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Green total factor productivity (GTFP) is a major driver of environmental

governance, climate change mitigation, and green transformation in China.

This study aims to improve GTFP, reduce regional differences, and promote

sustainable development. Herein, the slacks-based measure-global

Malmquist–Luenberger index was used for the scientifically rigorous

measurement of China’s GTFP from 2000 to 2019. Dagum’s Gini

coefficient decomposition and kernel density estimation methods were

used to explore GTFP regional differences and distributional dynamics.

Finally, spatial GTFP heterogeneity driving factors were analyzed using a

geodetector tool. We found that China’s GTFP is on an overall upward trend,

driven mainly by technological progress. There were substantial spatial

differences in China’s GTFP, primarily caused by transvariation intensity,

the average contribution of which is 43.26%. Differences in GTFP between

and within regions decreased to varying degrees over time. Spatial

heterogeneities in China’s GTFP were primarily caused by driving factors

interactions, which were stronger than their individual effects. Thus, we

recommend that China should accelerate the establishment of a new

coordinated regional development mode, improve its green technology

innovation capacity, increase openness, and push for a green model of

development.
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1 Introduction

The rapid development of the global economy and anthropogenic climate change

have precipitated a series of environmental issues (Li G et al., 2022; Zhang et al., 2022),

including rising sea levels, melting glaciers, species extinction, and newly emerging

diseases. These problems pose a considerable challenge for the sustainable development

OPEN ACCESS

EDITED BY

Kazi Sohag,
Ural Federal University, Russia

REVIEWED BY

Md. Monirul Islam,
Bangladesh Institute of Governance and
Management (BIGM), Bangladesh
Jinxin Zhu,
Sun Yat-sen University, China

*CORRESPONDENCE

Jiali Kou,
koujialii@163.com

SPECIALTY SECTION

This article was submitted
to Environmental Economics
and Management,
a section of the journal
Frontiers in Environmental Science

RECEIVED 30 September 2022
ACCEPTED 15 November 2022
PUBLISHED 01 December 2022

CITATION

Zhao P, Wu H, Lu Z, Kou J and Du J
(2022), Spatial differences, distributional
dynamics, and driving factors of green
total factor productivity in China.
Front. Environ. Sci. 10:1058612.
doi: 10.3389/fenvs.2022.1058612

COPYRIGHT

© 2022 Zhao, Wu, Lu, Kou and Du. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 01 December 2022
DOI 10.3389/fenvs.2022.1058612

https://www.frontiersin.org/articles/10.3389/fenvs.2022.1058612/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1058612/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1058612/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1058612/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.1058612&domain=pdf&date_stamp=2022-12-01
mailto:koujialii@163.com
https://doi.org/10.3389/fenvs.2022.1058612
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.1058612


of human society (Holden et al., 2014; Han et al., 2020; Zhu

et al., 2021). Global warming is currently the most

remarkable driver of global environmental change. Carbon

dioxide (CO2) is the primary greenhouse gas driving global

warming, and the rapid growth of industrial economies

worldwide has greatly increased CO2 emissions (Lee and

Lee, 2022). Therefore, there is a growing consensus that

the global economy must shift towards new energy

sources, reduce carbon emission intensity, increase green

total factor productivity (GTFP), and promote green low-

carbon development. In the 40-odd years that have passed

since the Chinese economic reform, China has industrialized

and urbanized at a blinding pace, and the gross domestic

product (GDP) of China surpassed that of Germany in

2008 and Japan in 2010. China’s rapid economic

development is an envy for the world. However, this

achievement has been accompanied by severe

environmental issues as the extensive GDP-focused

economic growth of China has led to the rapid

development of industries with high emissions, high

energy consumption, low added value, and low efficiency

(Xie et al., 2018; Zhang and Wu, 2021). China is currently the

world’s largest carbon emitter (Yang et al., 2019). Therefore,

China is faced with an urgent task of increasing its GTFP,

developing a green, low-carbon economy, and constructing

an ecological civilization.

Kaya and Yokobori (1993) considered CO2 as a factor of

production and proposed that the TFP needs to be improved

for the development of a greener economy. A 2008 report

from the McKinsey Global Institute stated that carbon

productivity must increase tenfold over the next 50 years

to meet the CO2 reduction rate required by commonly

discussed climate change abatement paths (Mckinsey,

2008). The TFP is generally calculated using both

parametric and non-parametric methods (Li L et al., 2022).

Among these, stochastic frontier analysis (SFA) is currently

the most used parametric method for TFP calculations. The

non-parametric approach usually refers to data envelopment

analysis (DEA) (Liu et al., 2022a), which includes the

Charnes, Cooper, and Rhodes DEA model, and the

epsilon-based measure model. However, SFA needs to

determine the specific form of the production frontier.

Furthermore, the estimation bias can be large if the sample

size is small (Gong and Sickles, 1992; Lin and Wang, 2014).

The DEA method can solve the above problems and is widely

used in academic research (Feng et al., 2018; Cheng et al.,

2020). Peng et al. (2022) analyzed GTFP in the Yangtze Delta

River (YDR) region using DEA and Tobit models, and the

study showed that there are significant regional differences in

GTFP between YDR regions. Tang and Qin (2021) use a

three-stage DEA model to find that local government

competition can severely inhibit GTFP increases and that

there is regional heterogeneity. Therefore, DEA measures

GTFP optimally.

As a responsible nation, China has always sought to

contribute actively to global economic growth and

sustainable development. In September 2020, President Xi

Jinping proposed that China would strive to peak carbon

emissions by 2030 and achieve carbon neutrality by 2060

(Xi, 2020). However, the ongoing COVID-19 pandemic has
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placed significant downward pressure on the domestic

economy of China, increasing the need to improve GTFP

to ensure high-quality economic development. In addition,

there are other factors influencing China’s GTFP, and

significant regional differences exist in China in terms of

economic development (Feng and Wang, 2019),

environmental regulation (Yuan and Zhang, 2020),

technological innovation (Li Z et al., 2022), and industrial

structure (Sun H et al., 2022). This raises a few pertinent

questions: How does one perform a scientifically rigorous

measurement of China’s GTFP? What is the extent of the

spatial difference of GTFP in China as a whole and its three

major regions? How do these spatial differences evolve over

time? What are the main drivers of GTFP in China? An in-

depth study of the above questions provides an objective and

comprehensive understanding of the current state of GTFP in

China, which is important for achieving the 2030 and

2060 decarbonization goals of China and realizing a new

coordinated mode of regional development.

To fill the gaps in existing studies, we used the slacks-based

measure-global Malmquist–Luenberger (SBM-GML) index

method to measure the GTFP of Chinese regions from

2000 to 2019, and analyzed the spatial differences of

regions in depth using the Gini coefficient decomposition

and kernel density estimation (KDE) methods, and also

conducted a study on the factors influencing the GTFP of

China using a geodetector tool. The main goal of this study is

to improve the GTFP of each region in China, reduce the

development differences among regions, and achieve

coordinated regional development and green development.

Moreover, this study can provide a useful reference for China

and other developing countries to develop a high-quality

economy.

The four main contributions of this study are as follows: 1)

The SBM-GML index was used to perform a scientifically

rigorous measurement of the GTFP of China to facilitate the

enrichment of methodological studies of GTFP. 2) In view of

China’s decarbonization goals, the GTFP of China was

computed using CO2 as the only undesirable output. Because

the effects of inputs and outputs in afforested areas quickly

manifest in China’s net CO2 emissions, the afforested area was

included as an input factor, which fills a gap in existing research.

3) KDE and Dagum’s Gini coefficient decomposition were used

to analyze China’s GTFP in terms of absolute and relative

disparities, respectively, which led to a comprehensive

analysis of the spatial differences and characteristics of

GTFP in each region. 4) A geodetector was used to analyze

the effects of individual factors and their interactions on the

spatial heterogeneity of China’s GTFP, which was beneficial for

the government to formulate policies to improve GTFP

according to time and place.

The remainder of this paper is presented below. Section 2 is a

literature review; Section 3 describes the methods and data;

Section 4 presents the results and discussion; and Section 5

summarizes the conclusions and makes recommendations.

2 Literature review

2.1 Theoretical works in the literature

Based on the existing literature, this study focuses on three

aspects of the theoretical literature: Porter’s hypothesis theory,

innovation theory, and sustainable development theory.

Environmental degradation, climate warming, and energy

shortages present serious challenges to socioeconomic

development and human health (Jacobs, 2022; You and

Xiao, 2022). Countries around the world have developed

new energy sources to reduce fossil energy consumption

and develop green economies (Sun J et al., 2022). GTFP is

an important indicator of high-quality economic

development, and improving GTFP is crucial for developing

a green economy. According to Porter’s hypothesis theory,

appropriate environmental regulation can increase firms’

innovative activities (Costantini et al., 2017), further

enhancing their GTFP and strengthening their market

competitiveness (Porter and Linde, 1995). Rubashkina et al.

(2015) found that environmental regulation positively affects

the output of innovative activities. Liu et al. (2020) found that

low-carbon pilot policies have a catalytic effect on GTFP.

Technological innovation is the core driving force of GTFP

development, and the improvement of technological

innovation level is crucial to GTFP development. According

to innovation theory, innovation is the recombination of

production factors and production conditions (Schumpeter

and Backhaus, 1934). Green innovations are new products that

provide value to consumers and businesses while reducing

their environmental impact (Fussier, 1996). Both wang et al.

(2020) and wang C et al. (2021) found that technological

innovation can promote GTFP improvement. The

connotation of sustainable development theory is the

pursuit of both the quality of economic growth and the

sustainable use of resources to achieve coordinated

economic, social, and environmental development (WCED,

1987). Green innovation has a strong focus on resource and

environmental sustainability (Liao and Li, 2022). The goal of

green innovation is to achieve social, economic, and

environmental sustainability (Obobisa et al., 2022). Our

research further enriches the development of green

innovation theory. In conclusion, the transition of global

economic development to a green economy has increased

the demand for improving GTFP, and the severe

environmental problems also urgently require improving

GTFP and developing a low-carbon economy,

thus promoting sustainable, economic, and social

development.
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2.2 Empirical works in the literature

The literature on GTFP has been richly researched and

summarized in the following two aspects: first, research

methods; and second, regional differences and influencing

factors.

First, the research method involves the DEA model, which is

most widely used in TFP measurement. Although radial distance

functions are commonly used in DEA, they require inputs and

outputs to vary proportionally, which often does not occur in the

real world. Furthermore, the lack of slack variables in these

models likely results in unrealistic DEA efficiency scores. The

DEA-based Malmquist index is commonly used for calculating

productivity. However, real-world production processes always

contain both “good” (desirable) and “bad” (undesirable) outputs;

as the effects of the latter are not considered by the Malmquist

index, the productivities calculated by this method will be

inaccurate. To address this problem, Chung et al. (1997)

proposed the ML index, which considers undesirable outputs.

However, computations based on the ML index are unstable and

error-prone. Therefore, many researchers (Tone, 2001;

Fukuyama and Weber, 2009; Färe and Grosskopf, 2010)

proposed increasingly generalizable non-radial unoriented

SBM directional distance functions to solve this problem,

which allowed the efficiency of undesirable outputs to be

evaluated using DEA (Fang L et al., 2020; Liu et al., 2022b).

Spatial differences in China’s GTFP can be analyzed using

various methods, such as the coefficient of variation (Wu,

2018), direct comparison of indicator values (Geng et al.,

2018). Theil index (Wang et al., 2022), and Dagum’s Gini

coefficient decomposition (Lu et al., 2022). However,

identifying the cause of spatial differences in the GTFP by

simply comparing indicator values is not possible.

Additionally, the coefficient of variation and Theil index do

not account for subgroup distributions and within-group

overlapping, making it impossible to estimate the

contribution of between-group difference to total difference.

Dagum’s Gini coefficient decomposition can identify the

source of regional differences and account for within-group

overlapping (Wang M et al., 2021), but it is not often used to

study regional differences in the GTFP. KDE is a non-

parametric method that provides an intuitive overview of

the spatial dispersion and agglomeration of GTFP (Dai

et al., 2020). For instance, KDE was used by (Cui et al.,

2019) to explore the GTFP trends of Chinese industries.

Although many methods are available for analyzing spatial

heterogeneity, the most common are variance decomposition,

quadratic assignment procedure (QAP), and the geodetector

method. Variance decomposition ignores the regional

differences in each variable, whereas QAP is limited to the

analysis of spatial heterogeneity. In contrast, geodetectors

reveal the underlying drivers of spatial heterogeneity as well

as the role of individual factors and their interactions.

Therefore, geodetectors have been widely used in economic

studies (Zhao et al., 2020) and were used in this study to

elucidate the drivers of GTFP heterogeneities in China (Wang

et al., 2020). The main drivers of GTFP are environmental

regulation, industrial structure, and energy structure (Cheng

et al., 2019; Xu, 2020).

Second, the regional differences and impact factors. Research

on industry perspective is reported in the literature. Particularly,

Liu et al. (2021) found that the GTFP of Chinese agriculture

showed an overall growth trend, and recommendations were

made to increase agricultural science and technology R&D and

expand agricultural openness. Chen et al. (2022) found that

agricultural GTFP was highest in the eastern region, foreign

trade in agricultural products can increase GTFP. Chen and

Golley (2014) found that China’s industrial GTFP is influenced

by the growth of the small private sector and the level of

openness. Fang C et al. (2021) found that FDI can contribute

to higher GTFP in extractive industries. However, investment in

technological innovation has a dampening effect. Yuan et al.

(2019) analyzed the regional greening efficiency of the Shandong

Peninsula urban agglomeration using the DEA- Malmquist

model, and found that there were significant inter-city

differences, mainly owing to the unreasonable industrial

structure. Similarly, Li Y et al. (2021) studied the GTFP of

YDR in China and proposed to reduce government

intervention and strengthen foreign investment guidance.

Song et al. (2022) estimated the green economic effectiveness

(GEE) of provinces in the Yangtze River Economic Belt (YREB)

using the super SBM model and found that the inter-basin

differences were greater than the intra-basin differences.

Zhong et al. (2022) measured industrial GTFP of 108 cities in

YREB based on DEA model with metafrontier infrastructure

framework and ML index. These results showed that industrial

base and government support have a strong impact on GTFP. Li

and Chen (2021) analyzed the GTFP of the Pearl River Delta

Urban Agglomeration (PRDUA), and found that the GTFP gap

between PRD cities generally showed a decreasing trend. In

summary, there are notable regional differences in GTFP, and

the factors influencing GTFP are heterogeneous and vary

depending on region and industry.

Although studies on GTFP have produced many

meaningful insights, numerous problems are yet to be

addressed. First, radial and angular DEA models are

commonly used to estimate the GTFP, but they can lead to

bias. This problem can be solved using non-radial and non-

angular DEA models. Second, most studies on the GTFP have

been limited to capital, labor, and energy inputs, with few

including the undesirable output of CO2. Third, studies on

spatial GTFP heterogeneity in China are scarce, and most of

these studies only discuss relative or absolute disparities.

Fourth, studies on the effects of individual factors on

China’s GTFP are common, whereas studies on individual

and interaction effects are scarce. Therefore, this study used
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the SBM-GML index to measure the GTFP, then analyzed the

spatial differences of GTFP in terms of both relative and

absolute differences, and finally analyzed the influencing

factors of GTFP using a geodetector tool.

3 Researchmethods and data sources

The GML index proposed by Oh (2010) was used in this

study, which was based on a global production

possibility set established at the time of TFP computation (Xu

et al., 2019).

3.1 SBM directional distance function and
GML productivity index

3.1.1 Global production possibility set
Based on the approach of Färe et al. (2007), we constructed a

production possibility set that contains both good (desirable) and

bad (undesirable) outputs. Suppose that each DMU k in period t

requires N inputs x and produces M good outputs y and I bad

outputs b. The global production possibility set obtained from

DEA is as follows:

Pt(xt) � {(yt, bt): ∑T

t�1∑K

k�1z
t
ky

t
km ≥yt

km,

m � 1, · · ·,M; ∑T

t�1∑K

k�1z
t
kb

t
ki ≥ btki,

i � 1, · · ·, I (1)
∑T

t�1∑K

k�1z
t
kx

t
kn ≤ xt

kn, n � 1, · · ·, N; ∑K

k�1z
t
k � 1, ztk ≥ 0,

k � 1, · · ·, K (2)

3.1.2 SBM directional distance function
Based on the method of Fukuyama and Weber (2009), the

global SBM directional distance function for CO2 emissions is

defined as

SGV(xt,k′, yt,k′bt,k′, gx, gy, gb)

� max
sx,sy,sb

1
N∑N

n�1
sxn
gxn
+ 1

M+I(∑M
m�1

sym
gym

+ ∑I
i�1

sbi
gbi
)

2
(3)

s.t.∑T

t�1∑K

k�1z
t
kx

t
kn + sxn � xt

k′n, ∀n;

∑T

t�1∑K

k�1z
t
ky

t
km − sym � yt

k′m, ∀m;

∑T

t�1∑K

k�1z
t
kb

t
ki + sbi � btk′i, ∀i (4)

∑K

k�1z
t
k � 1, ztk ≥ 0,∀k; s

x
n ≥ 0,∀n; sym ≥ 0,∀m; sbi ≥ 0,∀i (5)

In these equations, the vectors xt,k′, yt,k′, bt,k′ are the input, good

output, and bad output vectors, respectively, of DMU k in period

t. The gx, gy, gb are directional vectors that contract input,

expand good output, and contract bad output, respectively.

The sxn , s
y
m, sbi represent excess input, deficiency in good

output, and excess in bad output, respectively.

3.1.3 GML productivity index
We constructed a GML index to compute China’s GTFP

using the method reported by Oh (2010). The GML index is

defined as follows:

GMLt+1
t � 1 + SGV(xt, yt, bt;g)

1 + SGV(xt+1, yt+1, bt+1;g) (6)

A GMLt+1t index of greater than 1, less than 1, or equal to

1 indicates that the GTFP of China is increasing, decreasing, or

unchanged, respectively. The GMLt+1t index can also be

decomposed into the product of global technology efficiency

change (GEFFCHt+1
t ) and global technical progress change

(GTECHt+1
t ), as follows:

GMLt+1
t � GEFFCHt+1

t × GTECHt+1
t (7)

GEFFCHt+1
t � 1 + StV(xt, yt, bt;g)

1 + St+1V (xt+1, yt+1, bt+1; g) (8)

GTECHt+1
t � [1 + SGV(xt, yt, bt;g)]/[1 + StV(xt, yt, bt;g)][1 + SGV(xt+1, yt+1, bt+1;g)]/[1 + St+1V (xt+1, yt+1, bt+1;g)]

(9)

GMLt+1
t � 1 + StV(xt, yt, bt;g)

1 + St+1V (xt+1, yt+1, bt+1;g) × ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1+SGV(xt,yt,bt ;g)
1+StV(xt,yt,bt ;g)

1+SGV(xt+1 ,yt+1 ,bt+1;g)
1+St+1V (xt+1 ,yt+1 ,bt+1 ;g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

3.2 Dagum’s gini coefficient
decomposition

Dagum’s Gini coefficient decomposition was used to

compute the extent and sources of spatial difference in

China’s GTFP (Dagum, 1997). The Gini coefficient is

expressed as follows:

G � ∑k

j�1∑k

h�1∑nj

i�1∑nh

r�1
∣∣∣∣∣yji − yhr

∣∣∣∣∣ /2n2 �y (11)

where yji (yhr) is the GTFP of province i(r) in region j(h), �y is

the average GTFP of all provinces, n is the number of

provinces, and k is the number of regions. The larger the

Gini coefficient, the greater the spatial difference of the GTFP

in China. The overall Gini coefficient can be decomposed into

within-region differences Gw, net between-region differences

Gnb, and the intensity of transvariation Gt, that is, G = Gw +

Gnb + Gt. Gjj is the Gini coefficient within region j and Gjh is

the Gini coefficient between regions j and h. These indices are

defined as follows:
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Gjj � ∑nj

i�1∑nj

r�1
∣∣∣∣∣yji − yjr

∣∣∣∣∣ /2nj
2Yj (12)

Gw � ∑k

j�1Gjjpjsj (13)
Gjh � ∑nj

i�1∑nh

r�1
∣∣∣∣∣yji − yhr

∣∣∣∣∣ /njnh(Yj + Yh) (14)
Gnb � ∑k

j�2 ∑j−1
h�1 Gjh(pjsh + phsj)Djh (15)

Gt � ∑k

j�2 ∑j−1
h�1 Gjh(pjsh + phsj) (1 − Djh) (16)

In these equations, pj � nj/n, sj � nj �Yj/n�Y, nj (nh)

represents the number of provinces in the region j(h),

Yj(Yh) is the average GTFP of region j(h) and Djh is the

relative GTFP influence of regions j and h. The definition of

Djh is as follows:

Djh � djh − pjh

djh + pjh
(17)

where djh is the difference in GTFP influence between regions j

and h, this can be interpreted as the mathematical expectation of

the sum of all yji − yhr > 0 samples in the regions j and h. pjh is

the first-order moment of transvariation, which can be

interpreted as the mathematical expectation of the sum of all

yji − yhr < 0 samples in the regions j and h. Their mathematical

definitions are as follows:

djh � ∫∞

0
dFj(y)∫y

0
(y − x) dFh(x) (18)

pjh � ∫∞

0
dFh(y)∫y

0
(y − x)dFj(x) (19)

3.3 Kernel density estimation

KDE is a robust method that has only weak model

dependence. It was used to fit sample data using smooth peak

functions (kernels) to produce a continuous density curve that

describes the distribution of random variables. The density

function is expressed as follows:

f(x) � 1
Nh

∑N

i�1K(Xi − x

h
), (20)

where f(x) is the kernel density estimate, K (·) is the kernel function,
xi is the independent identically distributed observations, x is the

mean observation, and h is the bandwidth. The smaller

the bandwidth, the less smooth the curve and the higher the

accuracy.

3.4 Geodetector

Geodetector is a statistical tool that is used to analyze the spatial

heterogeneity of things and thus reveal the underlying drivers of

spatial heterogeneity (Wang et al., 2010). It can be used to elucidate

the impact of individual factors as well as the effects arising from

interactions between factors (Wang andHu, 2012). In this study, the

independent variables were classified using the natural break

method with five classes in ArcGIS. The factor detection

computes the effect of each factor in driving China’s

GTFP in terms of the q statistic, whose value range is [0,1]. q is

given by:

q � 1 − ∑L
h�1Nhσ2h
Nσ2

� 1 − SSW

SST
(21)

SSW � ∑L

h�1Nhσ
2
h, SST � Nσ2 (22)

In these equations, h = 1, . . ., L is the class of variable Y

or factor X; Nh and N are the number of cells in class h and

the entire region, respectively; and σ2h and σ2 are

the variances of Y in class h and the entire region,

respectively.

3.5 Data sources and selection of
indicators

Based on the availability of data, we selected panel data of

30 Chinese1 provinces for this study. These provinces can be

divided into three major regions: eastern, central, and western

China2. Panel data were obtained from the China Energy

Statistical Yearbook, provincial statistical yearbooks, and the

National Bureau of Statistics of China database. The selected

indicators are as follows:

(1) Capital input: The perpetual inventory method is widely

used for capital stock estimations. Therefore, capital stocks

were estimated based on the method of Shan (2008) to

estimate the provincial physical capital stock as follows:

Ki,t � Ii,t + (1 − δ)Ki,t−1 (23)

In this equation, Ii,t denotes the actual fixed capital stock of

province i in year t, which is deflated using the fixed asset price

index with 2000 as the base period, and δ denotes the capital

depreciation rate of province i in year t, with δ = 10.96%. Ki,t is

the current physical capital stock.

(2) Labor input: In theory, labor input should include labor time,

the number of workers, and labor efficiency. However, owing

1 Note: Tibet, Hong Kong, Macau, and Taiwan were excluded from the
study.

2 Note: The eastern region includes Beijing, Tianjin, Hebei, Liaoning,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and
Hainan; the central region includes Shanxi, Jilin, Heilongjiang, Anhui,
Jiangxi, Henan, Hubei, and Hainan. The western region includes Inner
Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia, and Xinjiang.
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to data limitations, the number of employed persons at the

end of the year in each province was used as a proxy variable

for labor input.

(3) Energy input: In this study, proxy variables for the energy

input are the total consumption of eight types of energy

(represented in units of standard coal), including raw coal,

coke, and crude oil.

(4) Afforested area: The area of afforestation determines the size of

forest carbon sinks. Limited by the natural properties of forest

growth, the effects of afforested area inputs and outputs

manifest immediately in net CO2 emissions. Therefore,

afforestation area was selected as an input.

(5) Desired (good) output: Based on previous studies, we

selected the GDP of each province as the proxy variable

for the desired output. To exclude the effects of price

fluctuations, the consumer price index was used to deflate

GDP to the base year of 2000.

(6) Undesirable (bad) output: Since the purpose of this study is

to compute China’s GTFP for a low-carbon economy, CO2

emissions were used as the proxy variable for undesired

output (Li et al., 2018). Total CO2 emissions were calculated

as follows:

CO2 � ∑8

i
CO2,i � ∑8

i�1Ei × NCVi × CEFi × COFi ×
44
12

(24)

In this equation, each type of fossil fuel is represented by i, and

Ei, NCVi, CEFi, and COFi are the consumption, net calorific value

(NCV), carbon emission factor (CEF), and carbon oxidation factor

(COF) of fossil fuel i, respectively. The CO2 emission coefficient is

the product of NCV, CEF, and COF. The CO2 emission

coefficients of the fuels used in this study are listed in Table 1.

4 Results and discussion

4.1 Calculated GTFPs and result analysis

The GTFPs of 30 Chinese provinces during the

2000–2019 period were calculated as GML indices, which were

subsequently decomposed into the global technology efficiency

TABLE 1 CO2 emission coefficients for eight types of fossil fuels.

Type of fuel Average NCV (kJ/kg) CEF (Tons of carbon/TJ) COF CO2 emission coefficient

Raw coal 20.908 26.37 0.94 0.5183

Coke 28.435 29.50 0.93 0.7801

Crude oil 41.816 20.10 0.98 0.8237

Gasoline 43.070 18.90 0.98 0.7977

Kerosene 43.070 19.50 0.98 0.8231

Diesel fuel 42.652 20.20 0.98 0.8443

Fuel oil 41.816 21.10 0.98 0.8647

Natural gasa 38.931 15.30 0.99 0.5897

Notes: NCV, net calorific value; CEF, carbon emission factor; COF, carbon oxidation factor.
aUnit is kJ/m3.

TABLE 2 GML index and its decomposed indicators for the GTFP of China.

Year GML GEFFCH GTECH Year GML GEFFCH GTECH

2001/2000 0.880 0.974 0.907 2011/2010 1.019 0.997 1.023

2002/2001 0.931 0.968 0.991 2012/2011 0.968 1.056 0.917

2003/2002 0.961 0.972 0.989 2013/2012 0.977 0.977 1.001

2004/2003 0.995 1.009 0.986 2014/2013 0.994 0.948 1.052

2005/2004 1.012 0.961 1.061 2015/2014 0.936 0.940 0.997

2006/2005 1.024 0.981 1.044 2016/2015 1.024 0.957 1.070

2007/2006 0.993 0.952 1.045 2017/2016 1.019 1.047 0.977

2008/2007 0.982 1.031 0.953 2018/2017 1.024 0.868 1.195

2009/2008 0.931 0.977 0.954 2019/2018 1.015 1.018 0.997

2010/2009 1.040 0.972 1.071 Average 0.985 0.979 1.012

Notes: GML, slacks-based measure-global Malmquist–Luenberger index; GEFFCH, global technology efficiency change; GTECH, global technical progress change.
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change (GEFFCH) and global technical progress change (GTECH)

indices. Table 2 shows that China’s GTFP has grown over time,

albeit in a fluctuating manner. China had a negative GTFP growth

rate of 12% in 2001, which changed to a positive growth rate of 1.5%

in 2019. The GTFP of China grew negatively during the 2001–2004,

2007–2009, and 2012–2015 periods and grew positively during the

2005–2006, 2010–2011, and 2016–2019 periods. The average annual

growth rates of GEFFCH and GTECH were −2.1% and 1.2%,

respectively. Hence, technical progress changes were the primary

drivers of uptrend of GTFP. This is consistent with the results of

Zhou et al. (2019). The main reason for the positive growth of the

GTFP recently may be the important position that the 18thNational

Congress report offers to the construction of ecological civilization,

emphasizing efforts to promote green development and low-carbon

development. The guidance and implementation of the policy

played an important role in improving GTFP. This finding is

inconsistent with the results of Li and Liao (2020), who

concluded that GTFP in developed countries exhibits a

continuous growth trend, whereas GTFP in developing countries

shows a decline before growth, with developed countries

outperforming developing countries in terms of GTFP.

Table 3 shows that increases in GTFP in Chinamainly occurred

in eastern coastal cities, such as Beijing, Shanghai, Jiangsu, and

Zhejiang, and technical progress changes are the primary drivers of

GTFP growth at the provincial level. The average annual growth rate

of the GTECH in eastern China was 2.4%, which was considerably

higher than that in central and western China because advanced

technologies and emerging industries were strongly promoted in the

eastern coastal cities. This is consistent with the result of Huang C

et al. (2022). The eastern region, with its advantageous geographical

location, high level of green technology, and good business

environment, can effectively promote the development of GTFP

(Xu et al., 2022). The average annual growth rate of the GTFP was

positive in Beijing (5.9%), Tianjin (0.1%), Shanghai (2.2%), Jiangsu

(1.7%), Zhejiang (1.5%), Anhui (0.1%), Hubei (0.9%), and

Chongqing (1%) provinces. The highest average annual GTFP

growth rate was observed in Beijing, whose GTFP growth

primarily came from its average annual growth in GTECH

(5.9%). The average annual GTFP growth rate was negative in

Hebei (−2.8%), Shanxi (−1.5%), Inner Mongolia (−4.7%), Liaoning

(−6.2%), Shaanxi (−0.8%), and Gansu (−2.5%). In particular,

Liaoning had the lowest average annual GTFP growth rate,

which was mainly caused by an average annual GEFFCH growth

rate of −6.1%. These provinces are large coal-producing regions,

particularly Shanxi, Inner Mongolia, and Shaanxi are rich in coal

resources, which is not conducive to the improvement of GTFP and

once again verifies the “resource curse” or “Dutch disease."

4.2 Spatial GTFP differences in China and
its sources

Dagum’s Gini coefficient decomposition was used to explore

spatial differences in the GTFP of China and its sources.

Based on Table 4; Figure 1A, the overall Gini coefficient

ranged from 0.015 to 0.073 during the study period and

TABLE 3 GTFP index (GML) and its decomposed indicators for 30 Chinese provinces.

Province GML GEFFCH GTECH Province GML GEFFCH GTECH

Beijing 1.059 1.000 1.059 Hunan 0.979 0.977 1.004

Tianjin 1.001 0.988 1.025 Guangdong 0.971 0.975 1.022

Hebei 0.972 0.966 1.008 Guangxi 0.957 0.958 1.002

Shanxi 0.985 0.984 1.002 Hainan 0.962 0.960 1.009

Inner Mongolia 0.953 0.953 1.001 Chongqing 1.010 1.004 1.008

Liaoning 0.938 0.939 1.044 Sichuan 0.999 0.997 1.004

Jilin 0.959 0.960 1.004 Guizhou 1.010 1.008 1.002

Heilongjiang 0.956 0.957 1.002 Yunnan 0.975 0.974 1.002

Shanghai 1.022 1.000 1.022 Shaanxi 0.992 0.987 1.006

Jiangsu 1.017 1.007 1.018 Gansu 0.975 0.975 1.000

Zhejiang 1.015 1.005 1.034 Qinghai 0.977 0.964 1.014

Anhui 1.001 1.002 1.004 Ningxia 0.977 0.970 1.009

Fujian 0.963 0.962 1.010 Xinjiang 0.995 1.000 0.995

Jiangxi 0.985 0.982 1.005 National Average 0.986 0.980 1.012

Shandong 0.985 0.975 1.016 East Average 0.991 0.980 1.024

Henan 0.985 0.982 1.005 Central Average 0.983 0.981 1.004

Hubei 1.009 1.000 1.010 West Average 0.984 0.981 1.004

Notes: GML, slacks-based measure-global Malmquist–Luenberger index; GEFFCH, global technology efficiency change; GTECH, global technical progress change.
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decreased from 0.066 in 2001 to 0.015 in 2019. The temporal

evolution of spatial differences in China’s GTFP may be

divided into three stages: a substantial decline in difference,

followed by a minor increase in difference, and then another

stage of significant decline. Overall, spatial GTFP differences

in China have declined over time. Based on the within-region

Gini coefficients, the eastern and central regions showed large

GTFP differences, as their mean within-region Gini

coefficients for the study period were 0.051 and 0.030,

respectively. The western region had the smallest GTFP

differences, with a mean within-region Gini coefficient of

0.024. The within-region Gini coefficients of the eastern,

central, and western regions decreased at the annual

average rates of 10.53%, 3.12%, and 3.78%, respectively.

The trends of the Gini coefficient for the eastern and

central regions were consistent with those of the overall

Gini coefficient, as they also show the same

“decrease–increase–decrease” pattern. The Gini coefficient

of the western region on the other hand, had a

“increase–decrease–increase–decrease” pattern. Therefore,

overall, the within-region GTFP

differences in the three regions of China have narrowed

over time.

Based on the between-region Gini coefficients shown in

Table 4; Figure 1B, the GTFP differences between eastern and

central China and between eastern and western were large, with

mean between-region Gini coefficients of 0.046 and 0.043,

respectively. These coefficients decreased at the average

annual rates of 8.38% and 8.67%, respectively. The GTFP

difference between Central and West China was small, as the

mean between-region Gini coefficient was only 0.030. The

between-region Gini coefficients of the eastern–central and

eastern–western regions had similar trends, as they had the

same “significant decline–minor increase–significant decline”

pattern in their fluctuations. The between-region Gini

coefficient between central and western China trends was an

inverted “U” shape, i.e., increasing and then decreasing. This

indicates that GTFP differences in eastern–central,

eastern–western, and central–western China contracted

over time.

As shown in Table 4; Figure 1C, the average contributions of

within-region Gini difference (Gw), between-region Gini

difference (Gnb), and intensity of transvariation (Gt) to the

spatial GTFP differences of China were 31.58%, 25.16%, and

43.26%, respectively. Hence, the intensity of transvariation was

the main source of spatial GTFP difference in China. Gw and Gt

TABLE 4 National and regional Gini coefficients for GTFP difference in China and the contributions of each component of the decomposed Gini
coefficient.

Year Overall Within-region differences Between-region differences Contribution (%)

East Central West East–Central East–West Central–West Gw Gnb Gt

2001 0.066 0.126 0.023 0.024 0.087 0.087 0.024 31.926 29.317 38.758

2002 0.035 0.055 0.022 0.015 0.047 0.042 0.02 31.038 8.981 59.981

2003 0.032 0.036 0.025 0.027 0.033 0.037 0.028 32.104 21.869 46.027

2004 0.027 0.034 0.021 0.019 0.029 0.031 0.023 31.924 25.106 42.97

2005 0.041 0.048 0.02 0.034 0.046 0.05 0.029 30.668 36.638 32.694

2006 0.036 0.04 0.041 0.025 0.043 0.035 0.034 32.227 8.921 58.852

2007 0.047 0.066 0.037 0.027 0.056 0.051 0.036 32.47 28.102 39.428

2008 0.032 0.035 0.035 0.024 0.036 0.031 0.031 32.69 16.473 50.837

2009 0.032 0.03 0.043 0.023 0.039 0.027 0.036 31.467 21.097 47.436

2010 0.042 0.062 0.031 0.023 0.05 0.049 0.029 32.539 29.483 37.979

2011 0.034 0.046 0.033 0.018 0.042 0.035 0.029 32.04 22.12 45.84

2012 0.038 0.054 0.028 0.024 0.043 0.043 0.028 32.827 23.752 43.421

2013 0.033 0.027 0.041 0.024 0.044 0.029 0.036 29.136 45.871 24.993

2014 0.025 0.032 0.016 0.02 0.028 0.03 0.019 31.814 26.785 41.401

2015 0.044 0.07 0.017 0.027 0.055 0.055 0.024 31.917 20.859 47.225

2016 0.039 0.048 0.021 0.021 0.041 0.054 0.028 27.929 41.81 30.261

2017 0.036 0.043 0.023 0.03 0.038 0.041 0.029 32.186 21.211 46.603

2018 0.073 0.092 0.085 0.037 0.091 0.07 0.067 31.847 13.168 54.985

2019 0.015 0.017 0.013 0.012 0.018 0.017 0.013 31.33 36.384 32.286

Average 0.038 0.051 0.03 0.024 0.046 0.043 0.03 31.583 25.155 43.262

Notes: Gw: within-region differences, Gnb: net between-region differences, Gt: the intensity of transvariation.
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decreased by an average of 0.10% and 1.01% per annum,

respectively, whereas Gnb increased by an average of 1.21%

per annum. Therefore, the contributions from Gt and Gnb had

changed considerably. In contrast, the contribution of Gw was

relatively stable.

In summary, looking at the decomposition of the Gini

coefficients for China as a whole and for the three major

regions, their Gini coefficients were generally getting smaller,

which indicates that regional differences were narrowing.

This is similar to the results of the study by Huang et al.

(2021), who demonstrated narrowing of regional differences.

The present results strongly support the study of Umetsu

et al. (2003), who found that technological progress is the

main reason for the growth of TFP of rice in the Philippines.

Technological innovation is crucial to GTFP improvement.

Yet, education must be given an appropriate level of priority

to enhance China’s capacity for green technological

innovation. However, these results are inconsistent with

those revealed by Huang X et al. (2022). They argued that

regional differences in GTFP are widened and that differences

between regions are the main source of GTFP, which might be

because their study is focused on GTFP in agriculture, further

suggesting that the results of GTFP in China can be

heterogeneous depending on regions, industries, and study

subjects.

4.3 Distributional dynamics of GTFP in
China at the national and regional levels

To examine the national and regional distributional

dynamics of absolute difference GTFP disparities in

FIGURE 1
Evolution of the Gini coefficient for GTFP differences in China and the contributions of each Gini component. Notes: (A) Temporal evolution of
Gini coefficients at the national and within-region levels; (B) Temporal evolution of Gini coefficients at the between region level; (C) Sources of
regional GTFP quality and their contributions.
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China, KDE was used to analyze the location, shape,

extensivity, and polarization of the national and regional

GTFP distributions.

4.3.1 KDE analysis of national GTFP
Figure 2A shows the distributional dynamics of the GTFP

for all 30 provinces during the study period. The location of

the distribution curve initially shifted right, then left, and

right again, indicating that the GTFP of China increased.

This result is consistent with the finding of Shi and Li (2019).

Shape of the distribution: The main peak had a

“decrease–increase–decrease–increase” fluctuation pattern

in terms of its height and a

“widening–narrowing–widening–narrowing” fluctuation pattern

in terms of its width. Therefore, the difference in China’s

GTFP was narrowing. Extensivity of the distribution: The

GTFP distribution initially tailed to the left, then tailed to

the right, and eventually lost its tail, indicating convergence.

Therefore, intra-provincial disparities in GTFP had narrowed

in China. Polarization of the distribution: The curve was either

unimodal or bimodal in all years, indicating the presence of

some degree of polarization in the GTFP distribution of

China.

4.3.2 KDE analysis of regional GTFP
The distributional dynamics of the GTFP in eastern, central,

and western are shown in Figures 2B–D. Locations of the

distributions: In all three regions, the location of the GTFP

distribution shifted right, then left, and then right again. This

is consistent with the dynamics of the national GTFP distribution

and shows that the GTFP has been rising in all three regions.

Shape of the distributions: Except for 2015, the height and width

of the main peak in the GTFP curve of eastern China increased

and contracted year-on-year, respectively. This indicates that the

GTFP differences in eastern China have contracted over time.

The main peak of the central China GTFP curve shows a

“increase–decrease–increase” pattern in its height fluctuations,

as well as constantly narrowing widths (except in 2019). The

GTFP differences of central China, as a whole, narrowed over the

study period. The GTFP curve of western China shows a

FIGURE 2
Temporal evolution of the national and regional GTFP distributions of China. Notes: (A) Overall temporal evolution; (B) Temporal evolution of
the east; (C) Temporal evolution of the central; (D) Temporal evolution of the west.
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FIGURE 3
Drivers of spatial GTFP heterogeneity in China. Notes: (A) Results of the detection of factors influencing GTFP in China for the entire sample period; (B)
Results of the detectionof factors influencingGTFP inChina during the “Tenth Five-Year Plan”period; (C)Results of the detectionof factors influencingGTFP
in China during the “Eleventh Five-Year Plan” period; (D) Results of the detection of factors influencing GTFP in China during the “Twelfth Five-Year Plan”
period; (E) Interaction detection results of factors influencing GTFP in China for the entire sample period; (F) Interaction detection results of factors
influencingGTFP inChina during the “Tenth Five-Year Plan”period; (G) Interaction detection results of factors influencingGTFP inChina during the “Eleventh
Five-Year Plan” period; (H) Interaction detection results of factors influencing GTFP in China during the “Twelfth Five-Year Plan” period.
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“decrease–increase–decrease–increase” pattern in peak height

and a “widening–narrowing–widening–narrowing” pattern in

peak width. This indicates that the GTFP differences in the

western region fluctuate quite frequently but had decreased as

a whole. Extensivity of the distributions: All three regions show

some tailing in their GTFP distributions, but as a whole, tailing

had diminished owing to the distributions trending towards

convergence. Therefore, the gaps between regional GTFPs and

the average GTFP of China had contracted to varying degrees.

Polarization of the distributions: All three regions had unimodal

or bimodal distribution. Therefore, these regions had varying

degrees of polarization. The central and western regions of China

were mostly bimodal in distribution. Therefore, the GTFP

distributions of western and central China were polarizing.

The distributions of both regions also exhibited significant

slopes. However, the eastern region did not exhibit a

considerable slope. This may be because development in

central and western China was largely concentrated in capital

cities and key cities in their vicinity, whereas eastern China had a

much more uniform distribution of development.

Based on the results of our study, the absolute differences in

China in general and in the three regions showed a decreasing

trend, which was consistent with the previous findings on relative

differences (Liu and Xu, 2020). This is consistent with the

conclusion by Bao et al. (2022), who observed gradual

decrease in the absolute difference of grain GTFP in Poyang

Lake area.

4.4 Drivers of GTFP in China

Spatial heterogeneity is the spatial manifestation of natural

and socioeconomic processes, and the spatial heterogeneity of the

GTFP in China has also been influenced by socioeconomic and

natural environmental factors. Based on previous studies, we

probed the effects of the following factors on GTFP: level of

economic development (eco), which is represented by the real per

capita GDP (Guo et al., 2021); energy structure (ene), which is

represented by the ratio of coal consumption to total energy

consumption (Wang and Jia, 2022); the intensity of

environmental regulation (ers), which is represented by the

ratio of industrial pollution control investment to industrial

value added (Wei et al., 2012); the level of openness (ope),

which is represented by the trade volume to GDP ratio (Peng

et al., 2021); level of industrial structure (ins), which is

represented by the ratio of the added value of tertiary

industries to the added value of secondary industries (Shu and

Qi, 2020); the level of technological innovation (tec), which is

represented by the number of patent applications received (Liu

et al., 2022); the level of education (edu), which is represented by

years of per capita education (Földvári and van Leeuwen, 2009);

and the level of governmental intervention (gov), which is

represented by the ratio of fiscal expenditure to GDP (Huang

and Xie, 2008). A geodetector was used to identify the key drivers

of GTFP development in China and the types of interactions

between factors.

Figure 3 illustrates the individual and interaction effects of

the aforementioned factors on spatial GTFP heterogeneity in

China over several five-year planning periods. Individual effects:

Over the entire study period, the intensity of environmental

regulation (0.4) and energy structure (0.09) were the strongest

and weakest drivers of spatial GTFP heterogeneity in China,

respectively. This is consistent with the results of the study by Xu

et al. (2021). Environmental regulation can have a catalytic effect

on GTFP. In the tenth five-year plan period, the strongest and

weakest contributors were the level of openness (0.36) (Li J et al.,

2021) and intensity of environmental regulation (0.03),

respectively. In the eleventh five-year plan period, the level of

economic development (0.33) was the primary driver of GTFP

heterogeneity, and energy structure (0.03) was the weakest driver

during this period. In the twelfth five-year plan period,

government intervention (0.35) played a major role in driving

spatial heterogeneities in the GTFP. Interaction effects: Over the

entire study period, interactions between the level of industrial

structure and level of education (0.87), level of educational and

technological innovation (0.82), and the intensity of

environmental regulation and level of industrial structure

(0.82) played major roles in driving spatial GTFP

heterogeneities, and the least impactful interaction was

between energy structure and level of industrial structure

(0.41). In the tenth five-year plan period, the interaction

between level of education and level of openness (0.79) was

the strongest driver of spatial GTFP heterogeneity. In the

eleventh five-year plan period, energy structure–technological

innovation (0.87) and education level–technological innovation

(0.77) interactions were important drivers of spatial GTFP

heterogeneity, and the interaction between government

intervention and environmental regulation intensity (0.27) was

the least impactful interaction. In the twelfth five-year plan

period, the level of education–energy structure (0.86),

education level–technological innovation (0.78), and level of

government intervention–education level (0.78) interactions

were strong drivers of spatial GTFP heterogeneity.

The above results, similar to those by Ma et al. (2022),

indicate that the drivers of GTFP in China are different in

different regions at different periods. Industrial structure,

technological innovation, energy structure, and openness

level contribute to green total factor energy efficiency. This

finding is consistent with that by Chen et al. (2018), who argued

that environmental regulation can promote GTFP. However,

the finding is inconsistent with that of Feng et al. (2021), who

concluded that market-based environmental regulations have

no significant effect on GTFP. In addition to the extent of effect

of individual factors, it is possible to determine the effect of the

interaction of two factors on GTFP, which is a remarkable

contribution of this study and fills a research gap in this field.
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5 Conclusion and recommendations

Based on provincial panel data of 30 Chinese provinces

from 2000 to 2019, this paper first measures the GTFP in each

region of China, then analyzes the spatial differences of

GTFP in each region, and finally analyzes the driving

factors of GTFP in each region. The following main

conclusions are drawn: 1) The GTFP of China had an

overall upward trend, and technical progress changes were

the primary drivers of this upward trend. 2) Considerable

disparities exist in GTFP of one region or province and

another. The eastern region had the highest GTFP. 3)

Overall, the relative and absolute differences between the

national, eastern, central, and western regions of China are

narrowing, and the intensity of transvariation is the main

source of spatial differences in GTFP in China. 4) Among the

individual factors, the intensity of environmental regulations

was the strongest individual driver of spatial GTFP

heterogeneity in China. The interactions that contributed

most strongly to spatial heterogeneities in the GTFP were the

levels of industrial structure and education, levels of

educational and technological innovation, and energy

structure–technological innovation. Based on the

conclusions of this study, we propose the following

recommendations.

(1) Accelerate the establishment of a new coordinated mode of

regional development: Although China is shifting towards

high-quality economic development, most Chinese

provinces have low GTFPs, and there are substantial

GTFP differences from one province or region to another.

Between-region GTFP differences also strongly contributed

to China’s national GTFP differences. To solve these issues,

China’s regions and provinces should first collaborate to

improve the GTFP. Efforts should be made to accelerate the

modernization of eastern China, facilitate the ascent of

central China, and accelerate development in western

China. It is also crucial to examine the implementation of

major and coordinated regional development strategies.

Second, differentiated development strategies should be

formulated to address the requirements of each region

and province. The eastern region and high-GTFP

provinces should make full use of their comparative

advantage to develop core cities, metropolitan areas, and

urban clusters, thus driving the development of neighboring

cities and regions, which will narrow intra-and inter-regional

disparities in the GTFP, improve the coordination of

regional development, increase economic integration, and

accelerate the establishment of a new coordinated mode of

regional development.

(2) Enhance China’s capacity for green technology

innovation: It must remain steady in its commitment to

innovation-driven development. First, investments in

green technology should be increased alongside the

promotion of academia–industry collaboration to drive

the transformation of scientific research findings into

technical standards and to comprehensively enhance

China’s capacity for innovation in carbon reduction

technologies. Second, the green technological efficiency

index must be increased considerably. Currently,

technical efficiency change has a negative effect, which

is a major obstacle in efforts to improve China’s capacity

for green technology innovations. Therefore, businesses

creating high pollution and low technological efficiency

should be eliminated, and concerted efforts should be

made to create green and technologically advanced

businesses.

(3) Promote the transformation and upgradation of industrial

structures: As China is currently transforming its economy

from a manufacturing-dominated economy to a services-

driven economy, all provincial governments should

formulate locally adapted policies to promote the

upgradation of their industrial structures. First, the

development of strategic emerging industries (e.g., new

energy vehicles, next-generation information technology,

and green aviation) must be prioritized, and the

integration of modern service industries and advanced

manufacturing should be promoted. Second, efforts

should be made to optimize and upgrade the industrial

supply chain. As the traditional supply chain still plays an

important role in socioeconomic development, the

transformation of old industrial bases should be

supported to help traditional industries reinvent

themselves as green, high-end, and intelligent industries,

thus improving China’s industrial structure. Finally,

investment in human capital should increase. There is a

mismatch between the current industrial and labor

structures of China. Therefore, investment in the

schooling system and higher education for workers should

be increased.

(4) Increase the level of openness of China: First, to increase

trade and thus achieve a high level of openness, China

should seek to introduce high-tech products, improve

management of the foreign investment negative list,

and encourage the import of high-tech green

technologies and devices to maximize technology

spillovers to domestic enterprises and industries,

enhance China’s capacity for independent innovation,

and avoid becoming a “pollution haven” for advanced

nations. Second, china should also implement incentives

such as export tax rebates for green high-tech products.

The stringent product quality requirements of host states

for imported products, when combined with domestic

incentives, will serve to encourage independent

innovation from domestic enterprises and lead to the

export of green high-tech products from China.
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(5) Promoting the establishment of a newmode of greendevelopment:

First, China must develop a low-carbon economy by improving

laws and regulations on greendevelopment, fully implementing the

pollutant discharge permit system and market-based carbon

trading, and transforming traditional industrial structures into

green industrial structures, thus reducing the carbon intensity of

the economy. Second, increases in the area of afforestation should

be prioritized, as the size of forest carbon sinks is strongly affected

by afforested areas, and the effects of inputs and outputs in

afforested areas have immediate effects on the net CO2

emissions of China. Third, the energy structure should be

optimized to increase energy use efficiency. To this end,

investment in pollution control should be increased, using of

clean energy, reduce the use of carbon-intense and inefficient

fuels such as coal, and push for a green model of development

to improve China’s GTFP.

Although this study fills some of the research gaps related to

GTFP in China, there are still some limitations that need to be

discussed for future research. First, this study is not updated to the

latest data for 2021 owing to data unavailability. Second, compared

with provincial macro data, prefecture-level city data can improve

the precision of the study. Third, owing to mobility of resource

factors between regions, the introduction of spatial effects can be

considered in the future research on σ convergence, β convergence,

and club convergence.
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