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Introduction: In recent years, Laos, with its unique geographical advantages, has
vigorously developed overseas trade and cultural tourism industry, which has
promoted local economic development and introduced numerous ecological and
environmental problems.

Method: Therefore, this research took Savan District as the research area, built the
landscape ecological risk assessment model to reveal the spatiotemporal evolution
characteristics of Savan District’s ecological risk from 2000 to 2020. Then, the
Geodetector model was utilized to explain the driving forces behind changes in the
landscape’s ecological risk. Finally, the Markov-PLUS coupling model was used to
simulate and predict the changes in the land use pattern and ecological risk in the
Savan District in 2030.

Results: The following results are presented. 1) The landscape types in Savan District
are mainly cultivated land and forest land, with the lowest degree of landscape
fragmentation and loss, and the highest degree of landscape loss in unused land. 2)
From 2000 to 2020, the average ecological risk index of the whole study area was
low and showed a decreasing trend yearly, with the area of low-risk areas accounting
for more than 90%. 3) In 2030, the average ecological risk index of the entire Savan
District and the two provinces will rise, meanwhile the low-risk areas in the midwest
regions and high-risk areas in the northwest will increase.

Discussion: This study can guide the future coordinated development of the social
economy and ecological environment in Savan District, Laos, and has good
reference significance for ecological construction in similar areas in Southeast Asia.
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1 Introduction

The ecological environment is the basic space for human survival and the prerequisite for
social and economic development, which relates to the health and sustainable development of the
entire society. Since the 21st century, with the deepening development of urbanisation, human
beings vigorously developed the economy and exploited the Earth’s resources, which inevitably
caused a series of ecological and environmental problems, such as the destruction of forest
resources, soil erosion, desertification, urban smog, drought, flooding, water pollution, imbalance
of soil acidity and alkalinity and exhaustion of natural resources (Gao et al., 2011; Mondal et al.,
2021). Therefore, judging and simulating the ecological risk level scientifically and accurately is
highly valued in the research of global ecological environment protection and is important
reference for formulating ecological environment protection and prevention policies.
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Ecological risk is used to measure the adverse effects and losses of
ecosystems in the face of external environmental changes and human
activities (Peng et al., 2015). Strengthening the assessment of landscape
ecological risks, preventing and defusing major risks in the ecological
environment and improving the early warning capability of potential
ecological risks are currently the urgent tasks of human ecological
civilisation construction. In 1994, the Committee on Risk Assessment
Methods defined a comprehensive framework for ecological risk
assessment, which comprises four parts: hazard identification,
exposure assessment, exposure–response assessment and risk
characterisation; the committee also introduced remarkably detailed
guiding suggestions on the problems to be solved, research needs and
research mechanisms in ecological risk assessment (Barnthouse, 1994).
In 2001, Kapustka et al. (2016) found that land use change could have
considerable adverse effects on the ecological risk assessment of wildlife
habitats and proposed to bring landscape ecology into the ecological risk
assessment process, which was expected to improve the ecological risk
assessment and provide valuable information. In 2004, Ferrarini
published the Ecological Risk Assessment Through Landscape Science
Approaches, indicating that the impact of land use policy on the risk of
biological integrity should be studied in accordance with the “natural
value” and “vulnerability” by constructing the risk assessment of
landscape biological integrity and combining the indicators related
to human disturbance (Ferrarini, 2004).

Global academic research on ecological risk is mainly divided into
environmental science (Min et al., 2013; Xu Q. et al., 2021), Ecology
(Wenning, 2011), Public Environmental Health (Charabi et al., 2018),
Zoology (Flores-Serrano et al., 2014), Toxicology (Fural et al., 2021)
and Biodiversity Conservation (Nawrocki et al., 2019) and other
directions. As far as the study area is concerned, it is mainly the
river basin (Zhu et al., 2022), wetlands (Malekmohammadi and
Blouchi, 2014; Li et al., 2020), desert oasis (Han et al., 2022) and
other key ecological protection areas and heavy metal industrial areas
such as industrial and mining wasteland (Peng et al., 2016). At
present, the evaluation methods of ecological risk in academic
circles can be generally divided into the evaluation based on risk
source-risk receptor (Forbes and Calow, 2013) and the evaluation
based on landscape pattern (Cui et al., 2018), the latter has become a
common paradigm of ecological risk research. In actual planning
decision-making, decision makers’ preference for different goals will
often affect the development trend of future ecological risks.
Therefore, many scholars try to explore the ecological
environmental effects brought by future scenario development by
combining multi-scenario simulation with ecological risk assessment
model, so as to provide scientific basis for urban ecological
environmental protection and land space planning. The existing
ecological risk simulation and prediction studies mostly use
CA–Markov (Tian et al., 2021), FLUS (Xu W. X. et al., 2021),
CLUE-S (Zhang et al., 2021) and other models. Patch-gene rating
land use simulation (PLUS)model applies random forest classification
algorithm to better mine the potential driving factors of landscape
types, simulate the evolution of landscape types from patch level, and
is suitable for other areas and processes where large-scale processes
interact with local dynamics (Gao et al., 2022). In addition, the
discussion of the driving factors of ecological risk is also a hot
research topic at present. Its main purpose is to reveal the internal
reasons that affect the spatio-temporal changes of ecological risk, and
provide the basis for the scientificity and accuracy of spatio-temporal
simulation of ecological risk in the future. The research methods

mainly include logistic regression (Tian et al., 2022), Geographic
detector (Karimian et al., 2022), principal component analysis
(Kumar et al., 2020) and geographically weighted regression model
(Yu et al., 2020), etc. Compared with other methods, geographic
detector can better detect the influencing factors and explain their
interaction, so it is widely used in the research of driving factors.

Laos is not only a friendly neighbour connected with mountains
and rivers in southeast China but is also an active participant in the
strategy of building “Belt and Road Initiative” (Duan and Liu, 2020).
Promoting the economic and ecological development of Laos is also an
important prerequisite for enhancing the level of bilateral trade
between China and Laos (Renkeyao and Gul, 2018; Liang et al.,
2019). In recent years, with the continuous improvement of the
economic level of Laos, problems, such as increasing urban
population pressure, land use degradation and depletion of natural
resources, have subsequently emerged. The wanton exploitation of
land and forest resources has caused grave water pollution and soil
destruction, which has seriously restricted the development of
agriculture (Jiang et al., 2021). Cities are also faced with a large
amount of domestic garbage and other environmental problems
due to population growth. Therefore, in the process of pursuing
economic development, Laos must fully coordinate economic
growth with ecological protection to realise the sustainable
development of the city.

Overall, studies on Southeast Asia in the world were few and those on
ecological risks in Laos were substantially limited. Therefore, taking the
Savan District of Laos as the research object, this paper conducted a
quantitative study on the landscape ecological risk index of the study area
in 2000, 2010 and 2020 by referring to the related methods of landscape
ecology. The driving factors that affect the spatial and temporal
differentiations of ecological risks were identified using the
Geodetector model. Building the Markov–PLUS coupling model to
simulate and predict the change trend of ecological risks in Savan
District in 2030 aimed to provide a scientific basis for ecological
protection strategies and land management policies in Savan District.

2 Materials and methods

2.1 Study area

Savan District is located in the north of Indo-China Peninsula,
south-central Laos, at 104°16′N–106°47′E and 15°52′–18°15′N, with
Vietnam in the east and Mekong River in the west. The total area
accounts for 16% of the country’s land area and the population
accounts for 20% of the entire country. This district is the
geographical and economic centres of Laos. In addition, according
to the project and research findings of our team in this area, the main
economic industry in this area is agriculture, which is the core area of
agriculture in Laos, and its industrial base is relatively weak (Huang
et al., 2018). Savan District comprises Khammouan Plateau and
Savannakhét Plain, with high and low terrain in the east and west,
respectively. The land use type is mainly forest land, accounting for
approximately 80% of the total area (Peng et al., 2021). This area has a
tropical monsoon climate, with an average annual temperature of
around 25°C. Savan District includes 25 counties in two provinces:
10 counties in Khammouan Province and 15 counties in Savannakhét
Province. Khammouan province covers an area of 16,315 km2 and its
capital is Thakhek city. In 2020, the population of this province was
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approximately 433,600. Meanwhile, Savannakhét province covers an
area of 21,774 km2, with a population of approximately 1070,000 in
2020. Therefore, it is the largest and most populous in Laos.

Savan District has a remarkably advantageous geographical
position, occupying the dual economic development advantages of
ASEAN Economic Circle and Greater Mekong Subregion Cooperation
Economic Circle. This district is also one of the key node cities in the
development strategy of “Belt and Road Initiative”. With its unique
geographical location, Savan District has become an important
geographical transportation hub in Indochina Peninsula and Laos.
Figure 1 is location and land use in 2020 of Savan District.

2.2 Data sources

First-class classified land use type data, which were obtained
from the grid data of land use of Savan District, Laos, in 2000,

2010 and 2020, were downloaded from Globe Land 30 m global
land cover data website (http://www.globeland30.org). According
to the classification method of landscape ecology, the landscape
types of the study area were divided into seven types (Peng et al.,
2017; Luo et al., 2019): cultivated land, forest land, grassland,
wetland, water area, construction land and unused land.

Based on the present situation of the ecological environment
in the study area and the availability of data, 10 types of driving
factor data were selected from four dimensions—terrain
conditions, soil conditions, location conditions and land use
conditions—to explore the influencing factors of the spatial
and temporal distributions of ecological risks in Savan District.
In Table 1, the specific factor indicators were displayed. The
National Aeronautics and Space Administration (NASA)
EARTHDATA platform (https://www.earthdata.nasa.gov)
provided the elevation data, and the slope data were translated
from elevation data. The soil factor data were came from the

FIGURE 1
Study area: (A) Location; (B) DEM; (C) land use in 2020.

TABLE 1 Classification of ecological risk drivers in Savan District.

First-order factor Secondary factor Factor description

Terrain conditions Elevation Average elevation of each grid

Slope Average slope of each grid

Soil conditions Soil texture Soil types with the largest proportion in each grid

Soil organic content Average organic matter content of soil in each grid

Soil pH (potential of hydrogen) Average pH of soil in each grid

Location conditions Distance to water source Average European distance of each grid

Road network density Ratio of total road length to patch area in each grid

Population density Average value of population density data in each grid

Land use conditions NDVI Average value of NDVI data in each grid

Type of land use Types of land use in each grid
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Harmonised World Soil Database (http://webarchive.iiasa.ac.at/
Research/LUC/External-World-soil-database/HTML/HWSD_
Data.html?sb=4); The population density data were found from
the 100 m resolution population data in 2020, were downloaded
from the Worldpop platform (https://hub.worldpop.org/project/
categories?id=3); The data of distance to water source were
obtained by performing Euclidean distance analysis in ArcGIS;
Road vector data were downloaded from the Open Street Map
website (https://www.openstreetmap.org/), then road network
density data were generated in ArcGIS; The normalized
differential vegetation index (NDVI) data were from the NASA
MODIS platform (https://modis.gsfc.nasa.gov/data/dataprod/
mod13.php).

2.3 Methods

2.3.1 Landscape ecological risk index
The landscape pattern index commonly used in ecology

reflects landscape pattern information and quantifies the
structural characteristics and evolution process of ecological
landscape (Fu et al., 2020). According to the research purpose
and the ecological significance of landscape index, the patch data
of seven kinds of landscape types were calculated in this paper
using FRAGSTATS software. The landscape disturbance degree
(Sun et al., 2014) was then calculated by landscape fragmentation
(Wang et al., 2008), landscape separation (Gao et al., 2011) and
landscape dominance degrees (Li and Li, 2008); combined with
landscape vulnerability degree (Wang et al., 2005), an ecological
risk assessment model can be constructed (Zhao et al., 2022).
Referring to the research of Chen et al. (2021), Tian et al. (2018)
and other scholars, the evaluation unit should be two to five times
the average patch area of the landscape in the study area.
Therefore, this paper selected grids of 5 km × 5 km as the
evaluation unit to divide the research area. The landscape loss
index of each land use type was calculated by Excel software, then
the ecological risk value of each grid was calculated in ArcGIS.

The calculation formula of the ecological risk index is:

ERIxi � ∑
n

i�1
Sxi
Sx

Ri (1)

In Eq. 1, ERIxi represents the ecological risk index of the x
evaluation unit; n is the number of landscape types, and the value in
this paper is 6; Sxi represents the area of Class i landscape of the x
evaluation unit; Sx is the total landscape area of the x evaluation
unit; Ri is the landscape loss index, and its calculation method is
shown in Table 2.

2.3.2 Markov–PLUS model
The Markov model is widely used in the related research of

land use and is a stable random model with no aftereffect (Luo
et al., 2020). The quantitative change in land use in the future can
be predicted through the transformation probability matrix
between land use types in a certain period, and its expression
is as follows:

St+1 � Pij × St (2)

In Eq. 2, St is the current state of land use type; St+1 indicates the
state of land use types in the future; Pij represents the probability
matrix of land use type state transition.

The Patch-generating land-use simulation (PLUS) model is a
land use change simulation model developed by HPSCIL@CUS
Laboratory of China University of Geosciences (Hu et al., 2022).
Land expansion analysis strategy (LEAS) and the CA model of
many kinds of random patch seeds (CARS) predicted and
simulated the land use, which has superior explanation (high
simulation accuracy). The PLUS model primarily consists of two
parts:

(1) Land expansion analysis strategy (LEAS)

Through the LEASmodule, the model extracts all types of land use
expansion parts during the course of two periods of land use change
and draws samples from the increasing parts. The development

TABLE 2 Interpretation and calculation of landscape pattern index.

Landscape pattern
index

Calculation formula Meaning

Landscape fragmentation
index (Ci)

Ci = ni/Ai Indicates the degree of fragmentation of the landscape Xie et al. (2017); Where ni is the number of
patches and Ai is the area of patches.

Landscape isolation index (Ni) Ni � ���
niA

√
/2Ai Used to reflect the dispersion degree between different patches in landscape types Kang et al. (2020);

Where ni is the number of patches and Ai is the area of patches.

Landscape dominance
index (Di)

Di � Qi+Mi
4 + Li

2
Reflect the diversity of landscape, in which a high diversity indicates minimal dominance Zhang et al.
(2016); Where Qi is the percentage of grid number of landscape type i; Mi is the percentage of patch
number of landscape type i; Li is the percentage of patch area of landscape type i.

Landscape disturbance
index (Ui)

Ui = aCi + bNi + cDi Indicates the degree of external disturbance to the landscape ecosystem; a = .5, b = .3 and c = .2 in this
study according to relevant references Han et al. (2010).

Landscape vulnerability
index (Fi)

Obtained by Delphi and expert scoring
method

Reflect the capability of different landscapes to resist external interference; According to the previous
research experience Zhang et al. (2014), the vulnerability of seven landscape types, namely cultivated
land, forest land, grassland, water area, wetland, construction land and unused land is assigned to 4, 2,
3, 5, 6 ,1 and 7 respectively, and then the vulnerability index of each landscape type is obtained by
normalisation.

Landscape loss index (Ri) Ri = Fi × Ui Used to indicate the degree of landscape loss when disturbed Lü et al. (2018).
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likelihood of every type of land use and the contribution of driving
factors to every type of land use growth in this era are calculated using
the random forest algorithm, which mines each type of land use
expansion and driving factor individually.

(2) CA model of many kinds of random patch seeds (CARS)

The PLUS model may dynamically simulate the automated
synthesis of patches in time and space under the constraint of
development probability by combining the mechanisms of random
seed generation and threshold decrease. Although the computation
is complex, software may directly access the findings. To ultimately
achieve the spatio-temporal dynamic simulation of patches, all that
is required is to establish the land demand data and land use
transfer probability, wait for the program to take its course, and
then review the findings.

The Markov–PLUS coupling model can not only predict the
number of land use types but also simulate the change in land use
in space. This model can accurately simulate the evolution of land use

types in Savan District in 2030 and then predict the landscape
ecological risk index in 2030.

2.3.3 Geodetector model
The unique advantage of Geodetector lies in their capability to analyse

the influence of a single factor and detect causal relationships between two
variables (Wang and Xu, 2017; Sun et al., 2021). This study mainly used
factor and interaction detection to test the natural environmental and
socio-economic factors that affect the spatial differentiation of ecological
risk in the research area and detected the driving factors of landscape
ecological risk in the study area. The formula is as follows:

q � 1 − 1
Nσ2

∑L

h�1Nhσ
2
h (3)

In Eq. 3, q is the detection index of the influence of driving factors on
ecological risks and 0 ≤ q ≤ 1; h = 1, ..., L is the total number of
partitions; Nh and N are the number of units in each partition and the
entire study area, respectively; σ2h and σ2 are the variance of ecological
risk for each sub-region and the entire region, respectively.

TABLE 3 Changes in landscape pattern index in Savan District from 2000 to 2020.

Landscape pattern
index

Year Cultivated
land

Forest
land

Grass
land

Wetland Water
area

Construction
land

Unused
land

Patch area/km2 2000 5216.55 31129.09 1196.22 83.26 379.61 18.93 51.70

2010 5712.48 30805.43 1038.71 110.92 331.49 24.80 51.61

2020 6330.70 30120.56 926.89 111.46 379.10 151.83 54.90

Number of patches 2000 1182 10842 153925 56 5905 96 2528

2010 1316 10172 144771 51 5249 149 2501

2020 1637 9685 136290 62 5272 831 2466

Landscape fragmentation degree 2000 0.0023 0.0035 1.2868 0.0067 0.1556 0.0507 0.4889

2010 0.0023 0.0033 1.3938 0.0046 0.1583 0.0601 0.4846

2020 0.0026 0.0032 1.4704 0.0056 0.1391 0.0547 0.4492

Landscape separation degree 2000 0.0643 0.0326 3.1999 0.8769 1.9750 5.0502 9.4876

2010 0.0620 0.0319 3.5739 0.6282 2.1323 4.8024 9.4549

2020 0.0624 0.0319 3.8860 0.6892 1.8686 1.8523 8.8252

Landscape dominance index 2000 0.0589 0.3643 0.5417 0.0011 0.0243 0.0005 0.0092

2010 0.0648 0.3608 0.5399 0.0014 0.0227 0.0008 0.0097

2020 0.0728 0.3536 0.5331 0.0014 0.0242 0.0048 0.0100

Landscape disturbance index 2000 0.0322 0.0844 1.7117 0.2666 0.6751 1.5405 3.0926

2010 0.0327 0.0834 1.8770 0.1910 0.7234 1.4709 3.0807

2020 0.0346 0.0819 2.0076 0.2098 0.6350 0.584 2.8742

Landscape vulnerability index 2000 0.1429 0.0714 0.1071 0.1786 0.2143 0.0357 0.2500

2010 0.1429 0.0714 0.1071 0.1786 0.2143 0.0357 0.2500

2020 0.1429 0.0714 0.1071 0.1786 0.2143 0.0357 0.2500

Landscape loss degree 2000 0.0046 0.0060 0.1834 0.0476 0.1447 0.055 0.7731

2010 0.0047 0.0060 0.2011 0.0341 0.1550 0.0525 0.7702

2020 0.0049 0.0058 0.2151 0.0375 0.1361 0.0209 0.7185
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3 Results

3.1 Analysis of landscape pattern change

Using FRAGSTATS landscape index calculation software and the
statistical function of Excel, the change table of landscape pattern
index of seven land use types in Savan District from 2000 to 2020 was
obtained (Table 3).

(1) Considering quantity, amongst the seven landscape types, the
number of wetland patches was the least and the landscape
fragmentation and dominance were the lowest. The patch area
of forest land and cultivated land was the largest, but the number
of patches was small. Therefore, the landscape fragmentation,
separation and loss were small, the landscape stability was the
highest and the anti-interference capability was strong. The
number of grassland patches was the largest, indicating that
their spatial distribution was scattered; thus, the calculated
landscape fragmentation, separation and disturbance were the
highest. In 2000 and 2010, the patch number and area of
construction land were small, the dominance index was the
lowest and the landscape separation and disturbance degree
indices were high, which reflected the scattered spatial
distribution of construction land. The degree of separation,
disturbance, fragility and loss of unused land was the highest
and the ecosystem was in the primary evolution mode,
demonstrating the highest biodiversity and the worst stability.

(2) From the perspective of time change, the landscape index of
cultivated and forest lands slightly changed from 2000 to 2020,
indicating minimal disturbance by the outside world and a
relatively stable ecosystem. The landscape fragmentation,
separation, disturbance and loss degrees of grassland were
increasing yearly. This finding indicates that the grassland
landscape types were gradually dispersed in the geographical
distribution and the ecological loss of the landscape was
remarkably serious after external disturbance, which should be
paid emphasised in the future ecological environment protection
strategy. The indices of landscape fragmentation, separation,
disturbance and loss of wetland and water area firstly increased
and then decreased, indicating that the landscape fragmentation
of wetlands and water area increased due to the changes in natural
conditions and the blind and disorderly construction behaviour of
human beings from 2000 to 2010. However, after 2010, the
landscape patches gradually tended to be continuous and the
ecosystem gradually returned to the normal level.

3.2 Analysis of ecological risk evolution

3.2.1 Analysis of characteristics of ecological risk
transfer

According to the formula, the ecological risk value of each grid
unit was calculated, and the ecological risk value was then assigned to
the centre point of each grid through the operation of element turning
point. Finally, relying on the spatial analysis method of geostatistics,
the spatial distribution map of ecological risk in the three phase of the
study area was obtained by Kriging interpolation method. The
conversion of ecological risk levels during the study period was
analysed by ecological risk dynamic attitude and transfer matrix as
respectively shown in Table 4 and Figure 2 to reflect the changes
amongst different ecological risk levels intuitively.

In 2000, 2010 and 2020, the average ecological risk index of Savan
District ware .01404, .01370 and .01335, respectively, showing a
gradual downward trend. This trend indicated that the level of
ecological security was steadily improved, and the contradiction
between urban economic development and the ecological
environment was alleviated and changed.

From the perspective of area ratio and dynamic attitude change,
the landscape ecological risks in the Savan District in the past
20 years from 2000 to 2020 were mainly low-risk areas, which
accounted for more than 90%, thus confirming that the overall
landscape ecological risks in Savan District were low. The table of
dynamic attitude change indicates minimal variation in the
ecological risk area of different grades, except for the dynamic
attitude of medium risk exceeding 1% and the change in the
ecological risk area of four other grades of less than .5%, which
indicates the remarkable stability of the ecological environment of
the Savan District. From the perspective of the change trend, the
ecological risk area slightly changed during the 20 years from 2000 to
2020, the lowest-risk area continued to increase, the lower- and
medium-risk areas decreased yearly and the higher-risk area
increased firstly and then decreased around 2010. This highest-
risk area was the most stable but began to decrease after 2010.

The diagram of ecological risk transfer revealed that the shift to
lower ecological risk level in 2000-2020 was the key feature of the
ecological risk level change. In 2020, the increase in lowest-risk area
mainly came from 1934.32 to 231.58 km2 of lower- and medium-risk
areas, respectively, and 284.42 km2 of medium-risk area was reduced
to lower-risk area. In addition, the areas with elevated ecological risk
mainly included the following: 955.35 km2 for the conversion of lowest
to lower risk, 145.52 km2 from the conversion of lower to medium-risk
areas and 76.63 km2 for the conversion of medium to higher risk areas.

TABLE 4 Ecological risk grade area and dynamic attitude from 2000 to 2020 (km2).

Ecological risk
level

2000 Proportion
(%)

2010 Proportion
(%)

2020 Proportion
(%)

2000–2010 2010–2020 2000–2020

Lowest risk 26325.7 69.14 26905.7 70.66 27517.0 72.27 0.22% 0.23% 0.23%

Lower risk 9746.3 25.60 9372.3 24.61 8903.6 23.38 −.38% −0.50% −0.43%

Medium risk 1514.1 3.98 1294.7 3.40 1167.0 3.06 −1.45% −0.99% −1.15%

Higher risk 362.1 0.95 375.5 0.99 367.0 0.96 0.37% −0.23% 0.07%

Highest risk 128.5 0.34 128.5 0.34 122.1 0.32 0.00% −0.50% −0.25%
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3.2.2 Analysis of temporal and spatial evolution
characteristics

According to the natural breakpoint method of ArcGIS
software and the characteristics of ecological risk data in the
three phase, the landscape ecological risk of Savan District was
divided into five grades: lowest-risk area (<.01283), lower-risk areas
(.01283–.03367), medium-risk area (.03367–.07430) and higher-
risk areas (.07430–.15035) and highest-risk area (>.15035), and the
results were shown in Figure 3.

(1) From the perspective of spatial distribution, the ecological risk
in Savan District presented a distribution pattern of high and
low in the east and west, respectively, which was consistent
with the land use pattern. The eastern low-risk area was
dominated by forest land landscape mainly because of the
high stability of forest land ecosystems and the low

vulnerability of landscapes. Low- and medium-risk areas
were mainly distributed in scattered patches in the west,
central and southern areas, and cultivated land was the
main landscape type. High-risk areas were concentrated in
Khammouan City in the northwest corner. A large number of
unused land types were found in the territory, and their
landscape loss and vulnerability were the largest, which was
the area with large ecological security problems in the Savan
District.

(2) From the perspective of temporal and spatial evolution, the
spatial distribution of the five types of risk areas slightly
changed during the study period and only the middle-western
area changed obviously, gradually decreasing from lower- and
medium-risk areas to lowest-risk areas. The landscape type in
this area changed from forest land to cultivated land, which
merged with surrounding patches, and the landscape

FIGURE 2
Ecological risk transfer at different levels: (A) 2000–2010; (B) 2010–2020; (C) 2000–2020.

FIGURE 3
Distribution of ecological risk levels from 2000 to 2020: (A) 2000, (B) 2010; (C) 2020.
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fragmentation and separation decreased, thus reducing the
ecological risk.

(3) According to the division of provincial administrative regions, the
average ecological risks of Khammouan Province in Savan District
in 2000, 2010 and 2020 were .01531, .01530 and .01524,
respectively. This finding indicated that the landscape ecological
environment of Khammouan Province was relatively stable and the
ecological risks decreased from 2010 to 2020. The average ecological
risks of Savannakhét Province in 2000, 2010 and 2020 were .01305,
.01244 and .01187, respectively, showing a decreasing trend yearly,
reflecting the improvement of the ecological quality of Savannakhét
Province yearly. The average ecological risk of Khammouan
province was generally higher than that of Savannakhét province.

(4) Divided by urban areas, Figure 4 shows that Khammouan had the
highest ecological risk index (above .06) and Atsaphangthong had
the lowest, with the average ecological risk below .01. The
ecological risks of the 24 other urban areas were distributed
between .01 and .03, and the ecological risk index of most
urban areas in 2000, 2010 and 2020 steadily changed. Amongst
them, the change in Outhoumphon was evident and the average
ecological risks in 2000, 2010 and 2020 were .0226, .0145 and .009,
respectively, showing a linear decreasing trend.

The ecological risk of Savan District was generally low and the
change was small. This finding indicated that the natural environment
and forest resources in the area had not suffered serious damage at
present, and the quality of human settlements was remarkably superior.

3.3 Analysis of driving factors of ecological
risk

Based on the obtained data, 10 factors, including elevation (X1),
slope (X2), soil organic content (X3), soil texture (X4), soil PH (X5),

population density (X6), distance to water source (X7), road network
density (X8), NDVI (X9) and type of land use (X10), were selected in
this study to identify the factors that affect the spatial and temporal
distribution of ecological risks in Savaan District. With the help of
ArcGIS platform, ecological risk and influencing factor data were
sampled by 2 km × 2 km grid, and the data with the value
of −9999 were eliminated in Excel. Through origin plug-in, the
linear correlation degree between variables was studied by
Spearman correlation coefficient, and the result was shown in
Figure 5A. Taking the ecological risk index as an independent
variable and 10 kinds of influencing factors as dependent variables,
the driving factors of ecological risks in the Savan District were then
quantitatively studied on the basis of the geographic probe model.
Table 5 showed the factor detection results of ecological risk in the
Savan District.

Figure 5A showed a significant positive correlation between
ecological risk and elevation, soil organic matter content and
distance from water source, with significant distributions of 99%,
95% and 95%, respectively. The correlation between dependent
variables was as follows. The elevation factor was negatively
correlated with slope, vegetation coverage and land use types, with
a significant degree of 99.9%. Meanwhile, the elevation factor was
positively correlated with the distance from water source, slope and
vegetation coverage, slope and land use types and vegetation coverage
and land use types with a significant degree of 99.9%.

The p values of all factors in Table 5 are less than .01, which
indicates that all 10 kinds of driving factors have impacts on
ecological risks. From the explanatory power of factors to the
spatial distribution of ecological risks, elevation (X1), slope (X2)
and distance to water source (X7) have the highest influence,
reaching 84.7%. This finding indicates that the three factors are
dominant in the spatial distribution of ecological risks. Secondly, the
explanatory power of population density (X6) factor is 76.7%.
However, the q statistic of soil texture (X4) factor is .014, which

FIGURE 4
Landscape ecological risk index of 25 cities in Savan District from 2000 to 2020.
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indicates that it has little influence on the spatial differentiation of
ecological risk.

The interactive detection results are shown in Figure 5B, which
reveals that the spatio-temporal evolution of ecological risk in the
Savan District is due to multiple factors. From the perspective of
interaction influence, the interaction between other factors and
elevation (X1) and slope (X1) is a single factor non-linear
weakening, whilst elevation (X1) and slope (X2) are unaffected by
other factors. The elevation (X1) and slope (X2) are non-linearly
weakened, and their combined influence is weakened instead of
enhanced. Amongst them, the factors with high enhancement
degrees are q(X3∩X10), q(X5∩X10), q(X9∩X10), q(X3∩X4), q(X4∩X5)
and q(X4∩X10). This finding shows that factors, such as soil organic
content, soil texture and type of land use, have a significant increase in
the influence of interaction with the combination of other factors,
which can significantly contribute to the influence of other factors on
ecological risk.

3.4 Ecological risk simulation and prediction
analysis

With the help of ArcGIS platform, the three-phase land use data
and 10 types of driving factor data were reclassified, and the coordinate
system and scope were unified and then imported into the PLUS
model for simulation and prediction. Testing the model accuracy is
necessary before simulating and predicting the ecological risk in 2030.
Firstly, the land use data in 2000 and 2010 are loaded into the model,
and the model parameters are then set to obtain the land use

simulation results in 2020. The consistency test is conducted by
Kappa coefficient according to the actual land use data in 2020 to
determine the reliability of simulation prediction results. The next
operation is then performed. The calculated Kappa coefficient is .892,
which indicates that the Markov–PLUS model has high accuracy and
can be used to predict the land use data of the study area in 2030 and
calculate the ecological risk.

The main driving factors for the expansion of cultivated land
are type of land use, soil organic matter content, and population
density, while the main influencing factors for the expansion of
forest land are elevation DEM, soil PH value, and population
density, according to the distribution map of contribution rates
of driving factors (Figure 6). Type of land use, elevation, and the
density of the road network are the key forces behind the increase
of construction land.

In the CAES module, the principles of forest land protection,
ecological protection and the trend of urban development indicated
that the water body in 2020 will be restricted from conversion as
protected areas. Moreover, the water body, forest land and
construction land will not be converted into other land use types
in the land use transfer matrix, and unused land will all be convertible.
The distribution map of Savan District landscape types in 2030 is
shown in Figure 7A by simulation and prediction, and the landscape
pattern index is then calculated in ArcGIS and FRAGSTATS software.
The results are shown in Table 6.

The landscape ecological risk in Savan District in 2030 was
reclassified in accordance with the 3.2 grade classification method,
and the landscape ecological risk grade distribution map in 2030 was
obtained (Figure 7B). Overall, the spatial distribution pattern of
landscape ecological risk is similar to that of 2020, which still
shows a low and high trend in the east and west, respectively, with
lowest- and lower-risk areas as the main ones. High-risk areas are still
distributed in the northwest corner, and highest- and higher-risk areas
are decreasing. Particularly, the high-risk areas in the northwest
corner of Boualapha City are reduced to medium-risk areas. From
the average ecological risk of the whole region, the average ecological

FIGURE 5
Driving factors of ecological risk in the Savan District: (A) factor correlation; (B) interactive detection results.

TABLE 5 Detection results of ecological risk factors in Savan District.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

q statistic 0.847 0.847 0.348 0.014 0.348 0.767 0.847 0.547 0.348 0.104

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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risk of Savan District in 2030 is .01415, exceeding the maximum
ecological risk from 2000 to 2020, which indicates that the Savan
District will usher in the peak ecological risk in 2030. According to the
division of provincial administrative regions, the average ecological
risks of Khammouan and Savannakhét Province in Savan District in
2030 will be .01557 and .01305, respectively; amongst which, the
ecological risks of Khammouan exceeded the highest value since 2000.

The average ecological risk of each city is calculated in accordance
with the regional statistics of ArcGIS platform, and the ecological risk
in 2030 is then compared with that in 2020 by using grid calculator.
The area with −.0005 < change value < .0005 is classified as a stable
ecological risk area, the area with change value > .005 is defined as a
worsening ecological risk area and the area with change value <−
.005 is defined as an improving ecological risk area, thus obtaining the
figure of landscape ecological risk change of 25 cities in the Savan
District from 2020 to 2030 (Figure 7C).

The schematic of ecological risk change shows that amongst the
25 urban areas in Savan District, 12 are ecological risk deterioration

areas, 5 are improvement areas and 8 are stable areas. Ecological
stability areas include two southeast cities and six central and western
cities. The three most stable cities are Atsaphon, Thakhek and
Phalanxai. The landscape types of these three cities are basically
divided into forest land and cultivated land, and the two landscape
patches are concentrated; thus, the ecological risk is the most stable.
Amongst the ecological risk improvement areas, the average ecological
risk of Khoukham city decreased most, followed by the cities of Xepon,
Outhoumphon, Xebang fai and Nongbok. The ecological risk
deterioration areas are widely distributed, and the ecological risks
in the southwestern and eastern urban areas increased. Amongst
which, the cities of Champhon, Kaysone Phomvihane and
Xaiphouthong have the worst deterioration degree. The spatial
distribution map shows that Champhon City has a large part of
medium-risk gathering areas. Therefore, focusing on these cities
with deteriorating ecological risks is necessary in the future
strategies of urban economy, ecological construction and land
development.

FIGURE 6
Contribution of driving factors of cultivated, forest and construction land expansion in Savan District: (A) cultivate land; (B) forest land, (C) construction
land.

FIGURE 7
Land use and ecological risks in Savan District in 2030: (A) land use; (B) ecological risks, (C) changes in ecological risks in 25 cities.
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4 Discussion

Ecological environment has always been a key issue that affects the
social and economic development and the sustainable development of
human beings all over the world. In recent years, there have been more
and more researches on landscape ecology in academic circles. From
the perspective of countries and regions, scholars from the
United States, China, Canada, Australia, Britain, Germany, France
and other European countries are the majority, while researches on
landscape ecology in Southeast Asian countries and regions, especially
developing countries and regions in Southeast Asia, are scarce.
Southeast Asia, surrounded by the sea on three sides, is a traffic
fortress between Asia and Oceania, the Pacific Ocean and the Indian
Ocean (Bai Y. et al., 2021). Although Southeast Asia’s geographical
position in the region is crucial, it also needs to be considered for its
ecological sustainability (Sharma et al., 2020). With the rapid
development of society, environmental problems have become
increasingly prominent, seriously affected the harmonious
relationship between man and nature, but also caused many social
problems, which have become major economic and social problems
that restrict the long-term development of East Asia. Laos is a
landlocked country in Indochina Peninsula (Zaehringer et al.,
2018), surrounded by mountains in the north and neighboring
countries on all sides. The only feasible way for overseas trade is
land trade, which completely limits its development space. In the
process of urban expansion, economic growth accelerates
industrialization and promotes the exploitation of natural resources
such as agriculture and forestry, which may lead to ecological
distortion (Danish et al., 2019). The contradiction between
ecological environment and economic development has become an
important issue for Laos’ development (Vilaysouk et al., 2019; Castella
and Lestrelin, 2021). The combination of landscape ecology and land
use, as a breakthrough of ecological risk assessment theory and
method, can provide reference for urban planning and design

(Izakovicova et al., 2019). In the past, landscape ecological risk
assessment mostly focused on the ecological risk assessment caused
during the research period (Li et al., 2019; Sun et al., 2022; Yu et al.,
2022), less simulation and prediction of future ecological risks.
Therefore, this study takes Savan District, Laos as the research
object, discusses the temporal and spatial evolution of sand
ecological risk combined with landscape ecology, and makes
simulation and prediction, so as to take corresponding policies to
prevent the ecological risk caused by improper urban expansion.

The research methods and models of spatial-temporal
differentiation of ecological risks in this study are consistent with
many studies. It is found that the ecological risk level in Savan District
of Laos is low, which is consistent with the higher ecological security
level in Laos in the research conclusions of Nathaniel (Nathaniel,
2021) and Zhao et al. (2021). Our analysis confirms the feasibility of
this research in two provinces and cities in Laos, which is of reference
value to other similar cities in Laos and even Southeast Asia. Savan
area is dominated by forest land and cultivated land, and is rich in
natural resources. Forest land covers the largest area, and because
agriculture is the main economic industry, the occupation of cultivated
land and forest land by urban expansion has been curbed. Except for
the construction land and unused land, the ecological land such as
grassland, wetland and water body in Savan District is small, which is
usually ignored bymanagers in the process of urban development, so it
is damaged greatly and its ecological risk index is high. However,
cultivated land and forest land have the most stable landscape pattern
and the lowest ecological risk index during the study period. As an
important renewable natural resource, forestry is of great significance
to ecological environment and sustainable development. If the practice
of sustainable development is adopted in production and living
activities, the ecological space will be stable and the natural
resources will be regenerated.

It is discovered that the urban development in Savan District has
obvious imbalance and spatial disorder. Urban areas are mainly

TABLE 6 Comparison of landscape pattern index of Sawan District in 2020 and 2030.

Landscape pattern
index

Year Cultivated
land

Forest
land

Grassland Wetland Water
body

Construction
land

Unused
land

Patch area/km2 2020 63.31 30120.56 926.89 111.46 379.10 151.83 54.90

2030 69.01 29460.00 914.91 97.09 425.77 221.15 55.43

Number of patches 2020 1637 9685 1362.90 62 5272 831 2466

2030 1260 20432 123116 331 4749 939 2308

Degree of fragmentation 2020 0.0026 0.0032 1.4704 0.0056 0.1391 0.0547 0.4492

2030 0.0018 0.0069 1.3457 0.0341 0.1115 0.0425 0.4164

Degree of separation 2020 0.0624 0.0319 3.8860 0.6892 1.8686 1.8523 8.8252

2030 0.0502 0.0473 3.7417 1.8283 1.5791 1.3520 8.4556

Dominance 2020 0.0728 0.3536 0.5331 0.0014 0.0242 0.0048 0.0100

2030 0.0774 0.3895 0.4920 0.0023 0.02308 0.0060 0.0096

Interference degree 2020 0.0346 0.0819 2.0076 0.2098 0.6350 0.5840 2.8742

2030 0.0315 0.0956 1.8937 0.5660 0.5341 0.4280 2.747

Loss degree 2020 0.0049 0.0058 0.2151 0.0375 0.1361 0.0209 0.7185

2030 0.0045 0.0068 0.2029 0.1011 0.1145 0.0153 0.6867
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concentrated in the west. While the central and eastern areas are
limited by topographic factors, have limited construction land, and
have insufficient development bearing capacity. Therefore, the
development of these areas is relatively slow, the development
degree is low, and the development motivation is weak. Moreover,
due to the low level of economic development and poor traffic
conditions, it is difficult to play a strong role in promoting the
development of surrounding cities. However, there is a lot of
possibility for development in the comparatively underdeveloped
districts in the east. The economic might of the east can be
strengthened by creating a new uplift belt in these areas. In the
future, the urban development in the Savan District should shift
from a singular focus on the centre of the city to a coordinated
development of the core and the suburbs. Additionally, the temporal
and spatial changes of land use and ecological risks in the study area in
2030 are examined. These findings will inform the policies for
protecting the environment and natural resources in the Savan
District over the following 10 years. The Savan District’s overall
landscape pattern is relatively stable in the natural development
mode, and in the following 10 years, the land area of each
landscape type will only slightly vary. However, the ecological risk
index of certain counties has risen, calling for greater consideration in
the region’s future regional governance. The ecological risk of the
landscape can be greatly reduced by managing the expansion of urban
construction land and safeguarding ecologically sensitive areas, at the
same time of developing cities and towns in a sensible manner.

4.1 Research practical significance

According to the research results and the ecological environment
problems in Savan District, this paper proposes the following
suggestions. 1) In order to lessen the landscape separation and
fragmentation degree of construction land, land resources should
be distributed fairly during the process of future urban expansion
in the Savan District. The problem of unused land allocation should be
resolved, and it should be encouraged to be converted to other
landscape. 2) The pattern of urban ecological security should be
established, and the red lines of urban ecological protection should
be scientifically and logically demarcated to guarantee the protection
of ecological resources such as water bodies and wetlands. 3) The
boundaries of urban development should be established as soon as
possible. At the same time, in order to lessen the disorderly spatial
distribution of land resources, long-term thought should be given to
the development of cultivated land and forest land. 4) In urban
planning, the site choice of construction land should properly and
thoroughly take into account aspects such population density, distance
to roads, elevation, and slope. Through improving urbanization, the
degree of industry in impoverished areas will increase. 5) As scale
agriculture develops in conjunction with actual agricultural
development in each urban area, support and promote automated
scale and efficient production, realize scale benefits, and free farmers
from strenuous physical work. 6) The relevant department need to
develop forest land resources effectively, coordinate the relationship
between forest land resource development and local economic growth,
improve the industry’s organizational structure, encourage forestry
tourism, and expand the product market.

Laos is sparsely populated, and is an agricultural country, with the
sizeable area ratio of forest land and cultivated land. Each province and

city have the similar geographical layout and land structure. As a
result, the research results of Savan District can be used to inform
future land spatial planning in Laos various provinces in the future.
The government can take into account the integrity of the
construction land of the expansion process, reduce the landscape
loss index of construction land, and lower the ecological risk through
initiatives like reclaiming forest land for cultivated land. While, due to
the high level of fragmentation and separation of these landscape
features, there is a significant landscape loss of grassland, water area,
and unused land, making it important to merge these three landscape
types in the future.

4.2 Research prospect

This study still has some shortcomings, and future research can be
improved from the following aspects. Firstly, considering the
limitations of data collection, rather than a continuous time series,
the current research is only based on three periods of land use data;
therefore, obtaining additional comprehensive data is necessary in
future research. Many kinds of driver data are available, and update
them is difficult, which cannot guarantee the timeliness and integrity
of the data. Therefore, the data quality must be further improved in the
future research. Secondly, in the analysis of driving factors, the
number of samples will have a certain impact on the results of
geographic detectors. Therefore, the sample size and sampling
range should be expanded in the future research or prospective
research methods should be conducted to obtain reliable research
results. Finally, although the Markov–PLUS model is widely used in
the current land use research field and its simulation accuracy is high,
each prediction model has its characteristics and application
limitations. Therefore, certain differences are found in the
prediction data. The loss of some data information if a single
model is used for prediction is inevitable. Sampling several
prediction models for combination forecasting, such as introducing
the improving grey model (Liu et al., 2021; Yang et al., 2022) and BP
neural network model (Bai Y. L. et al., 2021; Hu, 2022; Liu and Zhou,
2022), which can improve the accuracy of the forecasting model, can
also be considered.

5 Conclusion

Taking Savan District, Laos, as the research object, based on the
basic data of land use in 2000, 2010 and 2020 and those of 10 kinds of
driving factors, the ecological risk assessment model was constructed
by using landscape pattern index, and the influencing factors of spatial
differentiation of ecological risks were identified by geographical
detectors. The landscape ecological risk pattern of the Savan
District in 2030 was simulated and predicted, and the following
results were obtained.

(1) From 2000 to 2020, the landscape types in the Savan District were
mainly cultivated land and forest land, with an area accounting for
95%. Landscape pattern index analysis showed that during the
study period, the landscape loss index of cultivated and forest
lands was the smallest, whilst the unused land was the largest.
Grassland, wetland and water are small in area, but the landscape
fragmentation, separation and loss index are all large. Protecting
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these landscape types and controlling their loss when external
conditions change is necessary in the future development and
management of land resources.

(2) Overall, the average value of ecological risks in Savan was low and
showed a downward trend during the study period. The ecological
risk index was the highest in 2000, with an average value of .01404.
The spatial distribution shows the characteristics of low in the east
and high in the west, with loewest- and lower-risk areas
accounting for more than 90% whilst highest- and higher-risk
areas are distributed in the northwest corner. The transformation
relationship between ecological risk levels is not observed, and the
overall trend is the transformation to lower-risk areas, mainly
between loewest- and lower-risk areas. Highest- and higher-risk
areas are relatively stable and have no transformation.

(3) According to the forecast result of the Markov–PLUS model, the
average ecological risk index of the Savan area and two provinces
will increase in 2030 and reach the maximum value since 2000.
The landscape pattern index revealed that the landscape loss of
forest land and wetland increased whilst that of five other
landscape types decreased. The division of urban areas revealed
5 ecological risk improvement areas, 12 deterioration areas and
8 stable areas; amongst these areas, Champhon has the highest
ecological risk deterioration degree.

Therefore, in the future land planning and management of
Savan District, Laos, strengthening the protection of ecological
lands, such as forest land, wetland and water body, adjusting the
spatial layout of land use and promoting the coordinated
development of urban economy and sustainable ecological
environment is necessary. No significant positive relationship
exists between the urbanisation degree of the Savan District and
the level of regional economic development. Thus, strengthening
the regional coordinated development as a whole and the
geographical advantages of the unbalanced development areas in
the central and eastern regions is crucial to promote economic
development. In addition, for a specific region, a high land use
efficiency increases the attractiveness of a region and its
convenience to the traffic, thus becoming increasingly conducive
to urban development. In the process of urbanisation, the concept
of eco-city should be followed, the red line of ecological protection
should be scientifically demarcated, the urban ecological space
should be broadened and green ecological corridors should be
rationally built. To realise green development, the regional
coordinated development strategy should be actively

implemented, a coordinated development mechanism should be
established and the spatial layout of land should be actively
optimised to improve the utilisation rate of land resources and
achieve environmental and social benefits.
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