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Currently, excessive carbon emission is causing visible damage to the

ecosystem and will lead to long-term environmental degradation in the

future. The manufacturing industry is one of the main contributors to the

carbon emission problem. Therefore, the reduction of carbon emissions

should be considered at all levels of production activities. In this paper, the

carbon emission as a parvenu indicator is considered parallelly with the

nobleman indicator, makespan, in the flexible job-shop scheduling problem.

Firstly, the carbon emission is modeled based on the energy consumption of

machine operation and the coolant treatment during the production process.

Then, a deep reinforcement learning-based scheduling model is proposed to

handle the carbon emission-aware flexible job-shop scheduling problem. The

proposed model treats scheduling as a Markov decision process, where the

scheduling agent and the scheduling environment interact repeatedly via states,

actions, and rewards. Next, a deep neural network is employed to parameterize

the scheduling policy. Then, the proximal policy optimization algorithm is

conducted to drive the deep neural network to learn the objective-oriented

optimal mapping from the states to the actions. The experimental results verify

that the proposed deep reinforcement learning-based scheduling model has

prominent optimization and generalization abilities. Moreover, the proposed

model presents a nonlinear optimization effect over the weight combinations.
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1 Introduction

Production scheduling is a subclass of combinational optimization problems aiming

to sequence jobs to machines toward the optimization of one or more scheduling

objectives (Fernandes et al., 2022). Production scheduling can be classified into many

types according to its inherent properties. For example, the job-shop scheduling problem

(JSSP) specifies that one operation can only be processed by one machine (Zhang et al.,
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2019), while the flexible job-shop scheduling problem (FJSP)

allows multiple candidate machines to process an operation

(Brucker and Schlie, 1990). The frequently adopted scheduling

objectives related to economic benefits include makespan,

tardiness, and machine utilization (Allahverdi et al., 2008). In

recent years, the steady deterioration of environmental problems

(Bhatti et al., 2021; Bhatti et al., 2022a; Bhatti et al., 2022b), such

as pollution and climate change, has raised the awareness of

environmental protection. Hence, environmental indicators,

especially energy consumption and carbon emission, are a

growing concern in production scheduling (Gao et al., 2020).

Therefore, the FJSP is formulated as a multi-objective

optimization problem considering both economic benefit and

environmental effect.

The heuristic and meta-heuristic algorithms have been

widely applied to achieve multi-objective scheduling. In terms

of heuristic algorithms, Zhang et al. (2022) proposed a greedy

algorithm and an elite strategy to solve FJSP with the objectives of

minimizing both makespan and total energy consumption. Xu

et al. (2021) proposed three delayed routing strategies to optimize

energy efficiency and mean tardiness in dynamic FJSP. In terms

of meta-heuristic algorithms, the multi-objective genetic

algorithm (GA) is the most popular scheme due to its

excellent global optimization ability and convergence

performance (Li and Wang, 2022). Several GA-based

algorithms have been proposed to improve search efficiency

for minimizing makespan and total energy consumption

(Mokhtari and Hasani, 2017; Dai et al., 2019) and to

determine machine start/stop time and speed level to save

energy (Wu and Sun, 2018). Moreover, none-GA based

algorithms including the frog-leaping algorithm (Lei et al.,

2017) and the grey wolf algorithm (Luo et al., 2019) are also

available for multi-objective scheduling.

However, the above-mentioned scheduling algorithms lack

generalization ability (Han and Yang, 2021). To solve an FJSP

instance that is different from the solved ones in terms of

parameters such as the number of jobs and machines, the

existing heuristic algorithms generally require the

development of new scheduling rules while the meta-heuristic

algorithms require considerable iterative computation time to

obtain high-quality scheduling solutions. In contrast, deep

reinforcement learning (DRL) based (Arulkumaran et al.,

2017) production scheduling can learn and generalize the

knowledge from the training samples to new problems.

Therefore, the trained DRL models can be applied to different

scheduling scenarios to produce satisfactory scheduling solutions

in a reasonable computation time. Qu et al. (2016) and van Ekeris

et al. (2021) stated that DRL could discover basic heuristic

behaviors for production scheduling from scratch, providing a

kind of optimization-capable, scalable, and real-time scheduling

methods.

Numerous studies have utilized the generalization ability of

DRL to solve different-scale production scheduling problems

(Ren et al., 2020; Zhang et al., 2020; Monaci et al., 2021; Ni et al.,

2021; Park et al., 2021). However, these studies focused on either

the single objective JSSP (Han and Yang, 2020; Liu et al., 2020;

Zhao et al., 2021; Zeng et al., 2022) or the flow-shop scheduling

problem (FSSP) (Pan et al., 2021; Yan et al., 2022). The multi-

objective FJSPs have been seldom addressed (Lang et al., 2020;

Luo et al., 2021). Furthermore, among the few studies addressing

the DRL-based multi-objective FJSP, even fewer studies cared

about environmental objectives (Naimi et al., 2021; Du et al.,

2022). Therefore, the development of DRL-based methods for

solving FJSP is still in the initial stage and not yet systematic (Luo,

2020; Feng et al., 2021; Liu et al., 2022).

In summary, the existing DRL-based methods for FJSP

receive less attention compared with those for JSSP.

Moreover, most of the studies preferred the optimization of

single or multiple economic objectives to the optimization of

environmental objectives. Although some studies have attempted

to minimize total energy consumption or electricity cost,

minimizing carbon emissions has not been yet explicitly

considered. Furthermore, a few studies integrated a DRL

model with a meta-heuristic algorithm to solve the multi-

objective FJSP. However, the DRL model was used as an

auxiliary tool to assist the meta-heuristic algorithm to

improve search efficiency. To resolve the above-mentioned

technical limitation, this paper proposes a DRL-based

scheduling method to handle FJSP to minimize both

makespan and total carbon emission. The main contributions

of this study are listed as follows.

1) The classical FJSP is extended to a carbon emission-aware

flexible job-shop scheduling problem (CEA-FJSP), where a

carbon emission accounting model is formulated based on the

energy consumption of machine operation and coolant

treatment during the production process.

2) An intelligent DRL-based scheduling model is developed to

directly generate feasible scheduling solutions for CEA-FJSP

without extra searching. The solving process is modeled as a

Markov decision process (MDP) including generic productive

state features, a scheduling rule-based action space, and a

composite reward function.

3) The scheduling policy is parameterized by a deep neural

network (DNN), that is, optimized by the proximal policy

optimization (PPO) algorithm to establish the mapping from

the states to the actions.

4) The experimental results on various benchmarks demonstrate

that the proposed DRL scheduling model has prominent

optimization and generalization abilities. Moreover, the

proposed model presents a nonlinear optimization effect

over the weight combinations.

The remainder of this paper is organized as follows. The

mathematical model of the CEA-FJSP is formulated in Section 2.

The DRL scheduling model is described in Section 3. Section 4
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presents the experimental results and Section 5 concludes the

study.

2 Problem formulation

This section mathematically describes the conditions and

constraints of the CEA-FJSP. There are n jobs belonging to a job

set I � {J1, J2, . . . , Jn} to be processed bymmachines belonging

to a machine setM � {M1,M2, . . . ,Mm}. A job Ji consists of ni
operations, whereOij denotes the j th operation of Ji. The operations

of the same job Ji must be processed in a specific order,

i.e., Oi1 → Oi2/→ Oini. The operation Oij can be processed by

one or more machines forming an operation-specific candidate

machine set Mij ⊆ M. The time and the power that the

machine Mk ∈ Mij requires to process the operation Oij are

denoted as tijk and pijk, respectively. The machine Mk also

requires coolant during processing and constant lower power

consumption in an idle state. The scheduling for CEA-FJSP aims

to obtain an optimal scheduling solution to minimize both makespan

and carbon emission, by determining a machineMk fromMij, the

start time Sij, and the completion time Cij � Sij + tijk for each

operation Oij. Furthermore, the following constraints and

assumptions should be satisfied:

1) The operations of the same job should be processed following

the defined operation precedence.

2) A machine can only process one operation at a time.

3) An operation should be processed without interruption.

4) A machine processes an operation with constant processing

power.

5) All machines turn on at the start of the scheduling.

6) The transportation time of jobs and the setup time of

machines are negligible.

TABLE 1 Notations for CEA-FJSP.

Notation Description

i, i′ Indices of jobs, i, i′ � 1, 2, . . . , n

j, j′ Indices of operations, j, j′ � 1, 2, . . . , ni

k Index of machines, k � 1, 2, . . . , m

n Total number of jobs

m Total number of machines

I Job set

M Machine set

Mij Candidate machines for operation Oij

Ji The ith job

Oij The jth operation of job Ji

Mk The kth machine

ni The number of operations of job Ji

tijk The processing time of operation Oij required by machine Mk

Sij The start time of operation Oij

Cij The completion time of operation Oij

tidlek
The idle time of machine Mk

pijk The processing power of operation Oij required by machine Mk

pidle
k

Idle power of machine Mk

Tk The replacement cycle of coolant required by machine Mk

Lk The maximum usage of coolant required by machine Mk in a cycle

αe The carbon emission factor of electrical energy consumption

αf The carbon emission factor of coolant energy consumption

CEp Carbon emission from electrical energy consumption of machine in processing state

CEr Carbon emission from electrical energy consumption of machine in idle state

CEf Total carbon emission from energy consumption of coolant treatment

TCE Total carbon emission

C max Makespan

xijk A binary variable, that is, equal to 1 if Oij is assigned to machine Mk and 0 otherwise

yiji′j′,k A binary variable, that is, equal to 1 if Oij is a predecessor of Oi′j′ on machine Mk and 0 otherwise

Frontiers in Environmental Science frontiersin.org03

Wang et al. 10.3389/fenvs.2022.1059451

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1059451


Based on the above description, a carbon emission

accounting model is formulated firstly to identify the main

sources and specific computation of carbon emission in CEA-

FJSP. Then, the mathematical model of the CEA-FJSP is

established. Table 1 lists the notations used in the models.

2.1 Carbon emission accounting model

Carbon emission is produced directly or indirectly by various

manufacturing links, such as raw materials consumption,

machine operation, transportation, and metal debris treatment

(Gutowski et al., 2005). In this paper, the electrical energy

consumption of machine operation and the energy

consumption of coolant treatment are identified as the main

carbon emission sources in CEA-FJSP.

2.1.1 Carbon emission from machine operation
Generally, a machine experiences five working modes in a

duty cycle: start-up, warm-up, processing, idle, and stop. Each

mode requires a different power level as shown in Figure 1. The

modes of start-up, warm-up, and stop appear only once in a duty

cycle and the energy consumption in these modes is only related

to machine properties rather than scheduling. In contrast, the

processing and idle modes tend to alternately appear multiple

times. Therefore, only the carbon emission in processing and idle

modes are considered in scheduling.

Under processing mode, the carbon emission CEp is

calculated as:

CEp � αeWp (1)

where Wp is the total electrical energy consumption of all

machines under processing mode and is expressed as:

Wp � ∑m
k�1

∑n
i�1
∑ni
j�1
xijkpijktijk (2)

Under idle mode, the carbon emission CEr is calculated as:

CEr � αeWr (3)

where Wr is the total electrical energy consumption of all

machines under idle mode and is expressed as:

Wr � ∑m
k�1

pidle
k tidlek (4)

2.1.2 Carbon emission from coolant treatment
The coolant is used to reduce the cutting temperature and

tool wear and prevent the workpiece from being deformed by

heat. The coolant needs to be replaced periodically and the

treatment process consumes energy, indirectly producing

carbon emissions. To simplify the calculation, it is assumed

that the coolant flow rate remains unchanged for the same

machine regardless of the processed operations. Hence, the

carbon emission of coolant treatment CEf can be calculated as:

CEf � αf∑m
k�1

∑n
i�1
∑ni
j�1
xijk

tijk
Tk

Lk (5)

The total carbon emissionTCE during scheduling adds up as:

TCE � CEp + CEr + CEf � αe∑m
k�1

∑n
i�1
∑ni
j�1
xijkpijktijk + αe∑m

k�1
pidle
k tidlek

+ αf∑m
k�1

∑n
i�1
∑ni
j�1
xijk

tijk
Tk

Lk (6)

2.2 CEA-FJSP formulation

The CEA-FJSP is a multi-objective optimization problem,

considering both economic and environmental benefits. The

scheduling objectives are to simultaneously minimize Cmax �
max {Cini|i � 1, 2, . . . , n} and TCE. Therefore, the mathematical

model of CEA-FJSP is formulated as:

minf � min{w1C max + w2TCE} (7)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C max ≥Cij,∀i, j (a)
Cij � Sij + tijk, Sij ≥ 0,∀i, j, k (b)∑
Mk∈Mij

xijk � 1,∀i, j (c)
Si,j+1 ≥Cij,∀i, j (d)
Ci′j′ − Cij ≥ ti′j′k, yiji′j′,k � 1 (e)

(8)

Eq. 7 shows that the objective function minimizes the weighted

sum of Cmax and TCE, converting the multi-objective

optimization problem into a single-objective optimization

problem, where w1 and w2 are the weights corresponding to

Cmax and TCE, respectively. Eq. 8 shows the five constraints.

FIGURE 1
Power variation of five machine working modes.
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Constraint (a) in Eq. 8 describes the relationship between

makespan and the operation completion time. Constraint (b)

ensures that the operation completion time is equal to the sum of

the start time and the processing time. Constraint (c) specifies

that an operation can be assigned to and processed by only one

machine. Constraint (d) guarantees the precedence constraint

between the operations of the same job. Constraint (e) shows that

a machine can process only one operation at a time.

3 Deep reinforcement learning
scheduling modeling

This section proposes a DRL scheduling model for handling

CEA-FJSP. Figure 2 shows the framework of the proposed DRL

scheduling model. The scheduling environment is an instance of

CEA-FJSP initialized with the assumptions and constraints

described in Section 2. The scheduling agent embeds a

scheduling policy parameterized by a DNN and trained by a

DRL algorithm. The agent interacts repeatedly with the

environment. In each interaction, the scheduling agent selects

an operation and assigns it to a machine, based on the

information extracted from the scheduling environment.

The determined operations are queued in a temporary

scheduling solution, which is a sequence intuitively describing

the precedence of operations. The temporary scheduling solution

is turned into a complete and feasible scheduling solution when

all operations are determined. Therefore, the scheduling process

of a CEA-FJSP instance features an MDP consisting of state,

action, and reward. Lastly, the MDP is optimized using a DRL

algorithm resulting in a DRL scheduling model.

3.1 Markov decision process formulation

An MDP mainly includes three components: state, action,

and reward. A complete decision-making process of MDP is

called an episode, consisting of T � ∑n
i�1ni decision steps in CEA-

FJSP, where one decision step corresponds to one interaction. At

the decision step t, the scheduling agent perceives the state st of

the scheduling environment. Then, the state features are fed into

the scheduling policy that in turn selects an action at. After the

FIGURE 2
Framework of the DRL scheduling model for CEA-FJSP.
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execution of the action at, an unscheduled operation is selected

and assigned to a candidate machine. Hence, the selected

operation becomes scheduled. After that, the scheduling

environment releases a reward rt to reflect the change of the

scheduling objectives, as well as updates to a new state st+1 ready
for the next interaction.

3.1.1 State representation
The state is the basis of decision making and should provide

adequate information about the scheduling environment. The

number of scheduled operations of job Ji at the decision step t

is denoted as SOi(t). The operations of all the jobs in a

scheduling instance are divided into two subsets: OS(t) �
{Oij|1≤ i≤ n, 1≤ j≤ SOi(t)} and OUS(t) � {Oij|1≤ i≤ n,

SOi(t)< j≤ ni}. Therefore, the completion time Cij can be

determined for the operations in the subset OS(t) while the

average processing time �tij � mean
Mk∈Mij

(tijk) and the average

processing power �pij � mean
Mk∈Mij

(pijk) can be calculated for the

operations in the subset OUS(t).
A statistic-based representation is adopted to define state

features using the dynamic attributes of jobs and machines.

Table 2 lists the proposed statistic-based state features. It can

be seen from the table that the state is a vector consisting of ten

features {ft1, ft2, . . . , ft10} maintaining a fixed size, which can

avoid dimension disaster in large-scale problems. Moreover, the

values of the state features are in the range of [0, 1], which can

speed up the training process and can be generalized to problems

with different configurations.

3.1.2 Action space
Actions are used to update the scheduling environment,

playing a significant role in the quality of scheduling

solutions. In the CEA-FJSP, one decision contains two parts:

operation selection and machine assignment. Due to the

precedence constraint, a job has at most one feasible

operation that can be selected at a decision step. Hence, the

operation selection can be simplified as the job selection. In this

paper, six job selection rules and four machine assignment rules

are adopted as shown in Table 3. Nine scheduling rules,

{SRi|i � 1, 2, . . . , 9}, are then constructed as follows:

SR1 � {JSPT, MMAXP}, SR2 � {JSPT, MMINU},
SR3 � {JLPT, MMAXP}, SR4 � {JLPT, MMINU},
SR5 � {JMOR, MMINP}, SR6 � {JECT, MMAXP},
SR7 � {JMINP, MMINU}, SR8 � {JMINP, MSPT},
SR9 � {JMAXP, MMINU}. It indicates that a scheduling rule

is a couple of a job selection rule and a machine assignment rule.

The scheduling rules are called actions in MDP. Thus, the action

space consists of nine elements.

3.1.3 Reward function
As shown in Eq. 7, minimizing Cmax and TCE are the two

scheduling objectives considered in the CEA-FJSP. However,

since the scheduling solution is incomplete during the

scheduling, the two performance indicators cannot be resolved

until the end of scheduling. In other words, the actual values of

Cmax and TCE can be calculated only once per episode.

Consequently, if the actual makespan and carbon emission

values are used as rewards, the immediate reward will be

quite sparse and cause difficulties in the convergence of the

DRL algorithm.

However, the completion time and carbon emission of the

scheduled operations can be used as rewards and

determined as:

rCTt � CT(t) − CT(t + 1) (9)
rCEt � CE(t) − CE(t + 1) (10)

TABLE 2 Statistic-based state features.

Production statistic information Index State feature

Completion rate of a job (CRJ): CRJ � {SOi(t)
ni

|Ji ∈ I } ft1 mean(CRJ)
ft2 std(CRJ)

Machine utilization of a machine (MU): MU � { ∑n

i�1∑SOi(t)
j�1 xijktijk

max({Ci,SOi(t)|i�1,2,...,n})|Mk ∈ M} ft3 mean(MU)
ft4 std(MU)

Current carbon emission produced by a machine (MCE):
MCE � {αe[∑n

i�1 ∑SOi(t)
j�1 (xijkpijktijk + pidle

k tidlek )] + αf∑n
i�1 ∑SOi(t)

j�1 xijk
tijk
Tk
Lk|Mk ∈ M}; Number of operations processed on a

machine (MN): MN � {∑n
i ∑SOi(t)

j�1 xijk|Mk ∈ M}

ft5
mean (MCE)
max (MCE)

ft6
mean(MN/MCE)
max(MN/MCE)

Average processing time of the current eligible operation of an uncompleted job
(CPT): CPT � {�ti,SOi(t)+1|Oi,SOi(t)+1 ∈ OUS(t), i � 1, 2, . . . , n}

ft7
min (CPT)
mean (CPT)

Average processing power of the current eligible operation of an uncompleted job
(CPP): CPP � {�pi,SOi(t)+1|Oi,SOi(t)+1 ∈ OUS(t), i � 1, 2, . . . , n}

ft8
min (CPP)
mean (CPP)

Average remaining processing time of an uncompleted job (RPT): RPT � {∑ni
j�SOi(t)+1�tij|Oi,SOi(t)+1 ∈ OUS(t), i � 1, 2, . . . , n} ft9

mean (RPT)
max (RPT)

Average remaining processing power of an uncompleted job (RPP): RPP � {∑ni
j�SOi(t)+1 �pij|Oi,SOi(t)+1 ∈ OUS(t), i � 1, 2, . . . , n} ft10

mean (RPP)
max (RPP)
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where: CT(t) is the current maximum completion time of jobs at

decision step t:

CT(t) � max({Ci,SOi(t)
∣∣∣∣i � 1, 2, . . . , n}) (11)

CE(t) is the currently produced carbon emission at decision

step t:

CE(t) � αe
⎡⎢⎢⎣∑m
k�1

∑n
i�1

∑SOi(t)

j�1
(xijkpijktijk + pidle

k tidlek )⎤⎥⎥⎦
+αf∑m

k�1
∑n
i�1

∑SOi(t)

j�1
xijk

tijk
Tk

Lk (12)

rCTt and rCEt are reward components for makespan and

carbon emission, respectively. Therefore, the reward rt at

decision step t is defined according to Eq. 7:

rt � w1r
CT
t + w2r

CE
t (13)

To verify Eq. 13, the cumulative reward is calculated as:

R � ∑T
t�1
rt � ∑T

t�1
(w1r

CT
t + w2r

CE
t )

� ∑T
t�1
w1(CT(t) − CT(t + 1)) +∑T

t�1
w2(CE(t) − CE(t + 1))

� w1(CT(1) − CT(T + 1)) + w2(CE(1) − CE(T + 1))
(14)

where CT(1) and CE(1) are both zero as none of the operations

is determined at the initial step. Once all the operations are

determined after the T th decision step, i.e., SOi(T) is equal to ni,
CT(T + 1) and CE(T + 1) are equal to Cmax and TCE,

respectively. Therefore, Eq. 14 can be further simplified as:

R � −w1CT(T + 1) − w2CE(T + 1) � −(w1C max + w2TCE)
(15)

Eq. 15 indicates that maximizing the cumulative reward can

reach the optimization objectives of minimizing the weighted

sum of Cmax and TCE.

3.2 Policy network

The goal of the scheduling policy is to determine the best-

matched action for a given state. In this paper, a DNN with

parameter θ consisting of six fully connected layers is employed

to parameterize the scheduling policy denoted as πθ(at|st). The
input layer has ten neurons equal to the number of the state

features, and the output layer outputs the probability distribution

over the nine actions. Each of the first three hidden layers has

sixty-four neurons while the fourth hidden layer has thirty-two

neurons, and the Tanh activation function is used for all hidden

neurons.

The PPO algorithm is adopted to train the policy network,

where the state-value function V(st) is approximated by another

DNNwith parameter∅, denoted asV∅(st).V∅(st) has the same

structure as πθ(at|st) except that the output layer consists of only
one neuron, and shares the first three hidden layers with πθ(at|st)
to utilize the learned abstract features.

3.3 Deep reinforcement learning training
process

DRL establishes an interaction framework between the

agent and the environment using the MDP components:

state, action, and reward. The agent learns to optimize its

decision-making policy through the interaction, i.e., tunning

its policy network πθ(at|st). Figure 3 illustrates the PPO-based

DRL training process for the CEA-FJSP, where a training cycle

includes a sampling phase and an update phase. Two same

policy networks πθold and πθ are set-up in the beginning of

training to facilitate the training process. During a training

cycle, πθold remains unchanged throughout the sampling and

update phases, while πθ is updated multiple times during the

update phase.

In the sampling phase, πθold interacts with the scheduling

environment to collect sufficient state-action-reward tuples,

TABLE 3 Job selection and machine assignment rules.

Classification Acronym Description

Job selection rule JSPT Selecting a job with the shortest processing time

JLPT Selecting a job with the longest processing time

JMOR Selecting a job with the most remaining operations

JECT Selecting a job with the earliest completion time

JMINP Selecting a job with the minimum processing power

JMAXP Selecting a job with the maximum processing power

Machine assignment rule MSPT Assigning to a machine with the shortest processing time

MMINP Assigning to a machine with the minimum processing power

MMAXP Assigning to a machine with the maximum processing power

MMINU Assigning to a machine with the minimum utilization rate
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(st, at, rt), and store into a memory buffer. In the update phase,

πθ is updated for several epochs with the collected data. After

that, πθold copies πθ and then starts the next training cycle. The

surrogate objective loss function of the policy network is

defined as:

LCLIP
t � Et[min( πθ(at|st)

πθold(at|st)
Ât, clip( πθ(at|st)

πθold(at|st)
, 1 − ε, 1 + ε)Ât)]

(16)

where Et[·] denotes the empirical average, πθ(at|st)
πθold(at |st) is the

importance sampling weight, and clip(·) is the constraint

function with hyperparameter ε to ensure the similarity

between πθ and πθold. Ât is the generalized advantage

estimation (GAE) function.

The value network is updated through the mean squared

error (MSE) loss function:

LVF
t � Et[(V∅(st) − Vtarg

t )2] � Et[(V∅(st) −∑T

i�tri)2] (17)

Due to parameter sharing, the entire network model is

trained with the loss function:

LCLIP+VF+S
t � Et[LCLIP

t − c1L
VF
t + c2S[πθ](st)] (18)

where S[πθ](st) is the entropy bonus to encourage exploration,

while c1 and c2 are the coefficients.

The pseudo-code of the training process is presented

in Algorithm 1. Here, N training instances are initialized

at the beginning of a training cycle to prevent the DRL

scheduling model from overfitting a specific instance. The

data collected from the sampling phase is used to calculate the

cumulative gradients to update parameters θ and∅ forK epochs.

Input: training cycles L; memory buffer M; update epochs K: number of

training instances N

Output: πθ

1: Initialize policy network πθ and value network Vϕ

2: Initialize old policy network πθold

3: for cycle = 1, 2,..., L do

4: Randomly initialize N CEA-FJSP instances

5: for instance = 1, 2,..., N do

6: for step = 1, 2,..., T do

7: Randomly sample action at based on πθold

8: Execute action at

9: Receive reward rt

10: Transfer to the next state st+1
11: Store (st,at, rt) in M

12: end for

13: end for

14: for epoch = 1, 2,..., K do

15: Compute LCLIP by Eq. 16

16: Compute LVF by Eq. 17

17: Compute LCLIP+VF+S by Eq. 18

18: Update parameter θ, ϕ with ∇LCLIP+VF+S

19: end for

20: πθold ← πθ

21: end for

Algorithm 1. Training process for CEA-FJSP using PPO

FIGURE 3
PPO-based DRL training process for CEA-FJSP.
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4 Experimental results and discussion

Four numerical experiments were conducted to train the

DRL scheduling model, verify the optimization and

generalization abilities, and explore the weight effect. The

dataset used in the experiments was adapted from the

benchmarks in Brandimarte (1993), referred as Brandimarte’s

benchmarks hereafter.

4.1 Experimental setting

4.1.1 Dataset adaption
Brandimarte’s benchmarks defined some configurations for

FJSP instances, as shown in Table 4. A benchmark is an FJSP

instance consisting of n jobs and m machines, where a job has a

range of nop operations, an operation can be processed by a

range ofmeq candidate machines, and the processing time varies

in the range denoted as proc.

Since the proposed CEA-FJSP considers energy

consummation of machine operation and coolant treatment in

addition to makespan. Therefore, Brandimarte’s benchmarks

are extended by adding seven additional parameters to

generate CEA-FJSP scheduling instances. Table 5 lists the

added parameters, where Unif denotes uniform distribution

of real numbers and Rand denotes random selection. The

processing time was measured in seconds instead of the unit

time used in the original benchmarks to calculate the specific

values of carbon emission. Carbon emission factors were set

according to the Hong Kong SME Carbon Audit Toolkit (Liu

et al., 2018). The Mki instances of Brandimarte’s benchmarks

were changed to MkiEx instances after adding the additional

parameters.

4.1.2 Evaluation metrics
Average makespan, AC, average total carbon emission, AC,

and normalized performance, NP, were used to evaluate the

performance of the proposed model. The smaller AC, AT orNP

correspond to the better performance. These three metrics are

defined as follows:

AC � 1
n
∑n

i�1(C max)i (19)

AT � 1
n
∑n

i�1TCEi (20)

NP � w1

AC − min
md∈MS

ACd

max
md∈MS

ACd − min
md∈MS

ACd
+ w2

AT − min
md∈MS

ATd

max
md∈MS

ATd − min
md∈MS

ATd

(21)
where n is the total number of testing instances, (Cmax)i and
TCEi are the makespan and total carbon emission of the i th

instances. Method set, MS, is composed of the proposed mode

and the scheduling methods used for comparison, and d denotes

the index of the scheduling methodmd.ACd andATd denoteAC

and AT of md, respectively.

4.2 Training dynamics

Five Mk03Ex instances were generated in each training cycle

based on the Mk03 configuration in Table 4 with the parameters

TABLE 4 Brandimarte’s benchmarks.

Configuration code n m nop meq proc

Mk01 10 6 [5, 7] 3 [1, 7]

Mk02 10 6 [5, 7] 6 [1, 7]

Mk03 15 8 [10, 10] 5 [1, 20]

Mk04 15 8 [3, 10] 3 [1, 10]

Mk05 15 4 [5, 10] 2 [5, 10]

Mk06 10 15 [15, 15] 5 [1, 10]

Mk07 20 5 [5, 5] 5 [1, 20]

Mk08 20 10 [10, 15] 2 [5, 20]

Mk09 20 10 [10, 15] 5 [5, 20]

Mk10 20 15 [10, 15] 5 [5, 20]

TABLE 5 Parameters added to extend Brandimarte’s benchmarks.

Parameter Value

Operation processing time (s) Unif (proc)

Machine processing power (kW) Unif [4, 15]

Machine idle power (kW) Unif [1, 2]

Coolant replacement cycle (× 104s) Rand (80, 85, 90, 95, 100)

Coolant recycling volume (L) Rand (200, 250, 300, 350, 400)

Carbon emission factor αe (kg/(kWh)) 0.540

Carbon emission factor αf (kg/L) 5.143

TABLE 6 Hyperparameter values of Algorithm 1.

Hyperparameter Value

Trian cycles L 10000

Number of training instances N 5

Update epochs K 1

GAE coefficient λ 0.95

Discount factor γ 0.99

Clipping ratio ε 0.2

Value loss coefficient c1 0.5

Entropy coefficient c2 0.05

Learning rate α 0.0001

Optimizer Adam
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in Table 5. These instances were used to train the proposed DRL

scheduling model to produce the DRL-Mk03Ex scheduling

solver. Table 6 lists the values of hyperparameters of

Algorithm 1. Both weights w1 and w2 were set to 0.5 to

equally evaluate the contribution of makespan and carbon

emissions to the reward. Furthermore, reward scaling

(Engstrom et al., 2020) was adopted to stabilize the training

process. The hardware for training was a PC with a single Intel

Xeon E5-2678 V3 @ 2.50 GHz CPU and a single NVIDIA RTX

A2000 GPU. Algorithm 1 was implemented using Python 3.7,

with PyTorch to deploy the network model.

Figure 4A–C show the training histories of the reward, Cmax

and TCE, respectively. It can be seen from Figure 4A that the

reward gradually increases with the advance of the training

process. Figure 4C shows that TCE continuously contributes

positively to the reward, as it decreases monotonously along the

timeline. It can be seen from Figure 4B that Cmax increases till

about the 2200th cycle and then decreases until the end. The

results show that the contribution ofTCE to the reward surpasses

Cmax in the early stage of optimization, and finally, both TCE

and Cmax are optimized by the DRL scheduling model. All three

curves in Figure 4 begin to converge around the 7000th cycle and

all of them oscillate slightly thereafter. Therefore, the training

process had better stop around the 7000th cycle or the

performance could get worse, exhibiting a kind of overfitting

behavior.

4.3 Optimization ability

One hundred additional Mk03Ex instances different from

those used in the training stage were generated to test the DRL-

Mk03Ex against the proposed scheduling rules SR1 to SR9 and

GA (Yin et al., 2017) respectively.

Figure 5 shows the performance of DRL-Mk03Ex over the

Mk03Ex instances. It can be seen from the figure that DRL-

Mk03Ex outperforms all the scheduling rules and GA on the

testing instances, i.e., it achieves the lowest average makespan

and the lowest average total carbon emission. Although GA and

some scheduling rules (SR5, SR6, SR8) perform well in reducing

makespan or total carbon emission, none of the scheduling rules

and GA can simultaneously minimize the two objectives.

Furthermore, DRL-Mk03Ex is also significantly better than

the scheduling rules and GA in terms of NP. The results

confirm the superiority and optimization ability of DRL-

Mk03Ex.

4.4 Generalization ability

The DRL scheduling solver built on the Mk03Ex instances

(DRL-Mk03Ex) was tested on the Mk01Ex, Mk02Ex, and

Mk04Ex to Mk10Ex instances. That is, to say, the instances

used for testing were different from the ones used for training,

and the difference was significant in the sense that the testing and

FIGURE 4
Training histories of (A) the reward, (B) the makespan, and (C) the total carbon emission.

FIGURE 5
Performance of DRL-Mk03Ex over the Mk03Ex instances.
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the training instances were sampled from different

configurations. To compare the performance, Table 7 shows

the average results of three metrics over 100 instances for

nine different instance configurations. The proposed

scheduling rules SR1 to SR9 and GA are used as the baselines

and the best values of each metric are highlighted in bold font in

Table 7.

Table 7 shows that DRL-Mk03Ex achieves the best solutions

in most instances compared with the scheduling rules and GA.

Furthermore, Mk01Ex and Mk02Ex instances have a simpler

configuration than the Mk03Ex instances, while Mk04Ex to

Mk10Ex instances have a more complex configuration. This

means the DRL-Mk03Ex can be bidirectionally generalized.

Besides, DRL-Mk03Ex can achieve comparable performance

with GA in the simple scheduling instances, while surpassing

GA in the complex instances. Moreover, DRL-Mk03Ex is also

more robust than the scheduling rules. For example, AC changes

from 52.86 to 595.41 s for DRL-Mk03Ex, while from 100.5 to

TABLE 7 Performance of DRL-Mk03Ex over the non-Mk03Ex instances.

Configuration
code

Metric DRL-
Mk03Ex

SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8 SR9 GA

MK01Ex AC (s) 65.27 101.29 89.68 103.85 93.37 67.42 67.31 91.87 80.88 91.33 52.67

AT (kg) 0.52 0.74 0.66 0.74 0.67 0.56 0.69 0.66 0.53 0.66 0.53

NP 0.12 0.97 0.68 1.00 0.74 0.24 0.53 0.70 0.30 0.70 0.02

MK02Ex AC (s) 52.86 100.50 90.38 103.75 90.12 62.33 63.93 91.10 62.62 93.86 49.05

AT (kg) 0.44 0.82 0.68 0.83 0.69 0.53 0.76 0.69 0.43 0.69 0.55

NP 0.05 0.96 0.69 1.00 0.70 0.25 0.55 0.71 0.12 0.73 0.15

MK04Ex AC (s) 120.70 202.20 182.50 219.80 196.07 125.37 124.41 192.16 170.01 191.79 98.07

AT (kg) 1.19 1.72 1.55 1.75 1.58 1.30 1.56 1.58 1.26 1.57 1.03

NP 0.20 0.91 0.71 1.00 0.78 0.30 0.48 0.77 0.46 0.76 0.00

MK05Ex AC (s) 281.31 413.55 387.96 420.45 392.61 274.41 273.27 393.11 385.33 393.70 280.55

AT (kg) 2.49 2.29 2.50 2.29 1.99 2.34 2.29 2.13 2.29 2.49 2.15

NP 0.52 0.77 0.89 0.79 0.41 0.35 0.29 0.54 0.67 0.90 0.18

MK06Ex AC (s) 166.06 454.68 401.38 472.50 410.75 190.29 187.53 402.76 280.67 405.36 166.54

AT (kg) 1.99 4.12 3.53 4.18 3.55 2.30 3.07 3.52 2.25 3.54 2.52

NP 0.00 0.96 0.74 1.00 0.76 0.11 0.28 0.74 0.25 0.74 0.12

MK07Ex AC (s) 219.15 412.82 372.82 444.81 391.11 274.53 277.09 382.54 278.85 376.05 219.85

AT (kg) 1.92 3.44 2.95 3.48 2.99 2.42 3.26 2.98 1.93 2.98 2.53

NP 0.00 0.92 0.67 1.00 0.72 0.28 0.56 0.70 0.14 0.69 0.20

MK08Ex AC (s) 595.41 1314.55 1264.56 1388.23 1331.61 570.95 567.96 1301.90 1241.76 1292.80 632.53

AT (kg) 7.68 10.43 9.93 10.62 10.09 7.76 8.50 9.99 9.29 9.99 7.78

NP 0.02 0.92 0.81 1.00 0.88 0.02 0.14 0.84 0.68 0.83 0.06

MK09Ex AC (s) 530.05 1380.95 1283.19 1475.75 1341.31 568.43 547.01 1304.44 1151.68 1297.93 550.78

AT (kg) 7.19 11.62 10.45 11.86 10.59 7.63 9.46 10.50 8.67 10.49 8.34

NP 0.00 0.92 0.75 1.00 0.79 0.07 0.25 0.76 0.49 0.76 0.13

MK10Ex AC (s) 516.53 1354.37 1183.54 1421.84 1210.95 560.22 570.26 1185.87 1013.48 1195.13 521.93

AT (kg) 7.46 13.63 11.70 13.89 11.80 8.00 10.57 11.70 9.13 11.73 8.88

NP 0.00 0.94 0.70 1.00 0.72 0.07 0.27 0.70 0.40 0.71 0.11

The proposed scheduling rules SR1 to SR9 and GA are used as the baselines and the best values of each metric are highlighted in bold font.

FIGURE 6
Effects of different weight combinations on makespan and
carbon emission.
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1380.95 s for SR1. The performance fluctuates even more wildly

for the complex instances among the scheduling rules. For

example, SR5 and SR3 achieve 560.22 and 1421.84 s as AC

values for the Mk10Ex instances, respectively.

4.5 Weight effect

TheMk03Ex instances were used to train the DRL scheduling

model under various weight combinations (w1, w2):
WC1 � (0.0, 1.0), WC2 � (0.25, 0.75), WC3 � (0.5, 0.5),
WC4 � (0.75, 0.25), and WC5 � (1.0, 0.0). Consequently, five
DRL scheduling solvers were built. These solvers had the same

model structure distinguished by different parameter values.

Figure 6 illustrates the resultant Cmax and TCE as well as

carbon emission components, CEp, CEr and CEf for

processing state, idle state, and coolant treatment, respectively,

of the five solvers.

The results demonstrate the nonlinearity of the DRL

scheduling solvers. The Cmax does not vary monotonously

with the weight w1; nor does the carbon emission with the

weight w2, i.e., either the makespan or the carbon emission is

affected jointly by w1 and w2. It also implies that the DRL

scheduling solvers cannot directly control the sub-optimization

objectives. Instead, the weights should be treated as optimization

parameters in the sense that the weighted optimization objective

can be figured out for a given instance by adjusting w1 and w2.

For example, WC2 is the best among the five weight

combinations for the Mk03Ex instances.

For each weight combination, the three carbon emission

components, CEp, CEf, and CEr, contribute roughly 56%, 34%,

and 10% toTCE, respectively. Specifically, themachines produce the

most carbon emission when processing an operation, and the least

carbon emission when in the idle state. The carbon emission caused

by the coolant treatment is also nonnegligible. Furthermore, it can be

observed that as CEp, CEf, and CEr maintain a similar tendency

with the TCE along the weight change. The results stimulate the

possibility to simplify the representation of carbon emission by

replacing TCE with CEp or with the sum of CEp and CEf.

5 Conclusion

In this study, a carbon emission-aware flexible job-shop

scheduling problem denoted as CEA-FJSP is formulated and a

DRL scheduling model is proposed to generate feasible scheduling

solutions without extra searching. In the CEA-FJSP, the energy

consumption of machine operation and the coolant treatment are

identified as two main carbon emission sources. The proposed DRL

scheduling model treats the CEA-FJSP as a Markov decision process

where the scheduling agent interacts repeatedly with the scheduling

environment, i.e., the temporary scheduling solution, to determine an

appropriate action for a given state. The interaction is guided by the

reward which represents the optimization objectives: minimizing

makespan and carbon emission. The experimental results verify

that the proposed DRL scheduling model achieves stronger

optimization and generalization ability than the scheduling rules

and GA, and the DRL scheduling model can be tuned by varying

the weight combination. The future work should consider more

carbon emission sources, more optimization objectives, and more

flexible DRL framework to approach a more practical scheduling

solution for the complex production scenarios.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

SW and JL were the principal authors for the text, and

responsible for problem formulation, method design,

experimental analysis, and manuscript writing. HT

contributed to investigation. HT and JW contributed to the

visualization together. All authors reviewed the final version

of the manuscript and consented to publication.

Funding

This work was supported by the National Key R&D Program of

China (Grant No. 2020YFB1708500), and the Science and

Technology Planning Project of Guangzhou City (Grant No.

202102020882).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The handling editor UB declared a shared affiliation with the

author HT at the time of review.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Environmental Science frontiersin.org12

Wang et al. 10.3389/fenvs.2022.1059451

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1059451


References

Allahverdi, A., Ng, C. T., Cheng, T. E., and Kovalyov, M. Y. (2008). A survey of
scheduling problems with setup times or costs. Eur. J. Oper. Res. 187 (3), 985–1032.
doi:10.1016/j.ejor.2006.06.060

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017).
Deep reinforcement learning: A brief survey. IEEE Signal Process. Mag. 34 (6),
26–38. doi:10.1109/MSP.2017.2743240

Bhatti, U. A., Nizamani, M. M., and Mengxing, H. (2022a). Climate change threatens
Pakistan’s snow leopards. Science 377 (6606), 585–586. doi:10.1126/science.add9065

Bhatti, U. A., Yan, Y., Zhou, M., Ali, S., Hussain, A., Qingsong, H., et al. (2021).
Time series analysis and forecasting of air pollution particulate matter (PM 2.5): An
SARIMA and factor analysis approach. IEEE Access 9, 41019–41031. doi:10.1109/
ACCESS.2021.3060744

Bhatti, U. A., Zeeshan, Z., Nizamani, M. M., Bazai, S., Yu, Z., and Yuan, L. (2022b).
Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to
post-COVID-19. Chemosphere 288, 132569. doi:10.1016/j.chemosphere.2021.132569

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu
search. Ann. Oper. Res. 41 (3), 157–183. doi:10.1007/BF02023073

Brucker, P., and Schlie, R. (1990). Job-shop scheduling with multi-purpose
machines. Computing 45 (4), 369–375. doi:10.1007/BF02238804

Dai, M., Tang, D., Giret, A., and Salido, M. A. (2019). Multi-objective
optimization for energy-efficient flexible job-shop scheduling problem with
transportation constraints. Robot. Comput. Integr. Manuf. 59, 143–157. doi:10.
1016/j.rcim.2019.04.006

Du, Y., Li, J. Q., Chen, X. L., Duan, P. Y., and Pan, Q. K. (2022). Knowledge-based
reinforcement learning and estimation of distribution algorithm for flexible job-
shop scheduling problem. IEEE Trans. Emerg. Top. Comput. Intell. (Early Access),
1–15. doi:10.1109/TETCI.2022.3145706

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., et al.
(2020). Implementation matters in deep policy gradients: A case study on PPO and
trpo. arXiv [Preprint]. Available at: https://arxiv.org/abs/2005.12729.

Feng, Y., Zhang, L., Yang, Z., Guo, Y., and Yang, D. (2021). “Flexible job-shop
scheduling based on deep reinforcement learning,” in 2021 5th Asian Conference
on Artificial Intelligence Technology (ACAIT), Haikou, China, 29-31 October 2021
(IEEE), 660–666. doi:10.1109/ACAIT53529.2021.9731322

Fernandes, J. M., Homayouni, S. M., and Fontes, D. B. (2022). Energy-efficient
scheduling in job shop manufacturing systems: A literature review. Sustainability 14
(10), 6264. doi:10.3390/su14106264

Gao, K., Huang, Y., Sadollah, A., and Wang, L. (2020). A review of energy-
efficient scheduling in intelligent production systems. Complex Intell. Syst. 6 (2),
237–249. doi:10.1007/s40747-019-00122-6

Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., et al. (2005).
Environmentally benign manufacturing: Observations from Japan, europe and the
United States. J. Clean. Prod. 13 (1), 1–17. doi:10.1016/j.jclepro.2003.10.004

Han, B. -A., and Yang, J. -J. (2020). Research on adaptive job-shop scheduling
problems based on dueling double DQN. IEEE Access 8, 186474–186495. doi:10.
1109/ACCESS.2020.3029868

Han, B. A., and Yang, J. J. (2021). A deep reinforcement learning based solution
for flexible job-shop scheduling problem. Int. J. Simul. Model. 20 2, 375–386. doi:10.
2507/IJSIMM20-2-CO7

Lang, S., Behrendt, F., Lanzerath, N., Reggelin, T., and Müller, M. (2020).
“Integration of deep reinforcement learning and discrete-event simulation for
real-time scheduling of a flexible job shop production,” in 2020 Winter
Simulation Conference (WSC), Orlando, FL, USA, 14-18 December 2020
(IEEE), 3057–3068. doi:10.1109/WSC48552.2020.9383997

Lei, D., Zheng, Y., and Guo, X. (2017). A shuffled frog-leaping algorithm
for flexible job-shop scheduling with the consideration of energy
consumption. Int. J. Prod. Res. 55 (11), 3126–3140. doi:10.1080/00207543.
2016.1262082

Li, M., and Wang, G. G. (2022). A review of green shop scheduling problem. Inf.
Sci. (N. Y). 589, 478–496. doi:10.1016/j.ins.2021.12.122

Liu, C. -L., Chang, C. -C., and Tseng, C. -J. (2020). Actor-critic deep
reinforcement learning for solving job-shop scheduling problems. IEEE Access 8,
71752–71762. doi:10.1109/ACCESS.2020.2987820

Liu, Q., Tian, Y., Wang, C., Chekem, F. O., and Sutherland, J. W. (2018). Flexible
job-shop scheduling for reduced manufacturing carbon footprint. J. Manuf. Sci.
Eng. 140 (6), 061006. doi:10.1115/1.4037710

Liu, R., Piplani, R., and Toro, C. (2022). Deep reinforcement learning for dynamic
scheduling of a flexible job shop. Int. J. Prod. Res. 60 (13), 4049–4069. doi:10.1080/
00207543.2022.2058432

Luo, S. (2020). Dynamic scheduling for flexible job shop with new job insertions
by deep reinforcement learning. Appl. Soft Comput. 91, 106208. doi:10.1016/j.asoc.
2020.106208

Luo, S., Zhang, L., and Fan, Y. (2021). Dynamic multi-objective scheduling for
flexible job shop by deep reinforcement learning. Comput. Ind. Eng. 159, 107489.
doi:10.1016/j.cie.2021.107489

Luo, S., Zhang, L., and Fan, Y. (2019). Energy-efficient scheduling for multi-
objective flexible job shops with variable processing speeds by grey wolf
optimization. J. Clean. Prod. 234, 1365–1384. doi:10.1016/j.jclepro.2019.06.151

Mokhtari, H., and Hasani, A. (2017). An energy-efficient multi-objective
optimization for flexible job-shop scheduling problem. Comput. Chem. Eng. 104,
339–352. doi:10.1016/j.compchemeng.2017.05.004

Monaci, M., Agasucci, V., and Grani, G. (2021). An actor-critic algorithm with
deep double recurrent agents to solve the job-shop scheduling problem. arXiv
[Preprint]. Available at: https://arxiv.org/abs/2110.09076.

Naimi, R., Nouiri, M., and Cardin, O. (2021). A Q-Learning rescheduling
approach to the flexible job shop problem combining energy and productivity
objectives. Sustainability 13 (23), 13016. doi:10.3390/su132313016

Ni, F., Hao, J., Lu, J., Tong, X., Yuan, M., Duan, J., et al. (2021). “A multi-graph
attributed reinforcement learning based optimization algorithm for large-scale hybrid
flow shop scheduling problem,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD), Singapore, Aug 14, 2021 - Aug 18,
2021, 3441–3451. doi:10.1109/ICCECE54139.2022.9712705

Pan, Z., Wang, L., Wang, J., and Lu, J. (2021). Deep reinforcement learning based
optimization algorithm for permutation flow-shop scheduling. IEEE Trans. Emerg.
Top. Comput. Intell. (Early Access), 1–12. doi:10.1109/TETCI.2021.3098354

Park, J., Chun, J., Kim, S. H., Kim, Y., and Park, J. (2021). Learning to schedule
job-shop problems: Representation and policy learning using graph neural network
and reinforcement learning. Int. J. Prod. Res. 59 (11), 3360–3377. doi:10.1080/
00207543.2020.1870013

Qu, S.,Wang, J., and Shivani, G. (2016). “Learning adaptive dispatching rules for a
manufacturing process system by using reinforcement learning approach,” in
2016 IEEE 21st International Conference on Emerging Technologies and
Factory Automation (ETFA), Berlin, Germany, 06-09 September 2016 (IEEE).
doi:10.1109/ETFA.2016.7733712

Ren, J. F., Ye, C. M., and Yang, F. (2020). A novel solution to JSPS based on long
short-term memory and policy gradient algorithm. Int. J. Simul. Model. 19 (1),
157–168. doi:10.2507/IJSIMM19-1-CO4

van Ekeris, T., Meyes, R., and Meisen, T. (2021). “Discovering heuristics and
metaheuristics for job-shop scheduling from scratch via deep reinforcement
learning,” in Proceedings of the Conference on Production Systems and
Logistics (CPSL), Online, 10-11 August 2021, 709–718. doi:10.15488/11231

Wu, X., and Sun, Y. (2018). A green scheduling algorithm for flexible job shop with
energy-saving measures. J. Clean. Prod. 172, 3249–3264. doi:10.1016/j.jclepro.2017.10.342

Xu, B., Mei, Y., Wang, Y., Ji, Z., and Zhang, M. (2021). Genetic programming with
delayed routing for multiobjective dynamic flexible job-shop scheduling. Evol.
Comput. 29 (1), 75–105. doi:10.1162/evco_a_00273

Yan, Q., Wu, W., and Wang, H. (2022). Deep reinforcement learning for
distributed flow shop scheduling with flexible maintenance. Machines 10 (3),
210. doi:10.3390/machines10030210

Yin, L., Li, X., Gao, L., Lu, C., and Zhang, Z. (2017). A novel mathematical model
and multi-objective method for the low-carbon flexible job shop scheduling
problem. Sustain. Comput. Inf. Syst. 13, 15–30. doi:10.1016/j.suscom.2016.11.002

Zeng, Y., Liao, Z., Dai, Y., Wang, R., and Yuan, B. (2022). Hybrid intelligence for
dynamic job-shop scheduling with deep reinforcement learning and attention
mechanism. arXiv [Preprint]. Available at: https://arxiv.org/abs/2201.00548.

Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., and Xu, C. (2020). Learning to
dispatch for job-shop scheduling via deep reinforcement learning. arXiv [Preprint].
Available at: https://arxiv.org/abs/2010.12367.

Zhang, H., Xu, G., Pan, R., and Ge, H. (2022). A novel heuristic method for the
energy-efficient flexible job-shop scheduling problem with sequence-dependent set-
up and transportation time. Eng. Optim. 54 (10), 1646–1667. doi:10.1080/
0305215X.2021.1949007

Zhang, J., Ding, G., Zou, Y., Qin, S., and Fu, J. (2019). Review of job shop
scheduling research and its new perspectives under Industry 4.0. J. Intell. Manuf. 30
(4), 1809–1830. doi:10.1007/s10845-017-1350-2

Zhao, Y., Wang, Y., Tan, Y., Zhang, J., and Yu, H. (2021). Dynamic jobshop
scheduling algorithm based on deep q network. IEEE Access 9, 122995–123011.
doi:10.1109/ACCESS.2021.3110242

Frontiers in Environmental Science frontiersin.org13

Wang et al. 10.3389/fenvs.2022.1059451

https://doi.org/10.1016/j.ejor.2006.06.060
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1126/science.add9065
https://doi.org/10.1109/ACCESS.2021.3060744
https://doi.org/10.1109/ACCESS.2021.3060744
https://doi.org/10.1016/j.chemosphere.2021.132569
https://doi.org/10.1007/BF02023073
https://doi.org/10.1007/BF02238804
https://doi.org/10.1016/j.rcim.2019.04.006
https://doi.org/10.1016/j.rcim.2019.04.006
https://doi.org/10.1109/TETCI.2022.3145706
https://arxiv.org/abs/2005.12729
https://doi.org/10.1109/ACAIT53529.2021.9731322
https://doi.org/10.3390/su14106264
https://doi.org/10.1007/s40747-019-00122-6
https://doi.org/10.1016/j.jclepro.2003.10.004
https://doi.org/10.1109/ACCESS.2020.3029868
https://doi.org/10.1109/ACCESS.2020.3029868
https://doi.org/10.2507/IJSIMM20-2-CO7
https://doi.org/10.2507/IJSIMM20-2-CO7
https://doi.org/10.1109/WSC48552.2020.9383997
https://doi.org/10.1080/00207543.2016.1262082
https://doi.org/10.1080/00207543.2016.1262082
https://doi.org/10.1016/j.ins.2021.12.122
https://doi.org/10.1109/ACCESS.2020.2987820
https://doi.org/10.1115/1.4037710
https://doi.org/10.1080/00207543.2022.2058432
https://doi.org/10.1080/00207543.2022.2058432
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1016/j.jclepro.2019.06.151
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://arxiv.org/abs/2110.09076
https://doi.org/10.3390/su132313016
https://doi.org/10.1109/ICCECE54139.2022.9712705
https://doi.org/10.1109/TETCI.2021.3098354
https://doi.org/10.1080/00207543.2020.1870013
https://doi.org/10.1080/00207543.2020.1870013
https://doi.org/10.1109/ETFA.2016.7733712
https://doi.org/10.2507/IJSIMM19-1-CO4
https://doi.org/10.15488/11231
https://doi.org/10.1016/j.jclepro.2017.10.342
https://doi.org/10.1162/evco_a_00273
https://doi.org/10.3390/machines10030210
https://doi.org/10.1016/j.suscom.2016.11.002
https://arxiv.org/abs/2201.00548
https://arxiv.org/abs/2010.12367
https://doi.org/10.1080/0305215X.2021.1949007
https://doi.org/10.1080/0305215X.2021.1949007
https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.1109/ACCESS.2021.3110242
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1059451

	CEA-FJSP: Carbon emission-aware flexible job-shop scheduling based on deep reinforcement learning
	1 Introduction
	2 Problem formulation
	2.1 Carbon emission accounting model
	2.1.1 Carbon emission from machine operation
	2.1.2 Carbon emission from coolant treatment

	2.2 CEA-FJSP formulation

	3 Deep reinforcement learning scheduling modeling
	3.1 Markov decision process formulation
	3.1.1 State representation
	3.1.2 Action space
	3.1.3 Reward function

	3.2 Policy network
	3.3 Deep reinforcement learning training process

	4 Experimental results and discussion
	4.1 Experimental setting
	4.1.1 Dataset adaption
	4.1.2 Evaluation metrics

	4.2 Training dynamics
	4.3 Optimization ability
	4.4 Generalization ability
	4.5 Weight effect

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


