Russia, and Indonesia. TakingChina as an example, China’s

energy structure is dominated by coal, which heat conversion rate is

relatively lower compared with other type energies. In addition, due

to the limited technical level, the comprehensive utilization rate of

energy is poorer than those developed countries. As a result, the

energy intensity is relatively higher in China. This further proves the

rationality and effectiveness of the grouping.

Results and analysis

Production heterogeneity

As illustrated in Figure 1, the production heterogeneity of

carbon emissions in various countries is mainly reflected in the

production process, involved in the energy intensity (EI).

Figure 2 shows the changes in energy intensity in different

types of countries. During the study period, EI has

experienced a downward trend, decreasing from 0.251 kg/

dollar in 2007 to 0.204 kg/dollar in 2014. From 2008 to 2009,

due to the impact of the financial crisis, economic development

experienced a sharp decline, but energy consumption only

slightly decreased. Therefore, EI has increased. As mentioned

above, the 60 sample countries can be divided into three

TABLE 2 The statistical characteristics of the key indicators in different groups.

Variables Unit Group Min Max Std.D Mean

Energy (E) 106 toe Group-S 0.77 30.50 6.42 7.75

Group-M 12.77 89.70 18.80 35.97

Group-L 72.95 3051.50 780.80 576.96

CO2 (C) 106 ton Group-S 1.80 64.06 13.20 12.90

Group-M 19.93 262.85 59.01 83.75

Group-L 167.30 10291.93 2449.39 1535.27

GDP (Y) Billion dollars Group-S 3.72 101.73 20.19 27.37

Group-M 77.89 709.18 143.17 280.05

Group-L 432.22 17427.61 3869.03 3357.79

Energy intensity (EI) Kg/dollar Group-S 0.05 0.60 0.12 0.17

Group-M 0.04 0.63 0.10 0.15

Group-L 0.07 0.98 0.20 0.34

FIGURE 2
Evolution trend of energy intensity for each group, 2007–2014.
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categories. From the group perspective, Group-S shows the

highest EI, followed by Group-L and Group-M. This is mainly

because the fact that Group-S is basically composed of

developing countries. Compared with the other two groups,

the modes of energy consumption and economic development

of those countries in Group-S were relatively extensive. This is

consistent with the study by Zhang and Wang (2015).

Further, to reveal the EI evolution process in the different

group countries, the standard β-convergence theory is applied to

conduct the test (Barro and Sala-i-Martin, 1992). The following

regression model is used for β-convergence estimation:

ln
yi,t

yi,0
( ) � α + β ln yi,0( ) + εi,t, (8)

where yi,0 and yi,t denote the EI of i-th country in period 0 and

period t, respectively; ln(yi,t/yi,0) represents the average change
rate of EI in the i-th country between time 0 and t; α is a constant

value, reflecting the steady-state characteristic and the rate of

technological progress; εi,t is the error term at time t for the i-th

country; β reflects whether EI converges to steady state or

diverges. A statistically significant and negatively suggestive

dataset shows β-convergence.

The β-convergence test of EI is analyzed by means of panel

data regression analysis in Eviews 8.0. The Hausman test

provides an indicator to determine which type of model

should be used: a fixed effect model or a random effect

model. The results show that the value of Chi-Sq. Statistic is

19.39 and the value of Prob. is 0.0029. Therefore, the original

assumption is wrong, so the fixed effects model should be used

here. The full results are shown in Table 3.

As shown in Table 3, within the three group countries, and

the overall sample, the estimated coefficients of β are all

negative and statistically significant at the level of 1%,

which implies the existing of absolute β-convergence. In

addition, the convergence speed can be determined

according to the values. The values of β indicates that the

convergence speed of Group-S is relatively faster, followed by

the Group-M, and Group-L. This means that there existing a

catch-up effect for the backward (large energy intensity) to the

advanced countries (small energy intensity). Henceforth, in

order to further improve this convergence rate and narrow EI

difference, it is necessary to take certain measures to enhance

the communication of energy use technology, management

system arrangements, and other aspects between different

types of countries.

According to the decomposition framework constructed

above, differences in energy use technology and energy

efficiency are the core factors that affect the production

heterogeneity. Figure 3 illustrates the time series change of

different type countries’ energy use efficiency and energy use

technologies.

As shown in Figure 3A, the energy efficiency of the sample

countries has decreased in a fluctuation way, and rebounded after

reaching the lowest value in 2013. This is mainly because since

2007, countries have paid more attention to economic output

scale and neglected process optimization in order to get rid of the

impact of the financial crisis as soon as possible (Wei et al., 2018).

Taking Indonesia as an example, in addition to the relatively

lower management level, the industrial structure of high energy

consumption has not been reasonably optimized, resulting in a

29% decline in energy efficiency. For different types of countries,

Group-M shows the best energy efficiency, followed by Group-L

and Group-S. This is mainly due to the fact that Group-M is

basically composed of developed countries that consume

relatively less energy, having enough advantages (talent,

management, and capital investment) to improve energy

efficiency.

Compared with the trend of efficiency change, the

heterogeneity of technology change is relatively greater

(see Figure 3B). With the exception of Group-L, the other

two groups have contributed positively to the overall

technology improvement. From 2007 to 2012, the

cumulative technology change rate of Group-M was

relatively more significant. Compared with the other two

groups of countries, the countries in Group-L, despite

their large energy consumption, are in a leading position

in terms of energy use technology and emission reduction

technology, with little room for improvement. For example,

many OECD countries have shifted from relying on energy

intensive manufacturing industries to using less energy

intensive service based economic activities. In contrast,

most countries in Group-S are developing countries,

technology promotion potential and space are relatively

large, and the impact is more pronounced. Although

Group-L countries are world leaders in energy use

technology, a good sign is that the other countries are

catching-up continuously.

Decomposition results and discussion

During the study period, the carbon emissions of the sample

countries showed a significant increasing trend, with an average

TABLE 3 Test for β-convergence of energy intensity.

All sample Group-L Group-M Group-S

α −0.0119 −0.0196* −0.0043 −0.0152**

(−1.4923) (−1.8453) (−0.2095) (−1.8905)

β −0.9230*** −0.9535*** −0.9628*** −1.7773***

(−7.3495) (−3.6022) (−3.2186) (−7.7739)

Adj-R2 0.4733 0.4610 0.3300 0.7123

Note: 1)“***,” “**,” and “*” indicate that the levels of 1%, 5% and 10% are significant,

respectively;

2)Values in brackets are t-statistics.
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annual growth rate of 1.78%. Using the decomposition analysis

model constructed above, we can explore the driving factors of

global carbon emissions changes from three aspects: energy input,

production process and economic output. Table 4 presents the

single-period decomposition results of the six influencing factors

from 2007 to 2014. As is shown in Table 4, ECA has an enhanced

effect on carbon emissions over the years, with an average annual

growth rate of 1.084, which is the main obstacle for the decline of

carbon emissions. Meanwhile, ENS and ENI both played positive

roles in the carbon emission reduction (G-mean values are all less

than 1). The findings are consistent with other studies on changes

in global carbon emissions (e.g., Wang et al., 2020; Liu et al., 2022).

Energy intensity, an indicator reflecting changes in energy

production technology, is the most important factor to curb the

growth of carbon emissions, with an average annual contribution

of 0.9396. Further decomposition of ENI showed that PEI and

FIGURE 3
Time series changes of energy efficiency (A) and energy technology (B) of different groups in 2007–2014.

TABLE 4 Changes of sample countries’ carbon emissions and its
decomposition, 2007–2014.

ENS ENI ECA Total

PEI TEG GEF GTC

2007–2008 1.0138 0.8982 0.8809 0.9837 1.1195 1.1558 1.0211

2008–2009 0.9873 1.0243 0.9876 0.9932 1.0011 0.9894 0.9825

2009–2010 0.9956 0.9096 1.0274 1.0038 1.0016 1.1343 1.0610

2010–2011 1.0241 0.8710 0.9728 1.0068 1.0388 1.1557 1.0488

2011–2012 0.9950 0.9492 0.9941 1.0069 1.0050 1.0635 1.0105

2012–2013 0.9886 0.9372 1.0334 0.9962 0.9943 1.0606 1.0060

2013–2014 0.9913 0.9481 1.1761 1.0063 0.8621 1.0397 0.9970

G-mean 0.9993 0.9329 1.0071 0.9994 1.0006 1.0839 1.0178

0.9396
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GEF were the key factors contributing to the reduction of carbon

emissions, with the annual contribution rates of 0.933 and 0.999,

respectively. However, during the period of 2008–2009, PEI not

only failed to reduce carbon emissions, but also promoted the

increase of carbon emissions (1.024). This phenomenon may be

caused by the impact of the Asian financial crisis, which has

greatly affected the investment in energy substitute (such as labor

shortage and insufficient capital investment), thus consuming

more energy at the same output level. This is consistent with the

research conclusion by Zhang and Wang (2015). Since 2009, in

order to get rid of the impact of energy shortage and economic

crisis, major energy consuming countries around the world (such

as the United States, China, and Russia) have taken more

measures to conduct the energy saving and emission

reductions. For example, China has invested more than

100 billion yuan in supporting the research, development,

promotion and the application of low-carbon technologies in

2010. Thus, strengthening the role of PEI and ENI in reducing

carbon emissions.

Figure 4 illustrates the multi-period decomposition results of

the six influencing factors from 2007 to 2014. The average effects

of GEF and GTC change on global carbon emission were

0.999 and 1.001, respectively. This reflects that neither

production technology nor production efficiency can

effectively curb the growth of carbon emissions. Especially for

GTC, it was second only to ECA in its contribution to the growth

of carbon emissions from 2007 to 2012 (see Figure 4). The good

phenomenon is that, since 2012,GTC has continuously played an

active role in reducing carbon emissions. This may be that global

countries are gradually getting rid of the impact of the economic

crisis, and energy-saving and emission reduction technologies

have developed rapidly. For the GEF, except for 2007–2009 and

2012–2013, the emission reduction effect was not significant in

other years. This indicates that there is still great potential in

improving energy efficiency to achieve emission reduction.

As for TEG, reflecting the production heterogeneity, it has

significantly promoted the carbon emission increasing. And its

promoting effect is second only to ECA. From the perspective of

evolutionary trend, Table 4 and Figure 4 show that the change

trend of TEG is almost opposite to that of global carbon

emissions. The greater the heterogeneity of production

technology between different countries, the more uneven the

production level, which will increase global carbon emissions.

Therefore, countries should further emphasize exchange and

learning from each other, thus narrowing the gap between

countries with different energy use technology levels.

From the perspective of grouping, because different types of

countries have obvious differences in resource endowment,

production environment, technology level, management

experience and other aspects, the impact degree and

mechanism of carbon emission change factors on different

types of countries should also be different (Wang et al., 2019).

Single period decomposition results in different groups are

summarized in Supplementary Appendix S1C. Figure 5

describes the cumulative decomposition results for sample

countries’ carbon emission change by different factors of

different groups.

On the whole, countries in Group-S experienced the most

obvious growth rate (1.288), followed by Group-L (1.136) and

Group-M (1.046). As for the specific influencing factors, ECA is

the dominant factor that promotes the increase of carbon

emissions for all types of countries. Meanwhile, PEI has

effectively helped all types of countries reduce their carbon

emissions, and PEI is the most important emission reduction

FIGURE 4
Cumulative changes of sample countries’ carbon intensity and its decomposition, 2007–2014.
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factor for Group-L and Group-M. For Group-S, the

contribution of GTC (0.739) to carbon emission reduction is

more obvious than PEI (0.812). This is due to the fact that

Group-L and Group-M are mainly developed countries, and

there are significant advantages in the application of low-

carbon production technology. While Group-S is mainly

composed of developing countries with relatively low energy

consumption, which low carbon production technology has not

been widely promoted and applied. As such, countries in

Group-S generally have more room for technological

progress, leading the more significant carbon emission

reduction effect of GTC.

As one of the main factors contributing to the increase in

carbon emissions, TEG contributed 12.6% to the growth of

carbon emission in Group-M, followed by Group-S (7.64%)

and Group-L (4.35%). The greater the gap, the more

backward the energy-saving and emission reduction

technology is, the greater the contribution to carbon

emissions. The TEG effect has the least impact on the change

of carbon emissions in developed countries with large energy

consumption. This is mainly due to the fact that Group-L type

countries generally have always been in the leading position in

production technology and are the “promoters” of the global

technological progress. Thus, compared with other type

countries, the technology gap between Group-L and global

technology frontier is relatively smaller, leading to the less

impact on the change of carbon emissions in Group-L

countries. This further indicates that different types of

countries should strengthen cooperation and exchange on

production technology to narrow the technological gap, thus

decreasing the carbon emissions.

Meanwhile, the effects of energy efficiency (GEF) and

energy structure (ENS) on the carbon emission of different

groups were relatively small. Affected by resource

endowment and energy price, there is no obvious

difference in energy structure among countries at present,

and the optimization of energy use structure is a long-term

process. In addition, the improvement of energy efficiency

involves a series of long-term reserves such as management

level, experience accumulation and talent training. As such,

in the short term, the impact of energy efficiency and energy

structure change on carbon emission change is not

significant.

Attribution results and discussion

After understanding how different factors drive the change of

carbon emissions, how different type countries contribute to each

factor should also be clarified. This can provide a reference for the

differentiated designing of carbon emission reduction policy for

different countries. Attribution analysis method, proposed by

FIGURE 5
The cumulative decomposition results for sample countries’ carbon emission change by different factors of different groups.
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Choi and Ang (2012), can effectively realize this purpose. Taking

“the potential energy intensity (PEI)” as an example, the

contribution of each country to PEI can be calculated by

using Eq. 9.

DT−1,T
pei − 1 � ∑I

i�1
DT−1,T

pei − 1

� ∑I
i�1

wS−V
i FT−1

i /L FT−1
i ·DT−1,T

pei , FT
i( )

∑I
i�1w

S−V
ij FT−1

ij /L FT−1
i ·DT−1,T

pei , FT
i( )

· FT
i

FT−1
i

− 1( ), (9)

where Fs
i =

Es
i /[Ds

m(Es
i , K

s
i , L

s
i , Y

s
i , C

s
i ) × Dt

m(Es
i , K

s
i , L

s
i , Y

s
i , C

s
i )]1/2/Ys

i . In

this expression, DT−1,T
pei − 1 represents the percentage change of

potential energy intensity effect from time T − 1 to time T.

wS−V
i FT−1

i /L(FT−1
i ·DT−1,T

ens , FT
i )/∑I

i�1w
S−V
ij FT−1

ij /L(FT−1
i ·

DT−1,T
ens , FT

i ) · FT
i /F

T−1
i denotes the coefficient of contribution of

the i-th group country to the percentage change in PEI during the

period of T − 1 to T. The contribution of each country to other

five influencing factors can be calculated similarly.

Supplementary Appendix S1D depicts the detail attribution

results.

During the study period, different types of countries made

different contributions to the change of carbon emissions in

different years. The overall carbon emissions of the sample

countries increased by 13.15% from 2007 to 2014, the carbon

emission of Group-S increased by 28.81%, followed by Group-L

(13.60%) and Group-M (4.63%). During 2008–2009 and

2013–2014, the overall carbon emissions decreased 1.75%

and 0.30%, respectively. This is mostly because, during these

two periods, most of the sample countries promoted the decline

of carbon, especially for the leading role that Group-L played. In

order to further explore the core driving force of the

contribution of different types of countries to carbon

emissions, Supplementary Appendix S1D depicts the

cumulative contribution of different groups to the

influencing factors of carbon emission change. Specifically,

sample countries with different development modes and

stages have different contributions to carbon emission across

the four drivers (i.e., PEI, TEG, GEF, and GTC), as shown in

Figure 6.

For PEI, from 2007 to 2014, except for 2008–2009, the

cumulative contribution value of each country to PEI was

promoting carbon emission reduction, of which Group-L

was the most obvious, especially in 2010–2011 (−11.95%),

FIGURE 6
Percentage of the single-stage attribution results of the production process (PEI, TEG, GEF, and GTC) of each grouped country from 2007 to
2014 (Unit: %).
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2007–2008 (−9.17%), and 2009–2010 (−8.64%). In particular,

for 2012–2013 (0.12%), Group-S did not contribute to PEI

reduction. This may be due to the fact that, in addition to the

impact of economic environment, the energy consumption of

Group-S countries is relatively small, and the decline of energy

prices has a greater impact on the growth of total energy

consumption. The attribution effect of each group to the

GEF is almost the opposite to that of PEI. This is because

the effect of PEI has a direct internal relationship with the effect

of GEF. The economic connotation of PEI represents the energy

intensity that peels off the ineffectiveness of energy use. When

the overall energy intensity of a country changes little, the

attribution effects of PEI and GEF thus have a reverse trend.

Meanwhile, for GTC, from 2007 to 2013, Group-L has always

been the main body to increase the carbon emissions by GTC,

with an average annual contribution rate of 3.09%. Of which,

Group-L made the most significant contribution in

2007–2008 and 2010–2011. Different from Group-L, both

Group-M and Group-S significantly reduce the carbon

emissions of GTC. This is mainly due to the effective

improvement of energy use technology in these two types of

countries. Considering the fact that, with the continuous

improvement of energy use technology, the technology gap

will inevitably continue to narrow. As such, the attribution

effect of each group to the TEG is almost the opposite to that

of GTC (see Figure 6).

Conclusion

Identifying the key factors affecting the change of global

carbon emissions can help targeted carbon emission

reduction and curb global warming. Meanwhile, knowing

the contribution degree of different countries to the

influencing factors can help better share the emission

reduction responsibility. Therefore, this study takes

60 representative countries as samples to decompose and

attribute the changes of carbon emissions from 2007 to 2014.

In particular, considering the obvious differences in resource

endowment, production technology and management level

among different countries, this study proposed a new

decomposition analysis framework by combining PDA

and Meta-frontier analysis. The newly built method can

be used to further explore the impact of production

technology heterogeneity on carbon emission reduction.

In general, three important findings emerged from the

empirical study.

First, the production process of different type countries

has clear heterogeneity characteristics. The energy intensity

level of different countries has a trend of β-convergence. There

existing a catch-up effect for the backward to the advanced

countries. In addition, differences in energy use technology

and energy efficiency are the core factors that affect the

production heterogeneity. For different types of countries,

Group-M shows the best energy efficiency, followed by

Group-L and Group-S. Compared with the trend of

efficiency change, the heterogeneity of technology change is

relatively greater. With the exception of Group-L, the other

two groups have contributed positively to the global

technology improvement, especially for the countries in

Group-M. Henceforth, in order to further improve the

convergence rate and narrow the technology gap, it is

necessary to take certain measures to enhance the

communication of energy use technology, management

system arrangements, and other aspects between different

types of countries.

Second, the decomposition analysis shows that potential

energy intensity effect (PEI) is the most important reason for

carbon emission reduction. Meanwhile, group energy

efficiency effect (TGE), and energy structure effect (ENS)

also played positive roles in carbon emission reduction. The

other factors, including group technology change effect

(GTC), technology gap effect (TEG), and economic

activity effect (ECA) failed to inhibit carbon emissions. In

particular, ECA has an enhanced effect on carbon emissions

with an average annual increase rate of 1.084, which was the

main driver to the increase of carbon emissions during the

study period. From group perspective, ECA had the most

significant pull effect on carbon emissions in Group-S, with a

cumulative effect of 1.806, followed by Group-L (1.777) and

Group-M (1.531). This suggests that developing countries

and those with large energy consumption countries should

pay more attention to the carbon reduction in the process of

economic development. For example, these two types

countries can reduce the impact of economic activity on

carbon emissions through industrial structure adjustment,

new energy application and other ways when making

economic development policies.

Third, in the production process, the structure of the

contribution coefficient shows different characteristics in

different groups. The cumulative contribution value of each

country to PEI was a promoting to carbon emission reduction,

of which Group-L was the most obvious, especially in

2010–2011 (−11.95%), 2007–2008 (−9.17%) and 2009–2010

(−8.64%). Meanwhile, the attribution effect of each group to

the GEF is almost the opposite to that of PEI. For GTC, from

2007 to 2013, Group-L has always been the main body to

increase the carbon emissions by GTC, with an average

annual contribution of 3.09%. Different from Group-L,

Group-M and Group-S both played significant role in

decreasing the carbon emissions by GTC. The attribution

effect of each group to the TEG is almost the opposite to

that of GTC. A country must be concerned not only with its

own technological progress, but also with the development of

global technology frontier and the pace of technological

progress.
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Nomenclature

Abbreviations

CO2 carbon dioxide

GDP gross domestic product

DEA data envelopment analysis

DMU decision making unit

ENS energy consumption structure

ENI energy intensity

ECA economic activity

PEI potential energy intensity

TEG production technology gap between group and meta-frontier

GTC group technology

PDA production-theoretical decomposition analysis

GEF group energy efficiency

Group-L large economic output countries with large energy

consumption

Group-M medium economic output countries with medium

energy consumption

Group-S small economic output countries with small energy

consumption

LMDI logarithmic mean divisia index

SDA structural decomposition analysis

IDA index decomposition analysis

Variables

T production technology set

Et
i energy consumption of country i in year t

Kt
i fixed asset investment of country i in year t

Lti amount of labor inputs of country i in year t

Yt
i economic output of country i in year t

Ct
i carbon dioxide emissions of country i in year t

Parameters

N number of countries

λi weights assigned to each of N countries

θi,g (θi,m) proportional contraction of energy input given outputs

and technology under group (meta-) frontier

wS−V
i weight of the country i in the whole sample
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