AUTHOR=Mamat Naeimah , Mohd Razali Siti Fatin , Hamzah Fatimah Bibi TITLE=Enhancement of water quality index prediction using support vector machine with sensitivity analysis JOURNAL=Frontiers in Environmental Science VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2022.1061835 DOI=10.3389/fenvs.2022.1061835 ISSN=2296-665X ABSTRACT=
For more than 25Â years, the Department of Environment (DOE) of Malaysia has implemented a water quality index (WQI) that uses six key water quality parameters: dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), pH, ammoniacal nitrogen (AN), and suspended solids (SS). Water quality analysis is an essential component of water resources management that must be properly managed to prevent ecological damage from pollution and to ensure compliance with environmental regulations. This increases the need to define an efficient method for WQI analysis. One of the major challenges with the current calculation of the WQI is that it requires a series of sub-index calculations that are time consuming, complex, and prone to error. In addition, the WQI cannot be calculated if one or more water quality parameters are missing. In this study, the optimization method of WQI was developed to address the complexity of the current process. The potential of data-driven modeling, i.e., Support Vector Machine (SVM) based on Nu-Radial basis function with 10-fold cross-validation, was developed and explored to improve the prediction of WQI in Langat watershed. A thorough sensitivity analysis under six scenarios was also conducted to determine the efficiency of the model in WQI prediction. In the first scenario, the model SVM-WQI showed exceptional ability to replicate the DOE-WQI and obtained statistical results at a very high level (correlation coefficient,