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The severity of haze pollution has increased along with the growth of the

economy and urbanization. Studying the relationship between urbanization and

environmental pollution is extremely important from a practical standpoint in

the context of encouraging new urbanization development in China. In this

paper, we explore the impact mechanism of urbanization on air pollution, using

a spatial Durbin model (SDM) build on panel data of 277 cities from 2010 to

2019. The findings demonstrate that urbanization significantly inhibits haze

pollution across the country, with energy consumption structure and industrial

structure upgrading acting as mediating factors. Moreover, economic growth,

population aggregation, and openness to foreign investment aggravate

pollution, whereas transportation facilities, urban vegetation areas, and wind

speed reduce air pollution. Furthermore, foreign direct investment increases

pollution nationwide while alleviating haze pollution in the eastern region.

According to analysis of regional heterogeneity, there is a nonlinear

relationship between urbanization and pollution in the central and western

cities, while development and pollution in the eastern cities show a tendency to

decouple. On this basis, this paper puts forward some policy recommendations

to attenuate the vicious linkage between urbanization and pollution in order to

promote high-quality urbanization development.
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1 Introduction

China had a tremendous economic growth following the economic reform and

opening-up, and it has also become the world’s nation with the fastest urbanization rate,

which increased from 17.92 percent to 64.72 percent from 1978 to 2021. Urbanization has

driven China’s rapid economic growth and strengthened its competitiveness in

international markets. Similar to other developing countries, China’s urbanization is

accompanied by the transformation of surplus rural population into city population and

the transformation of the primary industry into secondary and tertiary industries. In this
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process, people, resources, and wealth are gathered in cities.

Although urbanization promotes infrastructure investment

(Zhou et al., 2015), expands consumption market, and

improves the income and education level of residents (Yuan,

2015; Choy and Li, 2017), it also increases the consumption of

resources, in turn, causing environmental pollution problems

(Hueglin et al., 2005; Stone, 2008). Urbanization brings about

“big city disease” such as traffic congestion, energy shortage, and

air pollution. The World Health Organization estimates that air

pollution causes seven million premature deaths annually, and

air pollution, especially haze pollution, has become an important

hidden danger to residents’ health.

Numerous scholars have discussed the connection between

urbanization and air pollution through different models. Liang

et al. (2019) discovered a nonlinear relationship between

environmental pollution and urbanization using a

geographically and temporally weighted regression model. Du

and Feng (2013) constructed a panel model with Kaya’s constant

equation, which indicated a U-shaped curve relationship between

urbanization and air pollution in developing countries. Jiao

(2015) tested the relationship between urbanization and

environmental pollution at different population sizes, it was

found that the urbanization rate of small-population countries

had a positive linear relationship with environmental pollution,

the urbanization rate of medium-sized countries had a U-shaped

relationship with environmental pollution, and the urbanization

rate of large-population countries had an inverted U-shaped

relationship with environmental pollution. Moreover, many

literature works have studied the variables through which

urbanization affects air pollution. Rahman and Alam (2021),

who found that the use of clean energy improved air quality,

studied the interaction between environmental pollution and

economic growth, population density, clean energy, and

opening-up during urbanization in Bangladesh. Yang et al.

(2018) found that urbanization can promote the

reorganization of the industrial structure, deteriorating the

environment in the short term and benefiting the treatment of

air pollution in the medium and long term. Mayer (1999) argued

that population growth and land expansion are the main reason

for air pollution caused by urbanization. Gao et al. (2016) found

that population aggregation in urbanization has a more

significant effect on environmental pollution than land

expansion.

In the study related to air pollution, spatial dependence

between cities needs to be taken into consideration, otherwise,

the spillover effect of air pollution would be neglected and the

haze diffused from neighboring cities will be regarded as being

produced by local cities. As a result, the residual terms of

econometric models are spatially correlated, leading to

inconsistent coefficient estimates of the urbanization and

air pollution, which may lead to incorrect conclusions.

Therefore, more accurate econometric models need to be

constructed.

Spatial econometric models can effectively identify spatial

spillover effects. There is a large number of literature using

spatial econometric models to study urbanization and air

pollution. Yu (2021) constructed four new-type

urbanization indicators related to economy, demography,

society, and environment. He used a dynamic spatial panel

error model (SPEM) empirically to analyze the new-type

urbanization in the environment in China and found that

new-type urbanization significantly improves energy

efficiency and reduces pollution emissions. Liu et al. (2017)

used cross-sectional data from 289 cities in China to construct

a spatial Durbin model (SDM), which revealed that

urbanization significantly increases air pollution, and the

urbanization of neighboring cities has a greater impact on

air pollution than the urbanization of the city itself. Du et al.

(2019) found that both urban expansion and population

agglomeration have negative impacts on air quality. Gan

et al. (2021) used the GS3LS model to study urbanization

in 287 cities in China and found an inverted U-shaped

relationship between economic growth and haze pollution,

and urbanization leads to air pollution by increasing the

exuberant demand of urban residents. By establishing a

spatial Durbin model (SDM), Zhang et al. (2017) believed

that there is a positive effect of economic growth on the

spillover effect of haze pollution in the eastern and western

provinces of China, while the economic growth in the central

region has a negative spillover effect of haze pollution.

Although the aforementioned literature used spatial

econometric models to reduce the estimation bias caused

by spatial correlation, it is still difficult to determine

whether urbanization increases, decreases, or has a

nonlinear relationship with air pollution. Therefore, we

analyze the potential shortcomings in the current studies

and make efforts to obtain more accurate results by

refining the variables, samples, and models. We discovered

that the following reasons could affect the regression

estimator. 1) Most of the studies are based on provincial

data. Compared to cities, provinces have huge geographical

spans, making it difficult to control the influence of

environmental factors such as rainfall and wind

temperature within the region. Moreover, cities are the

basic unit of most policy implementation. As there could

be huge differences in urbanization patterns between cities

in the same province, using provincial data will ignore these

differences. Therefore, the urban data selected in this paper

can better reflect the environmental, economic, and policy

changes in the region, as well as provide more accurate results

for the model. 2) The time span of the sample is comparatively

long, and as a result, the coefficients reflecting the mixed

effects of two phases: the rapid expansion of urbanization in

the early years and the high-quality urbanization in recent

years, confuses the results. Considering the systematic impact

of COVID-19 on the urban environmental and economic
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order, we select the time span from 2010 to 2019 as the sample,

which exactly covers the decade of China’s new urbanization

strategy and can better reflect the impact of China’s

sustainable urban development strategy. 3) A large amount

of literature uses sociological statistics such as the industrial

structure, population structure, or urban area variable as a

substitute for urbanization, which suffers from data distortion

due to changes in statistical caliber. This paper uses nighttime

lights (NTL) data as a proxy variable for urbanization, which

can also eliminate potential endogeneity problems between

variables while ensuring the consistency of statistical caliber.

4) At present, a large amount of literature, articles merely

focusing on economic and social factors, ignore the influence

of natural factors. In order to reduce the resulting bias, we

include control variables such as temperature, precipitation,

and wind speed in our model.

In conclusion, this paper selects panel data of 277 prefecture-

level cities in mainland China from 2010 to 2019 as the research

object, empirically analyzes the impact and mechanism of

urbanization on air pollution during the decade after China’s

new urbanization, and uses a spatial econometric model to

eliminate endogeneity among variables.

2 Materials and methods

2.1 The baseline model

Dietz and Rosa (1997) proposed the STIRPAT model based on

the IPAT model, pointing out that environmental pollution is

influenced by factors such as population, affluence, and

technology. The panel of the STIRPAT model can be expressed

as QUOTE I � aPbitACitTdit e, where I, P, A, and T denote

environmental impacts population, affluence, and technology,

respectively, and e represents the error term. Taking the natural

logarithm on both sides of the equation, we obtain

lnIi,t � a + blnPi,t + clnAi,t + dlnTi,t + ei,t (1)

Considering that a major advantage of the STIRPATmodel is

that it can appropriately improve the influencing factors of the

environment (Jin et al., 2022), we extend the equation based on

STIRPAT Eq. 1 and construct a panel equation as follows:

lnAP � β0 + β1lnUrbani,t + λi,tXi,t + εi,t (2)

where lnAP is the natural logarithm of air pollution

concentrations in city i in year t, lnUrban represents the

urbanization, X is a series of control variables including the

economy, environment, and technology, and εir is the error term.

Base on the STIRPAT model (Dietz & Rosa, 1994) and the

EKC hypothesis (Grossman & Krueger, 1995), we extend Eq. 2 to

Eq. 3 by selecting appropriate control variables with reference to

(Yu et al. 2021) and (Shao S 2019).

lnAPi,t � β0 + β1lnUrbani,t + β2 lnWindi,t + β3lnRaini,t

+ β4lnTempi,t + β5lnGreeni,t + β6Metroi,t

+ β7lnPopi,t + β8lnFDIi,t + β9InInvi,t + β10lnTransi,t

+ β11lnGDPi,t + β12lnSeci,t + μi + τt + εi,t

(3)
where β1 is the regression coefficient of the core explanatory

variable urbanization, β2 to β12 are the coefficients of control

variables, and μi QUOTE and τt are the error terms for the fixed

effects of urban i and year, respectively.

2.2 Variable selection

2.2.1 Explained variables
Air pollution (lnAP): We use the annual average

concentration of PM2.5 as an indicator of air pollution. The

data were obtained from the Atmospheric Composition Analysis

Group of Washington University in St. Louis1, which estimates

annual and monthly ground-level fine particulate matter

(PM2.5) for 1998–2020 by combining aerosol optical depth

(AOD) retrievals from the NASA MODIS, MISR, and

SeaWIFS instruments with the GEOS–Chem chemical

transport model (Aaron van Donkelaar 2021). Also,

considering that air pollution also includes sulfide, nitrogen

oxides, and carbon monoxide, we will use the air quality

index (AQI) from 2013 to 2019 for robustness analysis.

2.2.2 Core explanatory variables
Urbanization (lnUrban1): Urbanization is the core

explanatory variable in this paper. We use nighttime light

(NTL) data to characterize the level of urbanization. The NTL

data are obtained by the satellite technology and are barely

disturbed by natural and human factors and maintain the

consistency and comparability of the data (Liu et al., 2021).

Moreover, the NTL data reflect the economic development

through the digital number (DN) value of each pixel from

cities, and the expansion of the city area is also expressed by

the changes between the area with a non-zero DN value. In

addition, since the long-standing household registration system

in China restricts population mobility, using population

indicators as a proxy for urbanization would result in an

underestimation of urbanization levels; moreover, scholars

have demonstrated that NTL data reflect well the process of

urbanization (Liu et al., 2012). Therefore, this paper uses the

mean DN value in pixel of the cities as a proxy variable for

urbanization (lnurban1). The data are collected from the Global

Nighttime Light Database (GNLD), which is constructed based

on the National Oceanic and Atmospheric Administration

1 https://sites.wustl.edu/acag/datasets/surface-pm2-5/
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(NOAA), is derived from DMSP/OLS imagery data until

2013 and from VIIRS/DNB imagery data.

2.2.3 Control variables
To minimize omitted variable bias, we also set a series of

urban control variables as follows.

Foreign direct investment (lnFDI): Foreign direct investment

(FDI) could have both positive and negative effects on air pollution

(Zhang and Luo, 2021), corresponding to the “Pollution Heaven

Hypothesis” and the “PollutionHaloHypothesis” (Tang et al., 2022).

On the one hand, FDI will introduce high technology, and thus

reduce resource consumption and pollutant emissions; on the other

hand, for developing countries, foreign investment and trade have

become methods for developed countries to transfer energy-

intensive industries. For example, the trade between China and

developed regions leads to large net inflows of carbon emissions,

especially in the sectors of mechanical and electronic equipment and

chemical products (Wang et al., 2020), which will increase

environmental pollution. Therefore, FDI should be included in

the model, and this paper uses the annual accomplished foreign

investment and converts it to RMB according to the exchange rate of

the year, and the data are sourced from the China City Statistical

Yearbook.

Population density (lnPop): Population exacerbates energy

consumption and traffic congestion and has a negative impact on

air quality. We calculated the population per unit area of the city

precincts to express the population density and collected the data

from the China Urban Statistical Yearbook.

Transportation infrastructure (lnTrans): The better the

construction of transportation infrastructure, the more

effective it is in relieving traffic congestion and reducing air

pollution. However, excellent transportation infrastructure can

also cause a “siphoning effect” on transportation in neighboring

cities, increasing the pressure on the local road network and

nearly worsening air quality (Sun et al., 2019). This paper uses the

road freight volume to measure transportation infrastructure,

and the data sources are China City Statistical Yearbook and

China Transport Statistical Yearbook.

Urban green coverage (Green): Urban vegetation can absorb

particulate matter to some extent and alleviate air pollution. This

paper introduces urban green coverage to measure the degree of

greening in cities, and the data are downloaded from CEI data2.

Rail transit (Metro): The opening of urban rail transit has a

significant and robust pollution control effect (Liang and Xi,

2016). Rail transit as an important public transportation facility

can effectively replace the travel mode of road transportation

such as private cars, and thus reducing tailpipe emissions and

reducing air pollution. In this paper, the number of completed

metro miles is used as a control variable, and the data source is

the Rapid Report on Rail Transit reported by the Ministry of

Transport of China.

Climate variables: Wind speed (lnWind), rainfall (lnRain),

and temperature (lnTemp), as important factors of climate

change, can significantly affect the generation and dispersion

of air pollution such as haze. Meteorological data are obtained

from the China Meteorological Data Service Center3.

The economic development (lnPgdp): Economic

development could intensify the resource consumption of

residents and cause the gathering of polluting industries or

guide enterprises to upgrade their industries through the

income effect and provide more tax revenue for the

government to support environmental protection and

technology development, and thus affect air quality from both

sides. Therefore, we choose GDP per capita to control the impact

of economic development on air pollution, and the data are

downloaded from CEI data.

Industrial structure (lnSec): The initial stage of urbanization

is usually accompanied by industrialization, along with a large

amount of waste gas and wastewater emissions. If the economic

growth is mainly driven by the energy-intensive secondary

industry, the air pollution in that city is more serious (Yu,

2010). In order to control the impact of the industrial

structure on air quality, we selected the share of secondary

industry output in regional GDP as one of the control variables.

2.2.4 Mediator variables
In order to explore the mechanism of urbanization inhibiting

air pollution, we also test the mediating effect of two variables:

industrial structure upgrading (ISU) and energy consumption

structure (ECS). Referring to the previous studies, the ISU index

is calculated by the economic proportion of each industry and the

proportion of the employed population (Fu. 2010), and ECS is

represented by the proportion of natural gas use in total energy

(shao et al., 2019). All the data are collected from the China City

Statistical Yearbook and China Energy Statistical Yearbook.

2.2.5 Descriptive statistics
This paper focuses on the impact of urbanization on haze

pollution, and the data are municipal data which exclude county-

level cities. To avoid heteroscedasticity, the logarithmic

measurement is used for variables with absolute values.

Table 1 shows descriptive statistics for each variable.

In order to observe the changes in air pollution in the past

10 years more intuitively, we take four of these years as samples

to plot the changes of PM2.5 in prefectural-level cities in China4,

as shown in Figure 1. It can be clearly found that haze pollution

has obvious spatial aggregation, especially in North China and

2 https://ceidata.cei.cn/

3 http://data.cma.cn/

4 The map template is from the Map Technology Review Center of the
Ministry of Natural Resources (GS (2022) 4312)
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Sichuan Province. Therefore, the spatial correlation of haze

pollution should be analyzed.

2.3 Spatial correlation analysis

Tobler’s first law of geography states that all attribute values

on a geographic surface are related, with closer values being more

strongly related than more distant ones (Tobler, 1970).

Environmentally relevant variables often have strong spatial

dependence, for example, haze pollution in city i will spread

to neighboring city j with air flow, and haze in city j will in turn

increase air pollution in city i, exhibiting geographical clustering

with high-polluted area neighboring and low-polluted area

neighboring. On the other hand, there is also spatial

dependence on urban policies. For example, local government

officials will imitate neighboring cities to make similar decisions,

which are also understood as the congruence effect, and this

phenomenon is not interrupted by provincial border boundaries,

but decays with an increasing geographical radius (Deng and

Zhao, 2018). Therefore, the spatial dependence of both

explanatory and explanatory variables should be considered in

the model, as reflected in the corresponding inclusion of spatial

lagged terms of the explained and explanatory variables. We set

Eq. 3 as a spatial panel equation.

lnAPi,t � β0 + ρ1WijlnAPi,t + β1lnurban1,i,t + β2Wijlnurban1,i,t

+ αXi,t + γWijXi,t + μi + τt + εi,t

(4)
Eq. 4 is a spatial panel Durbin model (SDM) with the

spatial lagged terms of the explanatory variables and

explanatory variables, and the validity of the model setting

in the next section will be checked. In the Eq. 4, W denotes the

spatial weight matrix, which evaluates the dependence

between the cities and their neighboring areas. Also, a

geographic distance matrix is constructed to describe the

dependence, that is, the closer the geographic distance, the

closer the spatial weights of cities are to 1. The weight

elements Wij are as follows:

Wij �
⎧⎪⎪⎨
⎪⎪⎩

1
di,j

, i ≠ j

0 , i � j

(5)

where di,j represents the geographical distance between city i and

city j and calculated by their latitudes and longitudes.

2.4 Spatial autocorrelation test and model
identification

2.4.1 Spatial autocorrelation test
To test the spatial autocorrelation of air pollution, we use the

Moran’s I index, which is given by

I � n

∑n
i�1∑n

j�1wi,j
· ∑

n
i�1∑n

j�1wi,j(xi − �x)(xj − �x)
∑n

i�1(xi − �x)2 , (6)

where n denotes the number of cities, Wij is the spatial weight

matrix, and x is the annual average concentration of PM2.5. The

Moran’s I describes the autocorrelation of the spatial distribution

of variables in the range of [−1, 1]. When the Moran’s I is

significantly greater than zero, there is a positive correlation of

PM2.5 concentrations between cities, that is, high-pollution areas

TABLE 1 Descriptive statistics of variables.

Variable Variable meaning Unit Obs Mean Std.DEV Min Max

lnAP Annual mean of PM2.5 μm 2,770 3.725 0.359 1.150 4.687

lnUrban1 City light brightness value — 2,770 -0.975 1.412 -4.819 3.038

lnWind Urban average annual wind speed m/s 2,770 0.733 0.228 0.006 1.426

lnRain Urban average annual rainfall mm 2,770 6.822 0.538 4.074 7.917

lnTemp Urban mean annual temperature ℉ 2,770 4.050 0.157 3.395 4.346

lnFDI Foreign direct investment 10,000 Yuan 2,770 11.530 2.847 0 16.830

Metro Metro operating mileage km 2,770 12.870 64.570 0 809.900

Green Urban green coverage % 2,770 0.399 0.052 0.085 0.648

lnPop Urban population coverage person/km2 2,770 7.657 1.080 3.894 11.040

Inv Percentage of green inventions in the total number of patents obtained in the region % 2,770 0.120 0.064 0.014 0.771

lnTrans Road freight volume 10,000 tons 2,770 9.026 0.865 5.361 13.230

lnPgdp Per capita GDP Yuan 2,770 10.667 0.581 8.881 13.056

lnSec Proportion of the secondary industry in GDP % 2,770 3.834 0.276 2.330 4.497

ISU Industrial structure upgrading index — 2,720 6.505 0.347 5.517 7.836

ECS Energy consumption structure % 2,720 0.157 0.141 0 0.851
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are adjacent to high-pollution areas. However, if the Moran’s I is

significantly less than zero, there is a negative spatial correlation

of high-pollution areas are adjacent to low pollution areas. The

test results in Table 2 show that the Moran’s I from 2010 to

2019 is positive at the 1% significance level, and the scatter plots

in Figure 2 also represent the forms of spatial linkages between

cities and their neighboring regions. Therefore, the spatial

dependence of air pollution exists among cities, it is

reasonable to consider the spillover effect and choose the

spatial econometric model.

2.4.2 Model identification
To determine the optimal spatial model for the sample data,

we follow the method of Elhorst (2014) and identify the model

FIGURE 1
Distribution of PM2.5 in China. (A) PM2.5 distribution in 2010. (B) PM2.5 distribution in 2013. (C) PM2.5 distribution in 2016. (D) PM2.5 distribution
in 2019.
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through a “general to specific” step, and the test results are shown

in Table 3.

First, we test the spatial effects with the residuals of OLS

regression of Eq. 3.

The results show that, for both spatial errors and spatial lags,

LM and robust LM tests reject the original hypothesis that the

model is not spatially correlated. In this situation, setting up a

spatial Durbin model (SDM) is more robust (LeSage and Pace,

2009).

Second, we conducted a Hausman test to determine whether

the fixed effect (FE) model or random effect (RE) model should

be selected. With the null hypothesis H0: random effect is the

preferred model, the chi-square statistic is 119.02, which rejects

the H0 at 1% significance level, so the fixed effect model should be

used. In addition, considering that the data are collected from

TABLE 2 Moran’s I for PM2.5.

Variable Year Moran’s I Z p value

PM2.5 2010 0.155 21.671*** 0.000

2011 0.136 19.128*** 0.000

2012 0.125 17.569*** 0.000

2013 0.134 18.873*** 0.000

2014 0.135 19.024*** 0.000

2015 0.166 23.082*** 0.000

2016 0.167 23.184*** 0.000

2017 0.137 19.437*** 0.000

2018 0.148 20.694*** 0.000

2019 0.150 21.060*** 0.000

***p < 0.01, **p < 0.05, *p < 0.1.

FIGURE 2
Moran’s index scatter plots of PM2.5 in Chinese cities. (A) PM2.5 in 2010. (B) PM2.5 in 2013. (C) PM2.5 in 2016. (D) PM2.5 in 2019.
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277 cities in 10 years, we believe it is necessary to control the

heterogeneity between cities and years, so the fixed effect

controller for both cities and years is the optimal choice,

meanwhile, the LR test shows that the two-way fixed effect

model outperforms either time or individual fixed effect

model at 1% significance level.

Finally, we test whether the spatial Durbin model (SDM)

could degenerate into a spatial error model (SEM) or a spatial

lag model (SAR) (Elhorst, 2014). First, we test whether it can

reduce into a spatial lag model (SAR). For the original

hypothesis H0: β2 � γ � 0, the Wald test statistic is 217.21,

which rejects the original hypothesis at 1% significance, so the

SDM model cannot reduce into a SAR model; second, we test

whether it can reduce into a spatial error model. For the

original hypothesis H0: γ � −ρ1α and β2 � −ρ1β1, the Wald test

statistic is 140.28, which rejects the original hypothesis at 1%

significance level, and the SDM model cannot reduce to the

SEM model. In summary, the SDM model of model 4) is

appropriate for our problem.

3 Model result and conclusion

3.1 Estimation results

The parameters estimators of the spatial Durbin model

(SDM) and dynamic spatial Durbin model (SPDM) were

obtained by the quasi-maximum likelihood method

(QMLE) (Yu et al., 2008) and compared with those of the

two-way fixed effects model (two-way FE) and the spatial

autoregressive model (SAR). Many researchers argued that a

special understanding of coefficients with spatial lag terms is

needed (Anselin and Legallo 2006; Kelejian et al., 2006).

LeSage and Pace. (2009) proposed that the average direct,

indirect, and total effect are understood as marginal effects of

explanatory variables when compared with the non-spatial

model (Belotti et al., 2017). The calculation for the direct and

indirect effects is given in the following equations:

Direct effect:

[(Ι − ρW)−1(β1kΙN + β2kW)]�d. (7)

Indirect effect:

[(Ι − ρW)−1(β1kΙN + β2kW)]rsum, (8)

where β1k is the coefficient of the explanatory variables and β2k is

the coefficient of the spatial lag term of the explanatory variables;

Ι is the unit matrix and �d denotes the mean of the diagonal

elements of the matrix; and rsum denotes the mean of the row

sum of the non-diagonal elements of the matrix. We report the

regression results of the three models in Table 4.

Table 4 presents the effects of urbanization on air pollution,

with the estimated coefficients of spatial models listed in columns

(1)–(9) and compares with the spatial models, and the estimation

results of the fixed effect (FE) model are shown in column (10). In

general, the addition of the spatial lag term in the model does not

affect the sign of the core explanatory variables, but the

magnitude of the estimated coefficients, that is, the non-

spatial model will overestimate the impact of urbanization on

air pollution. The spatial lagged terms of the explanatory

variables (WlnAPs) are different from zero at the 1%

significance level in all three spatial models, reflecting the

spatial dependence of “high–high” and “low–low”

agglomeration, which is also consistent with the pattern of

haze distribution in Figure 1. The coefficient of WlnAP in

SDM is 0.9690, which implies for every 1% increase in the

average PM2.5 of neighboring cities, the PM2.5 of local cities

increases by more than 0.97% net of other explanatory variables.

However, the coefficients of SDM (0.9690) and SPDM (0.9624)

are quite different from those of SAR (2.3714), we believe that the

spatial lagged terms of the explanatory variables (e.g.,WlnpGDP)

help explain the spillover effects of air pollution from the

neighboring cities. Different from the SAR model, which has

the same proportion of direct and indirect effects, the SDM

model is more flexible in describing spatial spillovers (Elhorst

2014). Meanwhile, the time lag term of the explained variable

(L.lnAP) is also significantly positive at 1% level, indicating that

haze pollution is not only spatially dependent, but also time-

dependent. Since the dynamic Durbin model provides more

enriched information than other models, this study mainly

focuses on the estimation results of it.

In terms of explanatory variables, the long-run direct effect in

column (4) shows that the urbanization significantly inhibits air

pollution, surprisingly; the indirect effects of urbanization are as

strong as the direct effects, suggesting that urbanization can

reduce air pollution in both local and surrounding cities. We

believe the results derived from the following reasons: first, the

urbanization level of regional central cities, such as Beijing,

Shanghai, Wuhan, and Chengdu, is generally high. The

siphon effects of the industry in those cities promote the

merger and reorganization of small enterprises in the

surrounding area and reduce unit pollution emissions through

TABLE 3 Model inspection results.

Indicator test Statistics p value

Moran’s I 79.743*** 0.000

LM-lag 4,992.664*** 0.000

LM-err 5,993.417*** 0.000

R-LM-lag 350.790*** 0.000

R-LM-err 1,351.543*** 0.000

Wald test (SDM versus SAR) 217.21***

Wald test (SDM versus SEM) 140.28***

***p < 0.01, **p < 0.05, *p < 0.1.
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TABLE 4 Model estimation results.

Explanatory
variable

SDM Dynamic_SDM SAR FE

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total

lnUrban1 −0.0271***
(−5.03)

−0.8633* (−1.76) −0.8903* (−1.80) −0.0465***
(−6.94)

−0.0435*** (−6.29) −0.0900***
(−6.77)

−0.0137***
(−3.42)

0.0230*** (3.39) 0.0093*** (3.33) −0.0521***
(−8.21)

lnPGDP 0.0278** (0.217) 1.2451 (0.50) 1.2728 (0.51) 0.0346** (2.01) 0.2688 (1.57) 0.3034* (1.82) 0.0247*** (2.83) −0.0414*** (−2.85) −0.0167***
(−2.86)

0.0020* (1.92)

lnPop 0.0266*** (2.74) 4.2520* (1.71) 4.2786* (1.71) 0.0150*** (2.76) 0.3265*** (3.17) 0.3415*** (3.30) 0.0116*** (3.58) −0.0194*** (−3.59) −0.0078***
(−3.59)

0.0104** (2.38)

lnTrans −0.0209** (−2.02) −4.3869 (−1.61) −4.4078 (−1.62) −0.0073 (−1.36) −0.4013*** (−3.89) −0.4086***
(−3.95)

−0.0016 (−0.49) 0.0026 (0.49) 0.0011 (0.49) −0.0118***
(−2.71)

lnFDI 0.0039** (2.18) 0.7571* (1.74) 0.7610* (1.75) 0.0019 (1.49) 0.0420* (1.89) 0.0439** (1.98) 0.0010 (1.36) −0.0017 (−1.36) −0.0007 (−1.36) 0.0020** (1.92)

lnSec −0.0255 (−0.96) −11.4666* (−1.72) −11.4921*
(−1.71)

0.0145 (0.87) −0.6415* (−1.87) −0.6270* (−1.82) 0.0236** (2.29) −0.0396** (−2.29) −0.0160** (−2.29) 0.0168 (1.52)

Green −0.0209** (−2.02) −4.3869 (−1.61) −4.4078 (−1.62) 0.0445 (0.73) 0.0417 (0.72) 0.0861 (0.73) −0.0016 (−0.49) 0.0026 (0.49) 0.0011 (0.49) −0.0118***
(−2.71)

lnMetro −0.0005** (−2.56) −0.0786 (−1.56) −0.0791 (−1.56) −0.0001* (−1.87) −0.0002 (−0.10) −0.0004 (−0.17) −0.0002***
(−4.12)

0.0003*** (4.13) 0.0001*** (4.12) −0.0002 (−1.31)

WlnAP(ρ) 0.9690*** (99.65) 0.9624*** (82.68) 2.3714*** (80.29)

L.lnAP 0.3169*** (14.07)

L.WLnAP −0.6311*** (−6.06)

Individual fixed Y Y Y Y

Time fixed Y Y Y Y

Control variable Y Y Y Y Y Y Y Y Y Y

Observations 2,770 2,770 2,770 2,770 2,770 2,770 2,770 2,770 2,770 2,770

***p < 0.01, **p < 0.05, *p < 0.1.
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the economy scale effect. Second, with the overall improvement

of the regional urbanization level, cities change from individual

development to an integrated regional development model led by

urban agglomerations (Ruining et al., 2021), the resources can

achieve higher allocation efficiency, which in turn improves the

level of haze governance in the whole region (Zhang et al., 2020).

Finally, due to the spatial spillover effects of urbanization, the

increased level of urbanization in the surrounding area can drive

the development of local urbanization, which in turn reduces

local air pollution.

Regarding the control variables in Table 4, the direct and

indirect effects of lnPGDP are both positive, indicating that

economic development still comes at the cost of

environmental pollution. Similarly, the direct and indirect

effects of lnPop are positive as well, due to the additional

demand for transportation, housing, and resource

consumption caused by population clustering, and the strong

spatial correlation of China’s population, that is, “dense in the

east and sparse in the west,” which makes the indirect effect of

population significantly positive in the model.

The positive direct effect of FDI indicates that the

introduction of foreign capital is still the cause of urban

pollution in China and confirms the “Pollution Halo

Hypothesis.” FDI affects the host country’s environment

mainly through the scale, structural, and technical effects

(Grossman and Krueger, 1995). The scale effect indicates

that FDI will affect environmental pollution by expanding

the scale of production, as well as on capital accumulation and

taxation; the structural effect shows that FDI will affect the

industrial structure of the investing country, because foreign

companies are more competitive in technology and

management, which will compress the survival of local

companies; and the technology effect shows that the

technology introduced into host country by FDI help

reduce the pollution emissions. Developed countries with

strict environmental regulations tend to develop clean

industries and shift pollution-intensive industries to

developing countries through foreign direct investment

(Wang et al., 2020), and FDI in China has shown more

scale and structural effects than technology effects which

could compensate for the environmental pollution. The

positive indirect effect of FDI in column (5) could result

from a “learning effect” in regional policy decision (Du

et al., 2022), cities with lenient environmental policies can

attract more foreign investment and are more likely to achieve

the target of political performance such as GDP.

The secondary industry (lnSec), mainly including energy

supply and manufacturing, theoretically increases air

pollution. However, the direct effects in columns (1) and (4)

are insignificant. We argue that in the context of China’s

smallholder economy, agricultural production processes such

as straw burning have caused serious air pollution, and the

replacement of the secondary industry to the first industry

would not cause serious additional pollution. In addition, the

Chinese government implemented an industrial transformation

plan from labor-intensive industries to environmental friendly

development during 2010–2019 and guided the industrial

upgrading of enterprises through environmental policies, so

the development of the secondary industry significantly

reduced the haze pollution in the surrounding areas with a

coefficient −0.6415.

The direct effect of rail transit (metro) shows a positive

impact on air quality by easing road congestion and reducing

vehicle exhaust emissions. But the traffic infrastructures

(lnTrans) can also effectively alleviate local traffic congestion,

and its indirect effect (−0.4013) is significantly different from the

direct effect (−0.0073). On the one hand, a strong substitution

relationship between roads and other transportation facilities,

such as the replacement of the freight function of the

surrounding urban road network with local high-quality

transportation facilities, can reduce transportation time and

cost, and thus reduce air pollution in the surrounding areas.

On the other hand, local road infrastructure investments,

investments with peer effects among cities, will drive similar

investments in surrounding areas, and thus alleviate the traffic

pressure in the region.

3.2 Robustness analysis

To verify the robustness of the model, we re-estimate the

model using three methods, which include replacement of the

explanatory variables, replacement of the core explanatory

variables, and replacement of the spatial weight matrix.

3.2.1 Replacing the explained variable
In 2012, China’s Ministry of Environmental Protection

issued a new ambient air quality standard (GB3095-2012),

using the air quality index (AQI) to describe the air quality of

cities The AQI is based on six atmospheric pollutants: sulfur

dioxide, nitrogen dioxide, carbon monoxide, ozone, particulate

matter with a particle size of 10 microns or less (PM10), and

particulate matter with a particle size of 2.5 microns or less

(PM2.5). Compared with PM2.5, the AQI can reflect urban air

pollution more comprehensively. In addition, in September 2013,

China’s state council issued the Action Plan of Air Pollution

Prevention and Control, followed by corresponding pollution

control policies in various cities. In order to test the robustness of

regression results under the policy shock, we used the sub-data

from 2013 to 2019 and the annual average AQI index as the

explained variable for the regression, as shown in Table 5 (1).

The coefficient of the WlnAQI is 0.918, which is close to the

result of baseline regression, indicating that AQI has a similar spatial

spillover effect and can be effectively used as a surrogate variable of

urban air pollution. Urbanization, the core explanatory variable, still

significantly reduces air pollution. Although the significance of some
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control variables decreases due to the reduction of samples, the signs

of regression coefficients are basically unchanged, which proves the

robustness of the model.

3.2.2 Replacing the core explanatory variables
We use the population proportion and the urban expansion

variable as alternative variables to the core explanatory variable

ln urban1, where ln urban2 represents the urban population

proportion and ln urban3 represents the ratio of the non-zero

nighttime light pixels to the total pixels of a city. The regression

results are shown in columns (2) and (3) of Table 5. The signs and

significance of explanatory variables keep robust.

3.2.3 Replacing the spatial weight matrix
We also constructed the nested matrix with geographical and

economic factors for the robust test. Compared with the

geographic distance matrix, the nested matrix takes the

economic connection between cities into consideration. The

matrix is constructed as follows:

W2 � ω ·W1 + (1 − ω) ·W3, (9)
whereW3 is the economic distance matrix andW3ij is the inverse

of the absolute difference of per capita GDP between regions i

and j. ω is the weight of matrix nested and is set as 0.5 (Shao,

2019). The results are shown in Table 5 column (4). The

coefficients are robust except for the Wlnpm25 changes due

to the change in the matrix.

TABLE 5 Regression results of replacing the interpreted variable.

Variables (1) (2) (3) (4)

Replacing the explained
variable lnAQI

Explanatory variable ln urban2 Explanatory variable ln urban3 Replace
weight matrix W3

ln urban1 −0.0848 (−0.08) −0.0490*** (−9.76)

ln urban2 −0.0546* (−1.76)

ln urban3 −0.0367*** (−4.64)

l npGDP −0.2744 (0.05) 0.0124 (0.98) 0.0249** (1.98) 0.0008 (0.08)

lnFDI −0.0046 (−0.06) 0.0049* (1.81) 0.0042** (2.23) 0.0020** (2.09)

lnpop 0.0705 (0.05) 0.0169** (2.21) 0.0230*** (2.63) 0.0098** (2.09)

lnTrans 0.2705 (−0.04) −0.0238** (−2.16) −0.0221** (−2.05) −0.0119*** (−3.04)

lnSec −0.0375 (−0.88) −0.0248 (−0.91)

Green 0.2226 (1.57) 0.0000 (0.90)

lnMetro −0.0005**(−2.06) −0.0005*** (−2.62)

Ρ 0.9253*** (31.26) 0.9695***(101.05) 0.9692*** (100.04) −0.1273*** (−3.51)

Control variable Yes Yes Yes Yes

Observations 1,662 2,770 2,770 2,770

***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 6 Regression results based on systematic GMM.

Variable Coef Z

L.lnPM2.5 0.1541*** 20.86

ln urban1 −0.0343*** −10.10

lnpGDP 0.0258*** 3.88

lnFDI 0.0055*** 12.82

ln pop 0.0546*** 10.97

lnTrans −0.0031 −0.81

ln Sec −0.1259*** −12.34

Green 0.0527 1.34

Metro 0.0000 0.30

W · lnPM2.5 1.3449*** 68.22

W · ln urban1 0.0571*** 8.69

W · lnpGDP −0.0435*** −2.18

W · lnFDI −0.0175*** −5.53

W · ln pop 0.1026*** 7.57

W · lnTrans 0.0629*** 4.04

W · ln Sec −7.033*** −21.72

W · Green −0.3491 −1.43

W ·Metro 0.0011*** 2.76

Test statistics Statistics p value

Sargan test 272.0520 0.67

AR (1) test −8.23 0.00

AR (2) test 1.24 0.21

***p < 0.01, **p < 0.05, *p < 0.1.
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3.4 Endogeneity analysis

The spatial dynamic Durbin model (SPDM) can solve the

endogeneity problem caused by the spatial lagged term of the

explanatory variable, the temporal lagged term of the explanatory

variable, and the omission of explanatory variables during the

model setting. In addition, nighttime lighting data (NTL) selected

as a proxy variable for urbanization also ensure the exogeneity of

the core explanatory variables. However, the endogeneity arising

from the interplay between explanatory and explained variables

still cannot be ruled out. In fact, not only urbanization affects air

pollution, but air pollution may also affect urbanization in turn

(Gan et al., 2020). Therefore, we use the first-order time-lagged

terms of the explanatory and core explanatory variables as

instrumental variables (Han and Yang, 2020; Wang et al.,

2022) of a systematic GMM approach (Lee and Yu 2014) and

choose the population growth rate (Shao et al., 2019) as an

instrumental variable of urbanization to estimate the model, and

the results are shown in Table 6.

The regression results in Table 6 show that the p value of

Arellano–Bond AR (1) is less than 0.1, and that of AR (2) is

greater than 0.1, indicating that there is no second-order

autocorrelation in the series. The p value of the Sargon over-

identification test is greater than 0.1, rejecting the original

hypothesis that the instrumental variables are invalid.

Therefore, the regression results in Table 6 are considered

convincing. The estimation coefficients of urbanization are

still significantly negative after excluding the endogeneity of

mutually causal. The regression results of other explanatory

variables remain basically unchanged, confirming the

conclusion that urbanization attenuates air pollution.

3.5 Analysis of the mediation effect

In order to explore the mechanism that urbanization inhibits

air pollution, we intend to test whether the industrial structure

upgrading (ISU) and energy consumption structure (ECS) can

act as the mediator variable between urbanization and air

pollution, following the approach of Jin et al. (2022) and Yu

(2022). We follow the causal steps proposed by Baron and Kenny

(1986), which are generally adopted when setting the mediation

models. The steps are shown in Figures 3A,B.

In Figure 3A, C is the path which shows that urbanization

influences air pollution. Since the mediator is not involved, C

represents the total impact. Figure 3B shows the relationship

between urbanization and air pollution after controlling the

mediator variable. Also, path A represents the impact of

urbanization on the mediator, path B represents the impact of

the mediator on air pollution, and both A and B form the indirect

impact. The path C′ represents the direct impact of urbanization

on air pollution after controlling the mediator variable.

Therefore, total impact (C) = indirect impact (AB)+ direct

impact (C’). To test the existence of indirect impact (AB), the

following models are constructed:

lnPM2.5 � θ0 + β0 lnUrban + φX + ε, (10)
M � θ1 + β1 lnUrban + φX + μ, (11)

ln PM2.5 � θ2 + β2 lnUrban + γ1M + φX + τ (12)

We use the dynamic spatial Durbin model (SPDM) to

estimate Eqs. 10–12, and the direct effects are calculated for

each equation referred to Eq. 7. Coefficients β0, β1, β2 are

significant, and after adding the intermediary variable M, β2
compared with β0 is significantly smaller, indicating a mediating

effect. The estimation results in Table 7 show that both ISU and

ECS havemediation effects, and we consider their mechanisms as

described below:

For industrial structure upgrading (ISU), the Petty–Clark

theorem (Clark 1940) points out that urbanization and

industrialization proceed simultaneously: the labor force first

transfers from the primary industry to the secondary industry,

then to the tertiary industry. In China’s Urbanization process, a

large number of rural surplus labor forces with lower marginal

productivity to enter the urban industrial sector with higher

productivity, and in later stages, the tertiary industry replaces the

secondary to become the leading industry, which is more

environmentally friendly than the secondary industry.

Moreover, the upgrading of the industrial structure will

promote the large-scale and intensive use of energy at the

FIGURE 3
The path of mediation effect. (A) The total impact. (B) The
direct and indirect impact.
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macro level and lead to innovations in production technologies at

the micro level, thereby reducing air pollution in energy

consumption and production processes.

For the energy consumption structure (ESC), we believe that

on the one hand, urbanization can change residents’ energy

consumption habits, reduce the use of highly polluting energy

such as coal, and increase the use of clean energy such as natural

gas and solar energy. On the other hand, urbanization enhances

the efficiency of energy use. For example, the government could

set up industrial zones to conduct unified supervision over

energy-intensive enterprises around the city, so as to improve

energy utilization efficiency and pollution treatment efficiency,

and thus reduce pollution.

3.6 Regional heterogeneity

Urbanization reduced air pollution nationwide, but there

is regional variability in the degree of urbanization, for

example, urbanization is significantly greater in the east

and central regions than that in the west, we are interested

in regional variability in the impact of urbanization on air

quality in China, so we divided the sample into three groups:

central, eastern, and western for heterogeneity analysis, and

the regression result as shown in Table 8.

From the first row of Table 8, WlnPM2.5 is significant at

1%, the spillover effect of air pollution in the western region is

weaker than that in the other region. The reasons for this

could be twofold: first, the mountains and basins in the west

impede air flow and haze dispersion; second, the lack of large-

scale industrial clusters in the west makes regional aggregation

of pollution less frequent, which weakens the spatial

dependence of the haze.

In order to test the nonlinear relationship between air

pollution and urbanization, we add the quadratic ln (urban1)2
and tertiary ln (urban1)3 terms of the urbanization variable in the

regressions. From the columns (2), (4), and (5) in Table 6, the

coefficients of the quadratic terms are significantly different from

zero in both eastern and central regions, indicating the nonlinear

relationship between urbanization and air pollution in these two

TABLE 7 Analysis of the mediating effect.

Variable Total effect
C

Indirect effect
A

Direct effect
C9

Indirect effect
A

Direct effect
C9

M = ISU M = ECS

lnUrban −0.0465*** (−6.94) 0.0411*** (6.61) −0.0240*** (−4.50) 0.0146*** (2.26) −0.0447*** (−6.30)

Mediator variables −0.0787** (−1.95) −0.0858** (−1.93)

Observations 2,720 2,720 2,720 2,720 2,720

***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 8 Heterogeneity analysis.

Variable Eastern Central section Western Eastern Central section Western

(1) (2) (3) (4) (5) (6)

W · lnPM2.5 0.906*** (32.81) 0.931*** (43.82) 0.763*** (11.53) 0.906*** (32.66) 0.929*** (42.48) 0.759*** (11.36)

ln urban1 0.015 (1.17) 0.034*** (3.07) −0.033** (−2.00) 0.013 (1.00) 0.048*** (4.04) −0.028* (−1.65)

ln 2(urban2) 0.057 (1.49) 0.024* (1.82) −0.003 (−1.19) 0.008*** (4.39) 0.014*** (8.32) −0.003 (−1.33)

W · ln urban1 0.080** (2.09) −0.078*** (−2.94) −0.017 (−0.58) 0.064* (1.66) −0.066*** (−2.59) −0.023 (−0.80)

lnGDP −0.001 (−0.06) 0.004 (0.26) −0.013 (−0.47) 1.673 (0.73) 4.501* (1.90) 9.189*** (3.33)

ln 2(GDP) −0.142 (−0.68) −0.383* (−1.70) −0.908*** (−3.42)

ln 3(GDP) 0.004 (0.63) 0.011 (1.51) 0.030*** (3.50)

Lnsecond −0.012 (−0.60) 0.028** (2.05) 0.031 (1.44) −0.011 (−0.54) 0.028* (1.32) 0.028 (1.32)

Control variable Y Y Y Y Y Y

Observations 1,080 1,110 570 1,080 1,110 570

R-squared 0.197 0.208 0.154 0.196 0.278 0.153

***p < 0.01, **p < 0.05, *p < 0.1.
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regions. The coefficients of both primary and secondary terms

are significantly positive in the central cities, indicating that

urbanization accelerates the rate of air pollution. Compared

with the coefficient of the industrial structure (lnSec) in

eastern cities (−0.012), the sign of lnSec in central cities is

positive (0.028), which indicates the industrial scale effect of

central cities is offset by other factors during the urbanization

process. In column (6), the coefficient of lnUrban1 in western

cities is negative (-0.028) at 10% significance, while the coefficient

of the secondary term is insignificant, and the nonlinear

relationship is difficult to determine.

Referring to the environmental EKC hypothesis, we are also

interested in the relationship between the economic growth and

air quality, so we add the quadratic and tertiary terms of lnpGDP

in columns (4), (5), and (6). The regression results confirm the

existence of a nonlinear relationship between GDP and air

pollution. In columns 5) and (6), the primary term is positive

and the secondary term is negative in both the central and

western cities, and the tertiary term is significantly positive in

the western cities, which is consistent with the “N-shaped” curve

of the EKC hypothesis, the coefficient in the western cities

indicates that the economic growth of the western cities still

depends on the high-pollution industries. Although the haze

pollution in the eastern cities is not significant, but the coefficient

of lnSec (−0.01) is negative, we believe that in the eastern region,

“environmentally friendly” investment and intensive green

industrial development have reduced the pressure of economic

growth on air quality.

4 Conclusion and discussion

4.1 Research conclusion

Based on the panel data of 277 prefecture-level cities in China

from 2010 to 2019, we use the spatial panel Durbin model (SDM)

to analyze the mechanism and regional heterogeneity of

urbanization on air pollution and choose PM2.5 land lights

(NTL) as the core explained and explanatory variables. The

main conclusions are as follows:

(1) During the time span of the sample, the urbanization had a

significant improvement in air quality. The air quality will be

improved by 0.028% with every 1% improvement in

urbanization. This conclusion is still valid under a series

of robust tests.

(2) Population and traffic are two major factors that affect air

quality in the process of urbanization. The increase in the

population density worsens the air quality, and every 1%

increase in the population density causes the air quality to

decline by 0.019%. The improvement of traffic can

significantly affect the air quality. Every 1% optimization

of the traffic road variable (lnroad) can cause the haze to

decline by 0.021%. The rail transit variable (metro) has left a

deep impression on us. Although only 38 cities have opened

rail transit by 2019, the coefficient of metro is significant in

all samples, and the rail transit plays an important role in

improving air quality by alleviating urban congestion.

(3) Industrial structure upgrading (ISU) has a mediating effect

on urbanization and air pollution. Urbanization not only

induces the changes in resident demand, but also upgrades

the industrial structure during the demand adjustment.

Additionally, ISU helps in optimizing production,

adjusting the ratio of resource allocation, and reducing

the input of high-carbon material such as coal and oil.

Moreover, there are obvious differences between the

energy demand and consumption in primary, secondary,

and tertiary sectors. The upgrade of the industrial structure

will reduce the proportion of primary sectors including

mining and agriculture, increase the proportion of the

tertiary sector, directly reduce the rigid demand for

energy in production, and control the rapid growth of

energy consumption. In addition, by optimizing resource

allocation, the upgrading of the industrial structure can

speed up the transfer of economic factors to high-

productivity sectors like high-tech industry, promoting the

coordinated development of various industries, and promote

green and high-quality economic development, and thus

reduce air pollution.

(4) From the perspective of regional heterogeneity, the influence

mechanism of urbanization in eastern, central, and western

China is different. Due to the deepening and high-quality

development, there is a tendency of “decoupling” between

urbanization and air pollution in the eastern region. In the

central and western regions, there is a nonlinear relationship

between urbanization and air pollution. The regression

results of GDP per capita, economic growth in the central

region worsens air quality, but the quadratic coefficient

ln 2(GDP) is negative, which indicates that the trend is

gradually decreasing. The first-order and second-order

coefficients of urbanization variable ln urban1,

ln 2(urban2) are positive, indicating that urbanization is

accelerating the deterioration of air quality. We believe

that the impact of industrial expansion, traffic congestion,

and increased resource consumption brought by

urbanization in central China is greater than that of

industrial upgrading and policy improvement. At present,

the economic development in the western region is still at

the cost of sacrificing the environment. However, as the

western stage is still in the initial stage of development, it has

not reached the threshold of environmental carrying

capacity. As a result, the policy, financial support, and

initial scale effect of the industry brought by urbanization

can improve the air quality of cities, resulting in the

phenomenon that the air quality in the western region

improves with urbanization.
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4.2 Discussion

The empirical results of this paper indicate that urbanization

reduces air pollution; however, there are still shortcomings in the

study process that limit the reliability of the conclusion. In order

to describe the spatial interaction effect, we built a spatial weight

matrix based on the geographical distance. However, we use an

inverse distance matrix to focus on describing the geographical

relationship between cities, while ignoring the economic and

social links between cities. As a result, it is difficult to estimate the

spillover effects of variables related to economic policies, which

needs to be improved in our next work. In general, the use of

dynamic panels can effectively overcome the endogeneity

problem of missing important explanatory variables, but

considering the availability of data, it is difficult to select

panel data with a longer time span, resulting in insignificant

dynamic panel estimating results. For further research, it is

necessary to find variable groups with a time span. From the

whole sample of this paper, urbanization has significantly

improved the air pollution, but from the regional sample,

except that urbanization in the west can significantly reduce

haze pollution, urbanization in the middle is still positively

related to haze pollution, while urbanization in the east is not

significantly related to haze pollution. The reason for such

unexpected phenomenon is that when conducting regional

heterogeneity analysis, spatial dependence among cities in

different regions will be ignored, and there are many more

adjacent cities in the eastern and central regions than those in

western regions, thus causing an underestimation of the spillover

effect of central and eastern cities.

From the analysis of the mediating effect, we believe that

high-quality urbanization is the fundamental way to avoid

economic growth constrained by air pollution. As the central

region has undertaken some heavy pollution industries in the

eastern region, it has shown the trend of the environment for the

economy in recent years. It should be corrected by encouraging

scientific and technological innovation and strengthening policy

guidance. The western region is in the primary stage of

urbanization, so we should improve the development

orientation in a timely manner, such as controlling the

development of resource industries in a moderate manner,

promoting tourism, big data, and other environment-friendly

industries, and reducing dependence on heavily polluting

development approaches. Eastern cities should continue to

improve transport infrastructure, increase R&D investment to

alleviate air pollution caused by population aggregation, and

better utilize the positive externality of the urban agglomeration

effect to achieve sustainable development (Belotti et al., 2017;

China Energy Statistical Yearbook, 2022; Gan et al., 2020; BNDT,

2022; Stats Gov, 2022).
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