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Lake Maggiore is a site of the Long-Term Ecosystem Research (LTER) network,

belonging to the deep subalpine Lake District in Northern Italy. Studies on the

physical, chemical, and biological features of the lake have been performed

continuously since the 1980s. The lake recovered from eutrophication reaching

the present oligotrophic condition. In the last decade, climate change

represents the main driving factor for the long-term evolution of the lake,

affecting its hydrodynamics, nutrient status, and biological communities. In

2020 a high-frequency monitoring (HFM) systemwas deployed, with the aim to

integrate long-term monitoring based on discrete sampling and analysis. The

system consists of a buoy equipped with sensors for limnological variables and

algal pigments. The high-frequency monitoring program is part of a cross-

border project between Italy and Switzerland focusing on lake quality

monitoring as a critical input for successful lake management. In this paper

we focus on Chlorophyll-a data, with the aim to test whether in-situ

fluorescence measurements may provide a reliable estimate of lake

phytoplankton biovolume and its seasonal dynamic. Sensor’s performance

was regularly tested comparing chlorophyll-a data taken by the in-situ

fluorescent sensors (Cyclops7, Turner Design), data from laboratory

fluorescence analysis (FluoroProbe, BBE Moldaenke), values obtained from

chlorophyll-a analysis by UV-VIS spectrophotometry and data from

phytoplankton microscopy analysis. We found a general good agreement

between the Chlorophyll-a data obtained with the different methods,

confirming the use of in-situ sensors as a reliable approach to measure algal

pigments, especially to assess their variability in the short-term, but also to

describe the seasonal pattern of phytoplankton biovolume. However,

phytoplankton community composition played a substantial role in the

performance of the different methods and in the reliability of in-situ data as

a tool to assess algal biovolume. This study demonstrates that high-frequency

monitoring (HFM), used in conjunction with discrete chemical and biological

monitoring, represents an important advance and support in the long-term

monitoring of freshwaters and is a useful tool to detect ecological changes.
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Regular checking and validation of the sensor readings through laboratory

analyses are important to get trustworthy data.
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1 Introduction

Monitoring the surface water quality is compulsory for the

current environmental policies under the EU Water Framework

Directive (WFD, 2000/60/EC) (European Commission, 2000).

This directive commits EU member countries to achieve good

qualitative status for their water bodies and prevent further

deterioration. The first step to reaching these ambitious goals

is to assess the ecological status of aquatic environments through

monitoring and assigning them to specific quality classes. This is

central to the operation of theWFD, though the monitoring itself

also has other objectives such as increasing system understanding

and designing mitigation options (Skeffington et al., 2015).

Traditionally, freshwater monitoring involves fieldwork for

sample collection and subsequent laboratory work. Samples are

collected manually from selected waterbody stations and depth at

scheduled intervals throughout the year. The amount of manual

work required makes these methods costly and time-consuming.

Moreover, because of the low sampling frequency, this approach

often fails to capture the dynamics of biotic and abiotic processes

within freshwater ecosystems. Despite the usefulness of

traditional monitoring programs, the discrete nature of

sampling means it is vital to fill the knowledge gaps related to

short-lived, extremely episodic, or unpredictable events, and in

general to any process with a characteristic temporal scale shorter

than the sampling frequency (Jennings et al., 2012; Meinson et al.,

2016).

TheWFD requires the classification of the ecological status of

surface waters in an integrative way, by using multiple taxonomic

groups (biological quality elements, BQEs) together with

supporting physico-chemical and hydro-morphological

variables (Caroni et al., 2013). For lake monitoring,

phytoplankton is one of the required BQEs to be assessed.

Phytoplankton biomass is widely used as an indicator of the

status assessment of surface waters (Salmaso et al., 2006; Boyer

et al., 2009). Microscopy identification and enumeration of

phytoplankton performed in the laboratory are essential to

provide reliable data for assessing the ecological state of lakes.

However, phytoplankton microscopy analysis is a time-

consuming method, requiring specialized scientific personnel

to determine taxonomy and to make biomass calculations of

phytoplankton communities in lakes.

Chlorophyll-a (hereinafter Chl-a) concentration is often

used as a proxy for phytoplankton biomass (Vörös, and

Padisák, 1991; Kasprzak et al., 2008). It represents one of the

key indicators of water quality for lakes, in particular concerning

eutrophication-related problems (e.g., deterioration of water

quality, development of algal blooms). Chl-a is traditionally

quantified in the laboratory from water samples using ethanol

or acetone extraction followed by spectrophotometric

measurement (Lorenzen, 1967; ISO 10260, 1992). Although it

is nowadays a well-established technique, Chl-a extraction

protocols may have some shortcomings as they require the

manual collection of large water sample volumes, sample

transportation, and laboratory personnel to perform extraction

and spectrophotometric analyses.

A global increase in the frequency, intensity, and duration of

cyanobacterial blooms is raising concerns as many bloom-

forming species produce harmful compounds that pose a risk

to human and animal health (Taranu et al., 2015; Harke et al.,

2016). To evaluate the threat posed by cyanobacteria bloom

formations and to assist in the understanding of bloom

dynamics, the biomass of cyanobacteria is required to be

quantified. The identification of taxa and estimation of the

abundance of cyanobacteria, as well as of pigment and

cyanotoxin concentrations, are important tasks given the

increase in the frequency, intensity, and duration of

cyanobacterial blooms that are raising concerns worldwide.

However, laboratory determination procedures for the

quantification of cyanobacterial pigments, such as

phycocyanin, are labour-intensive and time-consuming

(Sarada et al., 1999; Randolph et al., 2008).

Laboratory analysis to assess phytoplankton biomass and

algal pigments have been extensively used in long-term

monitoring programs of lakes and the time series produced

have contributed to extended datasets and synoptic studies

across different ecosystems (e.g., Salmaso et al., 2003;

Morabito et al., 2018a; Stockwell et al., 2020). However, both

phytoplankton microscopy analysis and Chl-a determination in

the laboratory do not allow the monitoring of lake productivity

and phytoplankton variations in real time or at high frequency:

these methods are indeed not able to detect accurately

phytoplankton successions and bloom formation with a

sufficient temporal resolution. In particular, the short-lived

nature of cyanobacterial blooms makes traditional laboratory

methods difficult to be used for their early detection and

monitoring (Hunter et al., 2009; Stumpf et al., 2012; Bertone

et al., 2018).

The limited spatial and temporal coverage of discrete

monitoring methods prompted the development of

alternative and complementary monitoring techniques. As

regards algal pigment, during the last 2 decades, field
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fluorometers for in-situmeasurement have become increasingly

common worldwide (Marcé et al., 2016; Meinson et al., 2016).

Fluorometric quantification of Chl-a and other common algal

pigments such as phycocyanin and phycoerythrin is generally

cost-effective and allows frequent observations during sudden

phenomena such as mixing events or short-lived algal blooms

(Jennings et al., 2012; Klug et al., 2012). These sensors have been

incorporated into in-situ monitoring systems across the globe

(McQuaid et al., 2011; Hamilton et al., 2014; Hodges et al.,

2018), showing potential for assessment of phytoplankton

biomass spatially and temporally.

Lake Maggiore is a deep oligomictic lake belonging to the

“IT-08 Southern Alpine Lake” LTER site. The lake has been

studied for its physical, chemical, and biological aspects since the

1980s. It recovered from eutrophication thanks to the reduction

of catchment loads and reached a stable oligotrophic status by the

end of the 1990s. Nowadays, dissolved oxygen and nutrient

dynamics are mainly driven by in-lake processes, in particular,

the stratification andmixing regime, which in turn are affected by

climate change (Rogora et al., 2018, Rogora et al., 2021). Water

temperature increased, at different rates according to depth and

season, causing increased stability of the water column and a

decreasing frequency of deep mixing events, the last full turnover

having occurred in 2006 (Fenocchi et al., 2018). As an effect,

oxygen is steadily decreasing and phosphorus, nitrate, and silica

are accumulating in the deep layers, with limited replenishment

of the trophogenic layers (Rogora et al., 2021). These changes are

affecting phytoplankton composition and seasonal succession

(Morabito et al., 2012; Tanentzap et al., 2020), with a slightly

increasing trend of Chl-a concentrations and the evidence of

short-lived phytoplankton blooms triggered by heavy

precipitation events (Morabito et al., 2018b).

To integrate the discrete monitoring of the lake, in particular,

to get information on short-term lake dynamics, an HFM of Lake

Maggiore was started in 2020 within the cross-border

cooperation project SIMILE (Italian acronym for “Integrated

monitoring system for knowledge, protection, and valorization of

the subalpine lakes and their ecosystems”). Its general objectives

are the improvement/optimization of the monitoring of the deep

subalpine lakes (Lugano, Maggiore, and Como) in the so-called

“Insubric” region of Northern Italy and the strengthening of the

coordinated management of water through an intensification of

stakeholders’ participation in the processes of knowledge gain

and monitoring of the water resource. The first aim of SIMILE is

the testing and developing of an innovative monitoring

approach, integrating satellite data, in-situ high-frequency

sensor data, and user-contributed georeferenced data (Brovelli

et al., 2019).

Within the SIMILE project, an assessment of the high-

frequency data quality was started, with a focus on algal

pigment data. This paper presents a comparison of the in-situ

high-frequency measurements of Chl-a provided by the sensors

with those obtained from laboratory analysis on water samples

collected in 2020–21. We also measured phytoplankton

abundance and composition in each sample by microscopy

analysis. Finally, we aimed to critically discuss HFM as a

complementary approach to the discrete monitoring of lakes,

highlighting both its strong points and major drawbacks,

focusing on the contribution that HFM may provide in long-

term ecological research.

2 Methods

2.1 Study site

Lake Maggiore is the second deepest (370 m) and largest

(212.5 km2) lake in Italy. It belongs to the subalpine lake district,

and together with lakes Lugano, Como, Garda, and Iseo, it

contributes to almost 80% of the total volume of freshwater in

Italy. These lakes altogether are an invaluable water resource for

several uses including hydroelectric power production,

potabilization, irrigation, as well as they are key elements for

the tourist economy of the Alpine region (Salmaso et al., 2020).

Lake Maggiore is oligotrophic by nature; a eutrophication

process started in the 1960s, when nutrient concentration,

mainly phosphorus, started to rise, followed by an increase in

phytoplankton abundance, biovolume, and primary production.

After reaching a eutrophic state in the late 1970s-early 1980s, a

recovery process started, thanks to the reduction of catchment

loads and the lake gradually returned to an oligotrophic

condition, with total phosphorus concentrations around

10 μg P L−1 (Ruggiu et al., 1998; Morabito et al., 2012). Since

the late 1980s, changes in phytoplankton species diversity and

composition appeared, with a decrease in average cell size, Chl-a,

and total biovolume, as well as of annual primary production

(Ruggiu et al., 1998).

Lake Maggiore watershed (about 6,600 km2) is shared almost

equally between Italy and Switzerland, so issues related to the lake

water quality and its restoration and management have been

afforded through cooperation between the two countries. In

particular, lake monitoring has been performed monthly since

the 1980s at the deepest point (Ghiffa station), within the

limnological campaigns funded by the International

Commission for the Protection of Italian-Swiss Waters

(CIPAIS; www.cipais.org). The monitoring covered several

physical, chemical, and biological variables, and these long-

term data series allowed us to evaluate the lake trophic

evolution i.e., oligotrophication, as well as its response to

climate drivers (Tanentzap et al., 2020; Rogora et al., 2021).

However, until recently, only discrete data, based on regular field

campaigns, have been collected, except for meteo-hydrological

data for which high-frequency monitoring stations have been

established in the lake watershed (Ciampittiello et al., 2021).

As regards phytoplankton, integrated samples (0–20 m) have

been regularly collected and analyzed by microscopy to identify
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taxa at the species level (Morabito et al., 2012) and assess

biovolume of the main groups (Ruggiu et al., 1998). Chl-a

concentration was also measured on integrated samples by

spectrophotometric technique in the period 1984–2009

(APAT-IRSA-CNR, 2003), while from 2010 measurements

were taken using a vertical profiling instrument (FluoroProbe,

BBE Moldaenke) after a careful check of the comparability of the

two methods.

2.2 LM1 buoy

The monitoring buoy LM1 was deployed in LakeMaggiore in

the Pallanza basin (about 50 m from the shoreline, anchored at a

depth of about 40 m; Figure 1). The buoy was developed in-house

and conceived as a low-cost modular system (Tiberti et al., 2021).

It is equipped with sensors for pH, conductivity, dissolved

oxygen—surface (1.5 m depth) and deep (10 m depth)—and

algal pigments (Chl-a, both at surface and deep, phycocyanin

(PC) and phycoerythrin (PE) at surface), a thermistor chain, a

weather station, and a live webcam (https://www.meteolivevco.it/

boa-limnologica-sul-lago-maggiore/). Sensors used for pigment

monitoring (Cyclops7, Turner Design) include two Chl-a sensors

(surface and deep) which were deployed in 2020, and one PC and

one PE sensors which were added in March 2021. Each sensor is

wire connected to the electronic control unit, which has been

specifically designed within the project for signal acquisition

from the sensors, data storage, basic data elaboration, and

wireless transfer. The open-source data management software

istSOS (http://istsos.org/) was selected for managing and

dispatching the observations from the monitoring sensors

(Strigaro et al., 2022). Further details on the system hardware

and software are provided by Tiberti et al. (2021).

For the present study, pigment raw data (in Volt) were stored

in daily text files at 1 minute frequency. Successively, the data

were processed by applying quality assurance/quality control

(QA/QC) procedures and aggregated on an hourly basis.

Sensor signal at the surface was clearly affected by quenching

during daylight, as shown by the daily cycle in fluorescence data

(Tiberti et al., 2021). As suggested by McBride and Rose (2018),

night measurements should be considered the most indicative of

Chl-a concentration. In particular, for the comparison with

laboratory data, we selected fluorescence sensor data between

00:00 and 05:00 a.m. on the day of the sampling. The conversion

FIGURE 1
Location andmain characteristics of themonitoring buoy LM1 in Lake Maggiore (see Tiberti et al., 2021 for the details). On the bottom-left map,
Italy is coloured blue while Switzerland is grey.
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from signal data (in Volt) to Chl-a concentrations (µg L−1) was

done by applying a measured factor obtained from laboratory

calibration (Tiberti et al., 2021).

2.3 Chl-a analysis

During the first 2 years of the HFM (2020-2021) we collected

54 water samples within 37 sampling dates, approximatively

fortnightly, during the periods of high biological activity, and

monthly in the other months. Samples were collected close to

the buoy using a Ruttner bottle. Part of the samples were taken

at 1 m depth (n = 37), and part at 10 m depth (n = 17), where the

surface and deepChl-a sensors are placed, respectively. Data covered

the periods January-September 2020 and March-December 2021.

Unfortunately, no data were available between October 2020 and

February 2021 because a violent storm seriously damaged the buoy

and the sensors on 2 October 2020 and the repairing operation took

several months before the monitoring could be restarted.

All the samples were analyzed as follows:

- acetone extraction followed by UV-VIS

spectrophotometrical reading (APAT IRSA 9020) to

quantify Chl a, b, c, according to APAT—IRSA/CNR, 2003.

FIGURE 2
Comparison between Chl-a concentrations obtained from the in-situ sensors (buoy) and laboratory analysis UV-VIS (left panels) and FP (right
panels). In the panels data are shown for all the samples, surface and deep samples. Statistics of the linear regressions are provided in Table 1.
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- fluorometric determination of total Chl-a and of the

contribution by the main algal classes through the multi-

wavelength probe FluoroProbe (bbe Moldaenke GmbH),

used as a Workstation benchtop unit. The instrument can

detect four phytoplankton classes: green algae,

xanthophyll-containing brown algae (dinoflagellates,

diatoms, chrysophyceae), blue-green algae (PC-rich

cyanobacteria), and red algae (PE-rich cyanobacteria,

cryptophyceae) (Callieri et al., 2021).

On a subset of the surface samples (n = 23), microscopy

analysis of phytoplankton based on the inverted microscopy

techniques (Utermöhl, 1931; Lund et al., 1958) and the CEN

guidance (CEN, 2004) was performed. Taxa were classified at

species or genus level by an inverted microscope (Zeiss) at

intermediate (200x) and high (×400) magnification.

Community composition was estimated as taxa relative

abundance. The total biovolume and biovolume of each group

were estimated from density data and original measurements of

cell volume (Morabito et al., 2012).

To evaluate how well in-situ sensor data reflect the results of

laboratory techniques, we used a series of linear regressions,

with the average in-situ night values (from 00:00 and 05:

00 a.m.) of Chl-a as the dependent variable and the

laboratory measures of Chl-a (by UV-VIS and FP) as

independent variables, both considering all samples together

(n = 54) and surface and deep samples separately (n = 37 and

n = 17, respectively). In addition, we described the linear

relationship between the in-situ Chl-a measures and the

estimated algal biovolume (available only for 23 surface

samples) with a further regression analysis. All analyses were

performed in the R environment for statistical computing (R

Core Team, 2022).

3 Results

3.1 Evaluation of Chl-a estimation by in-
situ sensors

Chl-a concentrations measured in Lake Maggiore during the

study period through HFM ranged between 2 and 13 μg L−1 at the

surface and 1 and 12 μg L−1 at the deep sample points, with

average values of 4.7 and 3.3 μg L−1, respectively. These values are

typical of mesotrophic lakes; however, they lie in the low range of

Chl-a concentrations characterizing freshwater lakes worldwide

(Filazzola et al., 2020). Some peaks (above 10 μg L−1) were

detected in spring and summer, usually in correspondence

with diatom blooms, such as in May 2021.

Altogether the results of the linear regression indicate a good

fit between the values recorded by the buoy and both UV-VIS

and FP data (Table 1; Figure 2). The slopes of the regression lines

are frequently significantly lower than 1 (1 is not included in the

95% Confidence Intervals), which indicates that laboratory

calibration, based on dilutions of algal cultures, may be

inaccurate under natural conditions, i.e., natural algal

communities. Because of this, discrete laboratory measures

from discrete samples could be used to recalibrate the sensors.

The high frequency (HF) data collected in 2020 and 2021

(hourly average) allowed us to describe the seasonal pattern of

Chl-a concentrations in great detail (Figure 3): sensor readings

were able to describe the annual Chl-a dynamics, its main peaks

(e.g., March, late April and June 2020 and May 2021) and a

number of short-lived peaks of Chl-a (Figure 3) that would have

passed unnoticed or poorly described by discrete data. Some

discrepancy was observed between HF and laboratory data in late

summer 2020, when the in-situ data slightly underestimated the

Chl-a values.

3.2 Algal groups and their role in Chl-a
detection

To get additional data on phytoplankton biovolume and

composition, a subset of surface samples were counted by

microscope (Figure 4). As regards the phytoplankton

community composition, our results confirmed those obtained

from the long-term monitoring of Lake Maggiore (Morabito

et al., 2012; Rogora et al., 2021). We found a limited presence of

cyanobacteria, which were present in small amounts mostly in

late summer (e.g., 290 mm3 m−3 in August 2020).

Bacillariophyceae were dominant in almost all the samples,

representing between 50 and 80% of the total biovolume. The

second most important group was that of cryptophyceae, which

were dominant in a few spring samples (e.g., about 500 and

750 mm3 m−3 in March and May 2021).

The Chl-a values, both from the buoy and UV-VIS analysis,

closely followed the pattern of the Bacillariophyceae group

(Figure 4). Diatoms are indeed the dominant taxon in Lake

Maggiore, and their blooms in spring and summer are the main

responsible for the Chl-a peaks observed in the lake, especially in

recent years (Rogora et al., 2021).

When considering total biovolume, the highest values

were measured in early March 2020 (2,800 mm3 m−3), June

2020 (2,500 and 2,800 mm3 m−3 respectively on the 16 and

30 of June), and May 2021 (4,200 mm3 m−3). Despite the

limited number of samples available in 2021, the seasonal

pattern in both years was similar to the long-term monitoring

of the lake, with the highest biovolume measured in spring

(Rogora et al., 2021). The pattern of total biovolume followed

well that of Chl-a concentrations resulting from the HFM

(Figure 4). The linear regression parameters (R2 = 0.72, p <
0.001; a = 1.82 (0.77–2.87 95% CI); b = 0.002 (0.001–0.003 95%

CI)) indicate a good fit between in-situ Chl-a sensor and the

biovolume estimates from the microscopic analysis, as shown

in Figure 5.

Frontiers in Environmental Science frontiersin.org06

Rogora et al. 10.3389/fenvs.2022.1058515

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1058515


4 Discussion

The comparison between field and laboratory methods to

estimate Chl-a concentrations in Lake Maggiore showed an

overall good agreement. In particular, in-situ fluorimetric

sensors provided a reliable estimate of Chl-a values and

captured peaks occurring during algal blooms in spring and

summer. Linear regressions were statistically significant between

the data from the buoy and those from laboratory analyses. As

expected, we found a higher correlation coefficient with the buoy

sensor and FP data since both estimate Chl-a concentrations

through a fluorimetric measure. A better fit with laboratory data

emerged for the deep sensor, with respect to the surface one,

possibly due to the more limited variability of deep Chl-a

concentrations. A fair agreement was also found between the

in-situ fluorometric data and the total phytoplankton biovolume

estimated by cell counting, suggesting in-situHF data as a tool to

assess phytoplankton biomass variability in the short term.

However, the phytoplankton community composition should

be considered in this evaluation.

In this study, during most of the year, the phytoplankton

community of Lake Maggiore was dominated by diatoms, and

their biovolume variation during the 2-year period had a fair

agreement with the in-situ HF Chl-a sensor trend. However,

during the summer, cyanobacteria started to be an important

part of the phytoplankton community. In particular, in late

TABLE 1 Results from linear regressions between chlorophyll-a concentrations measured by in-situ sensors (buoy) and by UV-VIS spectrophotometry or
FluoroProbe (FP). The intercept (a), slope (b), coefficient of determination (R2), and p-values are reported; lower and upper 95% confidence intervals of a and b
are reported in brackets.

Buoy vs. UV-VIS Buoy vs. FP

n a b p R2 a b p R2

All data 52 0.52 (−0.44, 1.47) 0.77 (0.60, 0.94) <0.001 0.62 0.71 (−0.13, 1.55) 0.67 (0.53, 0.80) <0.001 0.66

Surface 35 0.78 (−0.27 1.83) 0.84 (0.64, 1.03) <0.001 0.70 1.18 (0.24, 2.11) 0.69 (0.53, 0.84) <0.001 0.71

Deep 17 −0.41 (−1.80,0.99) 0.72 (0.48,0.96) <0.001 0.73 −0.50 (−1.61, 0.61) 0.68 (0.50, 0.85) <0.001 0.82

FIGURE 3
Hourly average data of Chl-a concentrations from in-situ sensors (bluish area) and Chl-a concentrations in the surface samples collected in
2020–21 and analysed by UV-VIS spectrophotometry (yellow dots).
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summer and early autumn small cell-sized (Chroococcales, cell

sizes 2–4 µm) colonial cyanobacteria taxa such as Aphanoteche

sp. and Aphanocapsa sp. reached considerable density values.

During this period, Chl-a concentration by in-situ sensors

recorded lower values with respect to laboratory methods and

phytoplankton counting. A similar discrepancy was observed by

other studies that highlighted how at low Chl-a concentrations

(approx. below 10 μg L−1), the percentage contribution of

picocyanobacteria to total phytoplankton biomass can be high

(Voros et al., 1998). PE-rich picocyanobacteria are commonly

found in oligotrophic waters where green and blue-green light is

available, as in the case of Lake Maggiore (Callieri et al., 2021).

FIGURE 4
Biovolume of the main phytoplankton groups based on microscopy analysis of surface samples (n = 23) collected in 2020 and 2021. The grey
area shows the pattern of HF Chl-a data from the in-situ sensor.

FIGURE 5
Linear regressions between Chl-a concentrations obtained from the in-situ sensors (buoy) and total phytoplankton biovolume by microscopy
analysis (n = 23).
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Picocyanobacteria are characterized by a low Chl:biomass ratio

with respect to other phytoplankton groups, so their presence

could lead to an underestimate of total phytoplankton biomass

based on in-situ Chl-a data.

Our results confirmed what was highlighted by other studies

about the limitations of sensor use to estimate Chl-a variations,

including interference from water turbidity and the different

contribution by phytoplankton classes (Zamyadi et al., 2012;

Kong et al., 2014; Kasinak et al., 2015). In fact, in-situ

fluorescence estimation mainly depends on phytoplankton

biomass, its community composition, and its physiological

state (Richardson et al., 2010). However, other physical and

chemical factors such as water temperature, water column

stratification, underwater light, back light scattering, and light

absorption by organic and inorganic particles can affect the final

measure of chlorophyll and phycobiliprotein values (Proctor &

Roesler 2010; Ostrowska 2012).

A limitation of our study consists in the narrow range of Chl-

a values considered in the method comparison: Chl-a in Lake

Maggiore is in the low range of concentrations for freshwater,

with most of the data between 2 and 3 μg L−1 and only a few data

above 10 μg L−1, during spring algal density increases. Moreover,

the phytoplankton community was dominated by diatoms,

which also contributed to the highest Chl-a values recorded,

followed by green algae. PC-containing cyanobacteria were rarely

detected in the lake, and this prevented us from assessing the use

of phycocyanin in-situ sensors as early warning systems for

potentially toxic cyanobacteria blooms.

A further limitation of our assessment lies in the uneven

distribution of samples (more frequent sampling in 2020 and a

higher number of surfaces with respect to deep samples) and in

the lack of replicates, which prevented the evaluation of random

errors. However, we tested the agreement between methods on a

total of 54 samples covering the seasonal pattern of Chl-a and the

results clearly demonstrate an overall agreement between in-situ

sensor data and extracted Chl-a.

A further problem we encountered was the presence of gaps in

the HF data due to technical issues (e.g., sensor damages, fouling,

lack of data transmission), the most relevant being a 5-month

interruption between 2020 and 2021 due to the damages caused to

the buoy by a severe storm. However, these issues are not rare in

HFM applications and should be considered when designing the

monitoring system and evaluating the costs and benefits of the

system itself (Seifert-Dähnn et al., 2021). Despite these drawbacks,

the HFM systems in Lake Maggiore performed well in depicting

the seasonal pattern of Chl-a concentrations, which in turn proved

to be a good proxy of phytoplankton biovolume. We still need to

test the performance of the PC and PE sensors deployed in 2021.

However, we think these sensors will be a useful integration to the

HFM of Lake Maggiore, for a more comprehensive evaluation of

the phytoplankton succession. Overall, our results confirmed that

in-situ sensors may be useful in measuring diagnostic pigments

and estimating algae abundance in near real-time, especially when

sensors for different pigments are combined (Pace et al., 2017;

Bertone et al., 2018; Chegoonian et al., 2022). These data may be

relevant in planning field campaigns for institutional monitoring

purposes, e.g., targeting the sampling and analysis effort on

bringing information on critical or representative periods in

terms of algal blooms.

It is worth mentioning that in some periods of 2020 (March-

May and November-December) the field campaigns for the

monitoring of Lake Maggiore had to be delayed due to the

lockdowns caused by the outbreak of the COVID-19

pandemic. In those situations, the HF data provided by the

buoy were the only data available and, even though limited to

a few variables, provided useful information on the lake

dynamics. Some relative maxima in Chl-a concentrations

recorded by the buoy (e.g., 7.8–8.6 μg L−1 on 16 and 23 of

June 2020) were not detected by the discrete monitoring

program based on monthly surveys (3.1 μg L−1 for June 2020;

CIPAIS, 2022) confirming that monthly or even lower-frequent

sampling is likely to miss the short-term variability of some lake

processes. HF data may not only detect short-term events but

also improve the estimate of key parameters for water quality

assessment, such as Chl-a concentrations (Bresciani et al., 2011).

Further, the HF Chl-a data may be employed in assessing the

performance of the monitoring systems based on satellite data,

also under development within the SIMILE project (Luciani et al.,

2021; Bratic et al., 2022).

Long-term monitoring has proved to disproportionately

contribute to a better understanding of ecosystems as well as

to support management and restoration policy (Hughes et al.,

2017). However, a multi-scale approach is required in ecological

study, combining monitoring at different temporal and spatial

scales (Sparrow et al., 2020). In-depth information on lake

productivity and phytoplankton biomass, such as those

provided by microscopy and laboratory analysis of discrete

samples, cannot be replaced by sensor data. Nevertheless,

HFM, even when limited to a few basic variables, may

supplement time series of highly detailed data, contributing to

a deeper knowledge of ecosystem dynamics, especially as regards

short-term and highly variable processes (Carpenter et al., 2020).

5 Conclusion

Our study confirmed that in-situ sensors measuring in vivo

fluorescence are an interesting approach for monitoring algal

blooms in lakes and are an effective tool to detect and track

bloom formation, complementing the more classical laboratory

analysis. HFM is not limited to Chl-a, but also includes other

algal pigments (i.e., PC and PE) that may improve the evaluation

of lake productivity and phytoplankton succession: used in

conjunction with discrete chemical and biological monitoring,

it represents an important advance in the monitoring of

freshwaters and a useful tool to detect ecological changes.
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However, regular check and validation of the sensor readings

through laboratory analyses is needed to get reliable data.

Automated in-situmonitoring can warn water managers and

local authorities when measures against blooms are required and

data can be used for successive selection of sites to be sampled

and analyzed in the laboratory. In summary, lake monitoring,

programs based on discrete sample collection and analysis may

be successfully integrated by HFM and other approaches, such as

the use of satellite data and of observations provided by citizens:

this can hold both for lakes subject to operational monitoring

under the WFD, where early warning systems could be needed to

assess critical issue such as algal blooms, but also for lakes under

the surveillance monitoring, to supplement and validate long-

term discrete data.
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