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With the rapid economic development in recent years, China has increased its

investment in infrastructure construction, and the construction industry has

become a significant contributor to China’s carbon dioxide (CO2) emissions.

Therefore, carbon emission reduction in the construction industry is crucial to

achieving the goal of “carbon peaking and carbon neutrality” as soon as

possible. However, few studies have investigated the factors influencing CO2

emissions from the construction industry in terms of spatial and temporal

differences. To address this gap, we first improve the calculation method for

the construction industry’s life-cycle assessment (LCA). The geographically and

temporally weighted regression (GTWR)model is then utilized to provide insight

into the spatio-temporal heterogeneity of the various factors influencing CO2

emissions across other regions and times. The results show that: 1) CO2

emissions from the construction industry in China increased rapidly from

576.5 million tons (Mt) in 2004–3,230 Mt in 2012 and then gradually

decreased to 1998.51 Mt in 2020; indirect CO2 emissions accounted for

more than 90% of the total CO2 emissions after 2008. 2) There is a solid

global positive correlation between CO2 emissions from the construction

industry in China during most of the time, and the spatial distribution of CO2
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emissions shows a northeast-southwest pattern, with the center of gravity

gradually shifting from central China to the southwest. 3) Economic output and

industrial agglomeration are positive factors for the increase of CO2 emissions

from the construction industry; and urbanization level, production efficiency,

and energy efficiency are inhibiting factors for the increase of CO2 emissions

from the construction industry. But the contribution and trend of each

influencing factor differed significantly across time and regions, showing

substantial spatial and temporal heterogeneity. Our findings provide a

scientific basis for the Chinese government to implement a regional carbon

reduction strategy for the construction industry.

KEYWORDS

CO2 emission, construction industry, LCA, GTWR, spatial -temporal heterogeneity,
influencing factor

1 Introduction

Global warming caused by greenhouse gases is a global

environmental problem that has become a significant threat to

the survival of humans and other species (Lu et al., 2020). Among

the many greenhouse gases, CO2 accounts for about 70% (Li and

Chen, 2020)and is the most important anthropogenic

greenhouse gas in the environment (Li et al., 2021). To fight

global warming, it is necessary to ensure that countries

worldwide effectively reduce CO2 emissions (Lu et al., 2020).

With rapid urbanization and economic growth, China’s CO2

emissions are enormous and continue to grow, nearly doubling

those of the United States and reaching one-third of the world’s

emissions (Lu et al., 2016; Ma et al., 2019; Zhang et al., 2022). The

Chinese government is taking active measures to control CO2

emissions (Du et al., 2018). Chinese President Xi Jinping pledged

at the UN General Assembly and Climate Summit in 2020 that

China will increase its autonomous national contribution and

introduce more robust policy measures to peak carbon emissions

by 2030 and achieve carbon neutrality by 2060 (Mallapaty, 2020;

Normile, 2020). Therefore, economic restructuring and low

carbon development are one of the country’s most essential

tasks at the moment (Chuai et al., 2015).

Previous studies have shown that the construction industry

accounts for more than 40% of the world’s energy consumption

and 36% of the world’s CO2 emissions (Li et al., 2021). It is an

important pillar industry of China’s national economy and a

resource-intensive industry (Wang and Feng, 2018). Huge

resource and energy consumption generate a large amount of

CO2 emissions, accounting for 30% of the national CO2

emissions (Li and Jiang, 2017).This is great challenge for

China achieving its goals of carbon peak in 2030 and carbon

neutrality in 2060 (Li B. et al., 2020). Today, the contradiction

between the development of China’s construction industry and

emission reduction is becoming increasingly prominent. Energy

consumption and CO2 emissions in the construction industry

have become increasingly important issues in China’s sustainable

development (Zhang X. and Wang F., 2016). Therefore,

researches are desired which analyze the mechanism behind

various factors influencing CO2 emissions in the construction

industry and provide policy suggestions of regional carbon

emission reduction and decarbonization development in the

construction industry (Wang and Feng, 2018). Because such

research works can not only contribute to the sustainable

development of China’s economy but also the successful

realization of “carbon peak and carbon neutrality” goals (Ma

et al., 2020; Shi et al., 2020).

Many existing studies have investigated the influencing

factors of CO2 emissions in the construction industry using

methods such as the structural decomposition analysis (SDA)

(Shi et al., 2017), logarithmic mean divisia index (LMDI) (Jiang

and Li, 2017), etc. However, they do not reflect the spatial and

temporal differences of the influencing factors among provinces.

The relationship between variables and the structure of the model

often change with geographical location. And the spread of CO2

in the atmosphere needs to be considered (Wang et al., 2018).

Therefore, it is necessary to consider the spatial effect of CO2

emissions from the construction industry. In this paper, we first

improved the method to simplify LCA, and then innovatively

introduced the GTWR model to explore the influence

mechanism of different factors on CO2 emissions in the

construction industry from two dimensions of time and space,

so as to make up for the deficiency of existing research in this

aspect. Finally, our analysis results provide a theoretical basis for

realizing the low-carbon transformation and development of

construction industry in various regions of China and regional

carbon emission reduction. To the best of our knowledge, this

paper is one of the first studies to analyze the influence

mechanism of different factors on CO2 emissions in the

construction industry from the perspective of spatial and

temporal differentiation.

The rest of this paper is structured as follows: Section 2

provides a review of the relevant literature. Section 3 provides the

data sources and research methodology. Section 4 analyses the

data and provides key results. Section 5 discusses the results of

the study and develops policy recommendations. Section 6
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summarizes the research work and proposes future research

directions.

2 Literature review

There are two types of CO2 emissions from the construction

industry: direct and indirect CO2 emissions (Chen et al., 2017).

Direct CO2 emissions are those caused by on-site combustion

activities (Onat et al., 2014). Indirect CO2 emissions are CO2

emissions from other related industries induced by the

construction industry (Feng and Wang 2015). Indirect CO2

emissions from the construction industry account for a

significant proportion of total CO2 emissions. Two main

methods for calculating CO2 emissions from the construction

industry are the input-output analysis (Hung et al., 2019) and the

LCA (Lu et al., 2016). Influenced by Zhang and Liu (2013), the

input-output analysis method is valid and commonly used for

analyzing indirect CO2 emissions from the construction industry

(Chen et al., 2017; Shi et al., 2017). For example, Du et al. (2019b)

used an input-output model to investigate the carbon emissions

from the construction industry in Chinese provinces in 2006,

2009, 2012, and 2015 and found that the economic development

level of most provinces was positively correlated with carbon

emissions. However, China publishes a basic or extended input-

output table every 2 or 3 years (Qi and Zhang, 2013), making the

input-output analysis method unsuitable for in-depth and timely

study (Wu et al., 2018). In contrast, the LCA method conducts a

more timely and in-depth study of CO2 emissions in the

construction industry through the statistical data updated

every year. Therefore, the LCA has been widely adopted in

recent years. The complete life cycle of a building consists of

six stages, namely the manufacturing phase of building materials,

the transportation phase of building materials, the construction

phase, the operation phase, the demolition phase, the waste

disposal phase and the recycling phase (Zhang Z. and Wang

B., 2016). Due to incomplete dataset, the simplified LCA method

proposed by Feng and Wang (2015) considered CO2 emissions

from five construction materials (cement, steel, glass, wood and

aluminum) produced by the relevant industries as indirect CO2

emissions. Many researches assessed the carbon emissions of the

construction industry using this simplified LCA, including Zhang

et al. (2021), Chi et al. (2021), Wang et al. (2022) and Wen et al.

(2020). Among them, Chi et al. (2021) pointed out that indirect

carbon emissions from the construction industry accounted for

about 95% of the total carbon emissions.

Currently, there are two common decomposition analysis

approaches to study factors influencing CO2 emissions in the

construction industry, namely the index decomposition

analysis (IDA) and SDA (Chen et al., 2019b). SDA is

mainly used with input-output models, which have been

extended to help reveal changes in energy consumption or

CO2 emissions in the economy (Chen et al., 2019a). For

example, Liu et al. (2022) used SDA method to find that

the industrial structure optimization after 2015 has a

significant inhibitory effect on CO2 emissions in the

construction industry, and the final demand plays an

absolutely dominant role in improving CO2 emissions. IDA

is mainly used by researchers aiming to understand better the

factors influencing energy consumption and CO2 emissions in

specific industries, such as construction. IDA can be further

divided into arithmetic mean divisor index (AMDI) methods,

LMDI and other forms (Lu et al., 2016). It is worth noting that

most researchers prefer to use the LMDI to decompose CO2

emissions (Gong and Song, 2015; Li D. et al., 2020). The LMDI

calculation process is reversible, with no residuals or zero

values in the decomposition (Li D. et al., 2020); and it can be

developed more flexibly and requires less data than SDA (Shi

et al., 2017). In addition, other studies applied models such as

the Kaya model (Qi and Zhang, 2013; Shang et al., 2018; Lai

et al., 2019), the generalized dividing index method (GDIM)

(Li B. et al., 2020), the SDA and the sensitivity analysis (SA)

combined model (Chen et al., 2019a), to decompose the

factors influencing CO2 emission changes in China’s

construction industry. The extended STIRPAT model

further takes into account the impact of technological

progress. The existing studies have explored the factors

influencing CO2 emissions in the construction industry by

constructing extended STIRPAT models and combining them

with fixed effects ordinary least squares (OLS) (Zhang et al.,

2021), ridge regression (Cong et al., 2015; Zou et al., 2016;

Peng, 2019), panel quantile regression (Wang et al., 2020a; Li

and Chen, 2020). In addition, some scholars have carried out

the structural path of carbon dioxide emissions in the

construction industry to discover the impact of different

structural paths on carbon dioxide emissions in the

construction industry (Wang et al., 2020b; Chen et al., 2022).

Based on the above literature review, we can find that the

existing research assumes that different regions are independent

of each other, focusing on analyzing the influencing factors of

CO2 emissions in the construction industry from a global

perspective, and ignoring the significant spatial interaction

effects. Although the spatial Durbin model (SDM) (Lu et al.,

2020; Wen et al., 2020) has been used to take the spatial weight

matrix into account, no research has studied the different factors

influencing the CO2 emissions from the construction industry in

various regions from the perspective of temporal and spatial

differentiation (Shen et al., 2020). Therefore, it is necessary for us

to explore the influence of different factors from the perspective

of temporal and spatial differentiation. The main contributions

of this paper are as follows: existing research ignored the fact that

the CO2 emission coefficients of power and heat in different

provinces of China are different, and improved the simplified

LCA in consideration of these two kinds of energy, so as to make

the CO2 emission estimation of the construction industry more

accurate. Then, this paper reveals the spatial and temporal
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heterogeneity of the impact of different factors on CO2 emissions

from the construction industry. Comparing the traditional

research methods of influencing factors reflects the space-time

characteristics of the influencing mechanism. The research

results provide a reference value for the government to

formulate carbon emission reduction policies for the regional

construction industry.

3 Materials and methods

In order to study CO2 emissions from the construction

industry in a more timely and in-depth manner, this

paper adopts a simplified LCA method to estimate CO2

emissions from the construction industry in China; then

the dynamic evolution characteristics of spatial pattern in

CO2 emissions at the provincial level are analyzed using a

combination of global Moran’s I and standard deviation

ellipse. Finally, we use the GTWR model to explore the

formation mechanism behind the dynamic evolution of the

spatial CO2 emission patterns. The specific research methods

are described as follows.

3.1 Simplified life-cycle assessment

In this paper, we improve the simplified LCA approach

proposed by Feng and Wang, (2015) to divide CO2 emissions

from the construction industry into two parts: direct CO2

emissions and indirect CO2 emissions, taking into full

consideration the variability of thermal and electric power

CO2 emissions coefficients across regions in China. Direct

CO2 emissions are calculated by multiplying 13 primary

energy consumptions such as raw coal, briquette, coke,

gasoline, diesel, kerosene, fuel oil, lubricating oil, liquefied

petroleum gas, and natural gas by the corresponding CO2

emission coefficient, plus the secondary energy consumption

is calculated by multiplying the related CO2 emission efficient.

Indirect CO2 emissions are calculated by multiplying the

consumption of different building materials (cement, steel,

glass, wood and aluminum) by the corresponding CO2

emission and recovery factors. Through the above methods,

we established Eqs 1–3 to calculate the total CO2 emissions

from the construction industry:

CO2 � CO2,D1 + CO2,D2 + CO2,I (1)
CO2,D1 + CO2,D2 � ∑

i�1 Ei × NCVi × Ai × Oi ×
44
12

+∑
i�1 Ei × CEFi (2)

CO2,I � ∑
j�1 Mj × βi × (1 − αj) (3)

Where CO2,D1 represents the direct CO2 emissions from primary

energy in the construction industry, Ei represents the

consumption of the i-th energy, NCVi represents the average

low calorific value of the i-th energy, and Ai is the i-th energy.

The carbon content per unit heat of a kind of energy,Oi epresents

the oxidation rate of i-th energy, 44/12 is the molecular weight

ratio of CO2 to carbon; CO2,D2 represents the direct CO2

emissions from secondary energy in the construction industry.

CEFi represents the CO2 emission coefficient of electricity and

heat by region; CO2,I represents the indirect CO2 emission from

building materials, Mj represents the consumption of the j-th

building material, βi represents the CO2 emission coefficient of

the j-th building material, αj represents the recovery coefficient

of the j-th building material.

3.2 Global Moran’s I

We use global Moran’s I to reflect the overall spatial

correlation of CO2 emissions from the construction industry

in the whole study area (Wen et al., 2020). The calculation

formula is shown in Eq. 4:

I � ∑n
i�1 ∑n

j�1 wij(Xi − �X)(Xj − �X)
S2∑n

i�1 ∑n
j�1 wij

(4)

Where n is the total number of regions,Xi、Xj are the observed

values of regions i and j, wij is the element of the spatial weight

matrix, S2 � 1
n∑n

i�1 (Xi − �X)2 is the variance, �X � 1
n∑n

i�1 Xi is the

mean, Moran’s I ∈ [-1,1].

For Moran’s I, the standardized statistic Z is usually used to

test the significance of spatial autocorrelation. The calculation

formula is shown in Eq. 5:

Z � I − E(I)�������
VAR(I)√ (5)

where E(I) and VAR(I) are the expected value and variance of

the global Moran’s I, respectively.

3.3 Standard deviation ellipse

In order to investigate the individual characteristics of CO2

emissions from the construction industry, this paper uses the

standard deviation ellipse to study the evolution characteristics of

the spatial differences in CO2 emissions. Standard deviation

ellipse is one of the critical spatial econometric analysis

methods used to measure regional economic factors’ spatial

differences and analyze economic factors’ spatial distribution

characteristics (Liu and Chen, 2016). The main elements include

the center of gravity (center point), azimuth, major semi-axis,

minor semi-axis, etc. Among them, the center of gravity

represents the relative position of the spatial distribution of

regional economic factors, and the calculation formula is

shown in Eq. 6:
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�xw � ∑n
i�1 wixi∑n
i�1 wi

�yw � ∑n
i�1 wiyi∑n
i�1 wi

(6)

The azimuth angle θ is the angle formed by the clockwise

rotation from the north direction to the long axis of the ellipse,

which represents the main trend direction of the spatial

distribution of economic factors. The calculation formula is

shown in Eq. 7:

tan θ �
[∑n

i�1 w
2
i x

′2
i − ∑n

i�1 w
2
i y

′2
i ]

2∑n
i�1 w

2
i x

′
iy

′
i

+

�������������������������������������[∑n
i�1 w

2
i x

′2
i −∑n

i�1 w
2
i y

′2
i ] + 4[∑n

i�1 w
2
i x

′2
i y

′2
i ]2

√
2∑n

i�1 w
2
i x

′
iy

′
i

(7)
The long semi-axis reflects the degree of dispersion of

economic factors in the main trend direction; the short semi-

axis reflects the degree of dispersion of economic factors in

the secondary direction. The calculation formula is shown in

Eq. 8:

δy �

�����������������������������∑n
i�1 (wix′

i sin θ cos θ − wiy′
i cos θ)2∑n

i�1 w
2
i

√√
, δx

�

�������������������������∑n
i�1 (wix′

i cos θ − wiy′
i sin θ)2∑n

i�1 w
2
i

√√
(8)

Where x′
i , y

′
i represent the relative coordinates from the center of

gravity to the spatial location xi, yi. wi represents the weight. θ is

the azimuth of the standard deviation ellipse, and represents the

clockwise rotation angle formed by the true north direction and

the long axis. δx, δy represent the standard deviation on the X

and Y axes, respectively.

3.4 STIRPAT model

Thomas Dietz (1994) proposed the STIRPAT model based

on the IPAT model incorporating the environmental impact of

socioeconomic activities (He et al., 2017); the model is nonlinear

and can estimate elastic coefficients (Zhang et al., 2021).

Therefore, the STIRPAT model provides a broad framework

for studying the environmental impact of various factors. The

standard STIRPAT model is:

I � aPα1Aα2Tα3e (9)

where a represents a constant, α1, α2 and α3 are the exponential

terms of population size (P), affluence (A) and technology (T),

respectively; e is the error term.

In order to fully and accurately explore the main influencing

factors of CO2 emissions from the construction industry, we

added several other important factors to the model (Du et al.,

2017; Li B. et al., 2020; Wang et al., 2020a; Lu et al., 2020; Zhang

et al., 2021) and expressed all variables in the logarithmic form to

eliminate possible heteroskedasticity. The extended STIRPAT

model is as follows:

lnCO2 � a + α1 lnPOPit + α2 lnPGDPit + α3 lnECOit + α4 lnENEit

+ α5 lnLPit + α6 lnURBit + α7 ln IAit + eit

(10)

where the CO2 emissions from the construction industry are the

dependent variable.We use year-end population (POP) to denote

P. Per capita GDP (PGDP) and economic output (ECO) denote

A. Energy efficiency (ENE) denotes T. Extending the STIRPAT

model on this basis, we select urbanization level (URB), labor

productivity (LP) and industrial agglomeration (IA) as other

important factors affecting CO2 emissions from the construction

industry. The detailed definitions of these variables are shown in

Table 1.

3.5 GTWR model

Although the geographically weighted regression (GWR)

model considers spatial non-stationarity, GWR ignores

temporal non-stationarity. In contrast, GTWR considers both

spatial and temporal non-stationarity (Yuan et al., 2020).

Therefore, we use this model to explore the temporal and

spatial heterogeneity of the influence mechanism of different

factors on the CO2 emissions from China’s construction

industry. The core of GTWR is the selection of the spatial

weight function. The spatial correlation of the data is realized

through constructing the spatial weight matrix. In this paper, we

use the Gaussian function method proposed by Huang et al.

(2010) to combine the information from spatial and temporal

dimensions.

Before GTWR builds the model, we use the multi-

collinearity test to check the collinearity of seven variables,

including population, urbanization level, per capita GDP,

economic output, energy efficiency, labor productivity, and

industrial agglomeration. Through the variance inflation

factor (VIF) test (as shown in Table 2), it is found that

there is a serious collinearity between economic output,

population, and GDP per capita. Economic output is

closely related to CO2 emissions (Du et al., 2019b; Lai

et al., 2019). However, the spatio-temporal relationship

between economic output and CO2 emission in China’s

construction industry is far from clear. Understanding this

relationship provides a valuable reference for comparing the

‘quality’ of economic growth in terms of carbon emissions

with international counterparts (Wu et al., 2018). Thus,

population and GDP per capita are excluded. We combined

the STIRPAT model and the VIF test to establish the Eq. 11 of

the GTWR model to study the influence of various factors on
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CO2 emissions from the construction industry from the

perspective of temporal and spatial differentiation.

yk � β0(uk, vk, tk) +∑q

p�1 βp(uk, vk, tk)xkp + εk (11)

Where β0(uk, vk, tk) are the regression intercepts; βp(uk, vk, tk)
are the regression coefficients of the variables p; (uk, vk, tk) are
the space-time coordinates of the research unit, where uk, vk
and tk are latitude, longitude and time, respectively; q = 5; xkp

is the data of five variables such as URB, ECO, ENE, LP, and

IA in the research unit k, εk is the error term for the study

unit k.

3.6 Data sources

This paper takes 2004–2020 as the research period and takes

the construction industry of 30 provinces in China (due to the

lack of energy data, Tibet, Hong Kong, Macao and Taiwan are

not included) as the research object. The above-required data

are mainly obtained from the 2004–2020 China Statistical

Yearbook, the China Construction Statistical Yearbook, the

China Energy Statistical Yearbook and IPCC Guidelines for

National Greenhouse Gas Inventories. The CO2 emission

coefficients of electricity and heat are derived from the

studies of Fan and Zhou (2019), and Li and Zhang (2016),

respectively. The CO2 emission coefficients of building

materials are derived from the studies of Feng and Wang

(2015).

4 Results

4.1 Estimation of CO2 emission from
construction industry

Figure 1 shows the total CO2 emissions from China’s

construction industry from 2004 to 2020. From Figure 1, we

can see that CO2 emissions increased from 576.5 Mt to

1998.51 Mt. Between 2004 and 2009, the national CO2

emissions from the construction industry showed a slow

increase with an average annual growth rate of 13.75%.

Between 2010 and 2012, national CO2 emissions from the

construction industry increased rapidly, with an average yearly

growth rate of 51.95%. Between 2013 and 2020, the trend shifted

to a steady decline, with an average annual growth rate of -1.17%,

in response to the economic recession triggered by the global

financial crisis in 2008. The Chinese government launched the

4 trillion RMB stimulus package to address the challenges of this

crisis, which invested mainly in infrastructure development

(Naughton, 2009). This led to massive consumption of

building materials in Jilin and Hebei, resulting in a rapid

increase in CO2 emissions from the construction industry

from 2010 to 2012. After the 12th Five-Year Plan, China has

increased efforts to restructure its industries, placing greater

emphasis on energy conservation and emission reduction and

curbing high energy consumption. By controlling the total

amount of pollutants emitted in the production of building

materials such as cement, steel and glass and the regional

spatial layout of the building materials industry, indirect CO2

emissions have been reduced (Chi et al., 2021). As a result, the

total amount of CO2 emissions from the construction industry

has shown a decreasing trend. During the survey period, indirect

CO2 emissions accounted for about 90% of the total CO2

emissions of the construction industry. In contrast, the

proportion of direct CO2 emissions is very small, ranging

from 4.02% to 12.04%. During the period from 2004 to 2020,

the direct CO2 emissions of China’s construction industry did

not change much; The trend of indirect CO2 emissions is

TABLE 1 Statistical description.

Variable Symbol Definition

Population POP Population by province at the end of the year

Per capita GDP PGDP GDP to population ratio

Economic output ECO Gross output value of construction industry

Energy efficiency ENE Ratio of gross construction output to energy consumption

The level of urbanization URB Ratio of urban population to total population

Labor productivity LP The ratio of the total output value of the construction industry to the number of employees in the construction industry

Industrial agglomeration IA IAij � (qij/qj)/(qi/q), where qij is the economic output of the i industry in the j region, qj is the total economic output of the j
region, and, qi is the total output of i industry in the country, q is the country’s total economic output

TABLE 2 VIF test.

Variable VIF Variable VIF

POP 33.387 URB 4.348

PGDP 35.588 LP 4.322

ECO 83.596 IA 8.66

ENE 2.289
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basically consistent with that of the total CO2 emissions of the

construction industry.

Figure 1 also shows the carbon emission intensity of China’s

construction industry (the ratio of CO2 emissions to GDP). As

can be observed, it declined from 1.988 × 10−̂2 t/ million yuan to

0.758 × 10−̂2 t/ million yuan between 2004 and 2020, with an

average annual growth rate of -5.85%. It is noteworthy that the

carbon emission intensity of China’s construction industry

declined in most of the surveyed years, except for 2008, 2010,

2011 and 2012. In particular, the carbon emissions intensity in

2020 decreased by 57.87% compared to 2005, exceeding the

Chinese government’s pledge at the Copenhagen Climate

Conference to reduce its carbon emissions intensity by

40–45% (Du et al., 2019a). This has laid a good foundation

for the next phase of China’s goal of achieving “carbon peaking

and carbon neutrality ".

4.2 Spatial autocorrelation test

This paper uses GeoDa software to calculate the global

Moran’s I of CO2 emissions from the construction industry in

China for the period 2004–2020. From the Table 3, we can see

that the global Moran’s I for most years of the study period show

significant spatial autocorrelation with a statistical significance

level below 0.05, which is consistent with the study of Lu et al.

(2020). All of the global Moran’s I with a significance level below

0.05 are positive, and the index is as high as 0.319 in 2020,

indicating a strong positive spatial correlation between CO2

emissions from the construction industry in China.

The global Moran’s I only reveals the comprehensive global

characteristics of CO2 emissions from China’s construction

industry and fails to explain the individual characteristics of

each region. Therefore, this paper combines the standard

deviation ellipse to analyze further the local spatial evolution

characteristics of China’s construction industry’s CO2 emissions.

Since the change of the standard deviation ellipse has a certain

regularity, this paper selects a 3-year time interval to intuitively

describe the movement trajectory of CO2 emissions from the

FIGURE 1
Estimation of CO2 emissions from construction industry in China.

TABLE 3 Global Moran’s I test results.

Year Moran’s I p-value Year Moran’s I p-value

2004 0.120 0.079 2013 0.020 0.287

2005 0.196 0.026 2014 0.025 0.272

2006 0.162 0.044 2015 0.202 0.027

2007 0.182 0.035 2016 0.233 0.023

2008 0.194 0.037 2017 0.272 0.014

2009 0.205 0.029 2018 0.289 0.009

2010 0.117 0.094 2019 0.409 0.003

2011 −0.028 0.338 2020 0.319 0.008

2012 −0.107 0.222
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construction industry, and the results are shown in Figure 2. It is

shown that the standard deviation ellipse in 2012 deviates from

the overall evolution trend. The main reason is that the cement

consumption data of Jilin’s construction industry during this

period increased by more than 50 times compared with the

previous year (Chi et al., 2021), resulting in a 55-fold increase in

CO2 emissions from Jilin construction industry. This shifted the

ellipse significantly toward the northeastern region; therefore,

year 2012 is not included in the description of the evolutionary

trend. The standard deviation ellipse of CO2 emissions from the

construction industry from 2004 to 2020 covers most of the

eastern and central regions and parts of the western region. The

ellipse basically rotates in a clockwise direction, which shows that

the trajectory of CO2 emissions from China’s construction

industry is relatively regular, and the spatial differentiation

pattern is relatively stable. From 2004 to 2020, the standard

deviation ellipse of CO2 emissions from the construction

industry covers most of the eastern and central regions as well

as parts of the western region. Its center of gravity moves from

Anhui to Henan and then to Hubei, gradually shifting to the

southwest. As shown in Table 4, the ellipse rotates clockwise with

azimuth θ changing from 31.359° in 2004 to 76.775° in 2020. It

shows that the CO2 emission in the eastern region has a more

significant pulling effect on the western region. The azimuth

changes to a balanced state, and the CO2 emission distribution

forms a northeast-southwest pattern gradually.

In the direction of the long axis of the standard deviation

ellipse, the standard deviation of the Y-axis shortens from

939.809 km in 2004 to 824.947 km in 2020, indicating a

spatial polarization of CO2 emissions in the northeast-

southwest direction. Specifically, the standard deviation on the

Y-axis shortens from 939.809 km in 2004 to 849.783 km in 2008;

the reason for this change is the weak economic base and slow

economic growth in the southwest and northeast regions. This

FIGURE 2
Elliptic evolution result of standard deviation.
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makes the increment of CO2 emissions from the construction

industry decrease. The standard deviation on the Y-axis expands

from 849.783 to 960.939 km from 2008 to 2014, indicating that

the spatial distribution of CO2 emissions tends to diverge in the

Y-axis direction, a trend that may be explained by the fact that in

response to the economic crisis, the state increased its investment

in infrastructure, and the northeast and southwest regions

promoted the rapid development of the construction industry

with the help of national policies, resulting in a surge in CO2

emissions from the construction industry in the two regions.

From 2014 to 2018, the standard deviation of the Y-axis

shortened from 960.939 km to 801.559 km, and the spatial

polarization of construction CO2 emissions in the northeast-

southwest direction intensifies; this results from the technological

spillover effect of the construction industry in the eastern region,

pulling the emission reduction efforts in the northeast and

southwest regions. In period 2018–2020, it expands from

801.559 km to 824.947 km, indicating that the spatial

distribution of the construction CO2 emissions tends to be

dispersed again. In the direction of the short axis of the

standard deviation ellipse, the standard deviation along the

X-axis continues to shorten from 831.337 km in 2004 to

736.31 km in 2020, indicating the spatial polarization of CO2

emissions from the construction industry in China is increasing

in the northeast-southwest direction.

4.3 GTWR test

4.3.1 Model fitting
The above analysis reveals the spatial autocorrelation and

significant spatial variation of CO2 emissions in China’s

construction industry through global Moran’s I and standard

deviation ellipses, showing that CO2 emissions in China’s

construction industry have spatial autocorrelation and

significant spatial differences. To further reveal the formation

mechanism of the dynamic evolution characteristics of spatial

differences in CO2 emissions in China’s construction industry,

this paper uses GTWR to conduct a comparative analysis of five

factors, namely urbanization, economic output, energy efficiency,

industrial agglomeration, and labor productivity.

To verify the applicability and accuracy of the GTWRmodel,

calculations were performed using 17 years of spatial panel data

from 2004 to 2020, and the GTWR results were compared with

those of OLS, GWR and time weighted regression (TWR). The

model-related parameters are shown in Table 5. R2 and adjusted

R2 (Adj. R2) reflect the degree of model fit; the residual sum of

squares (RSS) reflects the model’s accuracy. The AICc value can

be used as another important criterion to assess the model’s

merit, with smaller values indicating higher accuracy (Ma et al.,

2021). As can be seen from the table, the GTWR model has a

maximum fit of 0.939. The AICc values between models are

much greater than 3, with the minimum value being 387.1 for

GTWR, indicating a significant difference in the performance

among various models. The GTWR model has higher accuracy.

Compared with other models, the regression coefficients of the

GTWR model are non-stationary in time and space; therefore, it

can better explain the spatial and temporal distribution of factors

influencing CO2 emissions in the construction industry Table 5.

4.3.2 Time evolution of influence degree
Figure 3 shows the time evolution characteristics of the five

influencing factors of CO2 emissions from the construction

industry in China. We can see that economic output is the

dominant factor in the increase of CO2 emissions each year.

The development of the economy has driven the development of

the industry; the real estate boom continues to heat up. The

increasing standard of living has increased the demand for

infrastructure construction, housing construction and

commercial and industrial land construction. With the

continuous expansion of construction scale, the energy

consumption of the construction industry increases, and the

TABLE 4 Statistical description of standard deviation results.

Year Center
of gravity coordinates

Directional angle θ Standard deviation along
the x-axis (km)

Standard deviation along
the y-axis (km)

2004 115°10′12″,33°07′33″ 31.359 831.337 939.809

2008 115°24′30″,33°09′08″ 20.587 785.931 849.783

2012 118°14′21″,37°11′48″ 32.674 610.539 1,143.671

2016 114°40′19″,31°52′59″ 61.389 759.215 816.986

2020 114°04′11″,31°18′52″ 76.775 736.311 824.947

TABLE 5 Comparison of model test results.

Models R2 Adj. R2 RSS AICc

OLS 0.896 0.895 73.699 472.765

TWR 0.908 0.907 65.061 444.157

GWR 0.919 0.918 57.514 429.109

GTWR 0.939 0.938 43.588 387.100
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FIGURE 3
Time series trend of GTWR regression coefficients.
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carbon emissions also increases accordingly. From 2004 to 2012,

the contribution of economic output to the construction

industry’s CO2 emissions increased, with the regression

coefficient reaching its maximum value in 2012. The

contribution of economic output to the construction

industry’s CO2 emissions gradually weakened after 2012, and

the regression coefficient reached its lowest level in 2020. With

the improvement of the economic development level, the

formulation of the low-carbon economy strategy and the

introduction of carbon emission reduction targets, the

development of a low-carbon economy strategy and the

carbon emission reduction goal has made it possible to

control the CO2 emissions. Industrial agglomeration has

contributed to the increase of CO2 emissions in the

construction industry in all years. On the one hand, industrial

agglomeration increases economic activity and leads to more

CO2 emissions; on the other hand, industrial agglomeration may

lead to specialization and technological innovation in the

construction industry, resulting in a reduction of CO2

emissions. Our results seem to imply that the ‘growth effect’ is

greater than the ‘reduction effect’, which leads to an increase in

construction CO2 emissions (Li et al., 2021).

The level of urbanization is the main inhibiting factor for

the increase in CO2 emissions from the construction industry.

Urbanization has been shown to promote the concentration of

production factors, accelerate technological development and

promote cleaner production, thereby reducing CO2 (Zhang

et al., 2016; Wang and Zhao, 2018). The inhibition effect of

urbanization level has been increasing from 2004 to 2012, with

the regression coefficient reaching a maximum in 2012 and

decreasing thereafter. Labor productivity is the second most

important inhibiting factor for the increase of CO2 emissions

in the construction industry. The inhibition effect of labor

productivity, which reflects the level of production technology

in the construction industry, has shown a weakening and then

increasing impact over time. In the years following the

financial crisis, China increased investment in infrastructure

construction, leading to relatively extensive operation and

management which decreases the labor productivity and an

increases the CO2 emissions from the construction industry. It

is worth noting that in some years, labor productivity had a

stronger role in curbing construction CO2 emissions than

urbanization. Energy efficiency had a inhibition effect on

the increase in construction CO2 emissions in all years, but

energy efficiency had little influence on reducing national

construction CO2 emissions (Wang et al., 2018). Energy

efficiency is a measure of energy-efficient technologies in

the construction industry, and the fragile inhibition effect

of energy efficiency in 2004 suggests that the construction

industry employs few energy-efficiency technologies in the

early years. This inhibition effect slowly increases as the

level of energy-efficient technologies develop in the

construction industry Figures 4, 5, 6, 7, 8.

4.3.3 Spatial heterogeneity of influence degree
The GTWR model can calculate regression coefficients for

different temporal and spatial influences and visualize them in

ArcGIS 10.3. This aids to explore the various factors influencing

carbon emissions in a local area. Results are visualized for 2004,

2012 and 2020 in this paper.

As shown in Figure 4, economic output yields higher influence

on CO2 emissions in the western provinces such as Xinjiang,

Yunnan, Sichuan and Guizhou, mainly because these regions are

relatively underdeveloped and lack of advanced technologies; they

need to consume more energy and produce large amounts of CO2

in exchange for the development of the construction industry. The

provinces with higher regression coefficients of economic output

in 2004 are located in the western regions, and in 2012 the

provinces with higher regression coefficients shifted to the

northeast and north central. The government has increased

infrastructure investment to rapidly revive China’s economy,

leading to a significant construction boom in traditional

industrial bases such as Heilongjiang, Jilin and Hebei, resulting

in a sharp increase in CO2 emissions from the construction

industry. By 2020, the values with more significant regression

coefficients for economic output gradually change to the western

regions, led by Xinjiang, Yunnan, Sichuan and Guizhou.

As shown in Figure 5, from 2004 to 2020, the regions where

industrial agglomeration has a more significant influence on CO2

emissions remain unchanged and consistently distributed in China’s

eastern coastal and northeastern regions. By 2020, the provinces

with larger coefficients are mainly located in Jiangsu, Zhejiang and

Shanghai, Fujian, Guangdong and the three northeastern provinces,

while the provinces with smaller coefficients are primarily located in

the western regions, such as Xinjiang, Qinghai, Gansu, and Ningxia.

This indicates that the construction industry in the eastern coastal

and northeastern regions of China is more prone to agglomeration

compared to the central and western regions; and this industry

agglomeration is more likely to promote an increase in economic

activities and energy demand in the construction industry, thus

leading to the accelerated growth of CO2 emissions.

As shown in Figure 6, the level of urbanization inhibits the

increase in CO2 emissions from the construction industry in each

province. In 2004, the inhibition effect was more significant in most

of the western provinces. The inhibition effect of urbanization

increased over time, and provinces with strong inhibition effect

shifted from the west to the eastern coastal and north-eastern

regions. By 2020, provinces with strong inhibition effect are

distributed among the east, central and north-eastern China, and

Xinjiang yielded the smallest absolute regression coefficients. This

fully illustrates that the inhibition effect is more significant in

regions with a high level of urbanization than in the urbanizing

and non-urbanized regions (Zhang et al., 2021). The regression

coefficients are the smallest in Xinjiang.

As shown in Figure 7, from 2004 to 2020, areas where labor

productivity has less influence on CO2 emissions gradually

shifted to central and western China. In 2020, provinces with
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large absolute values of coefficients were mainly distributed in the

eastern coastal areas, including Shanghai, Zhejiang, Fujian and

other regions. In contrast, provinces with small absolute values of

coefficients are concentrated in the central and western regions.

The influence of labor productivity on CO2 emissions in eastern

provinces is greater than that in central and western provinces. In

recent years, the western region has paid attention to the

introduction of excellent talents, promoting the increase in

well-educated workforce. As a result, the labor productivity of

many western provinces has exceeds that of some eastern

provinces. This also implies that the improvement in

production efficiency will gradually weaken the role of

emission reductions in the construction industry in the central

and western provinces.

As shown in Figure 8, energy efficiency suppresses CO2

emissions from the construction industry in each province,

and the influence of technological progress on CO2 emissions

is relatively weak and unstable compared to the other variables.

With its more significant inhibition effect shifting from the north

of Qinling-Huaihe line to western China. From 2020, the

provinces where energy efficiency have considerable influence

on CO2 emissions are Xinjiang, Gansu, Qinghai, Sichuan and

Yunnan, which are located in central and western China. The

main reason is that carbon emissions in less developed regions

are vulnerable to technological advances (Du et al., 2017). The

progress of energy efficiency technologies can contribute well to

carbon emission reduction, while developed regions with higher

technology levels and complex technological innovation are

FIGURE 4
Regression coefficients for economic output.

FIGURE 5
Regression coefficients for industrial agglomeration.
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prone to encounter technical bottlenecks, making it challenging

to improve energy efficiency further. This weakens its potential

for CO2 emission reduction in the construction industry.

5 Discussion

5.1 Implications for theory

This paper provides a new perspective on the spatial and

temporal analysis of CO2 emissions from the construction

industry in China. Existing studies mainly use SDA (Shi et al.,

2017), IDA (Gong and Song, 2015) or STIRPAT combined with

panel regression (Zhang et al., 2021), which ignores the

spatiotemporal heterogeneity in the degree of influence of

different factors. This study investigates both the spatial and

temporal non-stationarity of the influencing factors through

GTWR. In order to make a more timely and in-depth study,

this paper improves the simplified LCA method considering the

regional differences of CO2 emission coefficients of electricity

and heat, and estimates the CO2 emission of construction

industry in China. Results show that indirect CO2 emissions

account for about 90% of the total CO2 emissions from the

construction industry in China, which is consistent to the results

in Du et al. (2018), Feng andWang (2015). Although we take into

account regional differences in CO2 emission efficient from

FIGURE 6
Regression coefficients for urbanization levels.

FIGURE 7
Regression coefficients for labor productivity.
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electricity and heat generation, they do not have a significant

influence on the final results. Our work found a 57.87% reduction

in the carbon intensity of the construction industry through the

calculation of 2020 data. In this paper, we found a 57.87%

decrease in carbon emission intensity in 2020, which is

similar to the result of Du et al. (2019a) using system

dynamics (SD) model to predict the optimal portfolio

reduction. This indicates that the carbon emission reduction

in China’s construction industry is moving towards the optimal

direction in recent years. The paper also utilizes global Moran’s I

and standard deviation ellipses to verify the spatial correlation

and heterogeneity of CO2 emissions from the construction

industry (Lu et al., 2020). The results show the necessity to

consider spatial and temporal heterogeneity when analyzing the

mechanism behind the dynamic evolution characteristics of the

spatial differences in CO2 emissions in the construction industry.

Therefore, in this paper, we apply GTWR to analyze the spatial

and temporal heterogeneity of the influence of different factors

on CO2 emissions from the construction industry. We extend the

STIRPAT model with common influencing factors (population,

per capita GDP, economic output, energy efficiency,

urbanization level) and test the spatio-temporal heterogeneity

of the impact of labor productivity and industrial agglomeration

on CO2 emissions in the construction industry. The results

indicate that economic output is the dominant factor in the

increase of CO2 emissions in the construction industry (Hu and

Chu, 2015; Jiang and Li, 2017; Du et al., 2019b; Li B. et al., 2020).

Industrial agglomeration is the second most important factor in

the rise of CO2 emissions in the construction industry, which are

consistent with those of Li et al. (2021), Zhang and Lu (2015).

The level of urbanization is the main inhibitory factor for the

increase of CO2 emissions from the construction industry, and

the inhibitory effect of areas with a high level of urbanization is

significantly greater than that of urbanizing and non-urbanized

regions (Zhang et al., 2021). Labor productivity is the second

most important inhibiting factor. Although energy efficiency has

a inhibition effect on the increase of CO2 emissions, this effect

seems to be weak and unstable (Li et al., 2012; Wang et al., 2018).

This result also supports the findings of Liu and Lin (2017) and

Lin and Liu (2015) that there is excellent potential for a decrease

in energy intensity and an increase in energy efficiency in the

Chinese construction industry (Wu et al., 2018). Overall, our

results indicate that many factors have different effects on CO2

emissions from the construction industry in other regions. This

implies that local governments should strengthen inter-regional

cooperation, promote cross-regional technology sharing and

exchange, and collaborate on regional policies to reduce

carbon emissions and work together to achieve the goal of

“carbon peaking and carbon neutrality".

5.2 Implications for practice

Based on the above results and discussions, we can conclude

that CO2 emissions from the construction industry have obvious

spatial effects, so this paper formulates emission reduction

policies based on the spatial and temporal characteristics of

the factors influencing CO2 emissions in each region.

Economic output is the most crucial reason for the increase

in CO2 emissions from the construction industry in each region.

However, the current extensive development model of the

construction industry still exists; therefore, the government

should set reasonable carbon emission reduction targets for

each region according to local conditions, and synergistic

emission reduction plans can be developed between

neighboring provinces. First of all, the economically developed

eastern provinces have a large volume of CO2 emissions from the

construction industry and should take on more CO2 reduction

FIGURE 8
Regression coefficients for energy efficiency.
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tasks. At the same time, the central and western regions should

actively promote the transformation to a low-carbon economy.

Second, a fair national carbon trading market and the legal

system related to green buildings should be established and

improved. The government should vigorously promote the

low-carbon, green and high-quality development of the

construction industry, and find a path for the coordinated

development between the economic output of the construction

industry and CO2 emissions.

The government should promote the construction of a new

urbanization model with a focus on green and high-quality

development, and different regions should adhere to different

urbanization strategies. Eastern regions should accelerate the

coordination of urbanization development levels in central

and western regions and jointly promote the green

transformation of regional urbanization; central and western

regions should continue to accelerate the urbanization of

central cities (Li L. et al., 2020) and encourage the transfer of

large andmedium-sized cities to smaller cities in some regions, to

form a mutually beneficial and win-win high-quality

development model in the region and jointly curb the

generation of CO2 in the construction industry.

The emission reduction effect of energy efficiency is

relatively weak and unstable. To achieve the emission

reduction target of CO2 emissions from the construction

industry, it is necessary to improve energy efficiency while

adjusting the industrial agglomeration pattern. Firstly,

technological exchanges and cooperation across regions

should be strengthened, promoting the technological

achievements relating to energy efficiency and emission

reduction from the east regions to the central and western

regions. The eastern regions should increase investment in

science and technology to achieve more technical

breakthroughs on energy efficiency and emission reduction

technologies while actively introducing advanced

technologies from abroad. Secondly, the government

should promote the active development of clean energy

sources such as nuclear power, wind power, solar energy,

tidal energy and green building materials such as eco-cement,

fiber-reinforced composite materials and new green

wall materials by relying on the favorable resources of each

region.

Increased labor productivity plays an essential role in

achieving carbon emission reduction targets. The

government should raise environmental awareness among

employees of construction companies at all levels, continue

to strengthen policies for the introduction of construction

talent in central and western regions, systematically train

highly educated personnel in skill levels, and promote

highly educated personnel to work on the front line as soon

as possible; eastern regions should improve the overall quality

of their construction teams to prevent the emergence of a

general ageing construction workforce, further enhance labor

productivity in the construction industry, and promote

regional carbon emission reduction.

6 Conclusion and limitations

6.1 Conclusion

This paper studies the spatial and temporal characteristics of

CO2 emissions from the construction industry in China at the

provincial level, and investigates the mechanisms of different

factors influencing CO2 emissions from the perspective of spatial

and temporal divergence based on the GTWR model. The

findings of the study are as follows.

CO2 emissions from the construction industry in China

showed a trend of first increasing and then decreasing. It grew

rapidly from 576.5 Mt in 2004–3,230 Mt in 2012, and then

gradually decreased to 1998.51 Mt in 2020. After 2008,

indirect CO2 emissions account for more than 90% of total

CO2 emissions. Compared to 2005, the carbon intensity of the

construction industry decreased by 57.87% in 2020. In terms of

the spatial pattern, the empirical results show that there is a

strong global positive correlation of CO2 emissions from the

construction industry in China during most of the concerned

period. In terms of the standard deviation ellipse, the spatial

distribution of CO2 emissions from the construction industry in

China shows a northeast-southwest pattern. The combination of

the standard deviation of the long and short axes leads to a spatial

polarization of CO2 emissions in the northeast-southwest

direction, and the center of gravity gradually shifts from

central China to the southwest.

Due to the spatial and temporal heterogeneity of the different

factors influencing provincial CO2 emissions from the

construction industry, the estimates from the GTWR analysis

are more accurate than the classical econometric models. The

regression results show that significant non-uniform linkage

localization and spatial heterogeneity exist in the influence of

various factors on CO2 emissions from the construction industry.

Economic output is the dominant factor, and its degree of

influence strengthens before weakening in time and it

increases spatially from east to west. Industrial agglomeration

is the second most important factor, and its degree of influence

weakens before strengthening in time and it decreases spatially

from east to west. The level of urbanization is the most important

inhibiting factor in the increase of CO2 emissions from the

construction industry, and its degree of influence strengthens

before weakening in time and it decreases spatially from east to

west. Production efficiency is the second most important

inhibitor, with its influence decreasing in time and then

increasing in space from southeast to northwest. Energy

efficiency is the least essential inhibitor with its influence

increasing in time and decreasing in space from northeast to

southwest.
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6.2 Limitations

Given the above studies, there are still some limitations in this

paper. Firstly, we have not considered how the CO2 emission

coefficients for each energy source change with technological

advances. Secondly, due to data limitations, this paper has

adopted a simplified LCA model and lacks an assessment of the

whole life cycle of the construction industry at stage 6. Thirdly, this

paper has not quantified the differences that exist in CO2 emissions

from the construction industry. Future research can be improved as

follows: firstly, the scope of activities in the six stages of the

construction industry can be delineated in detail, and CO2

emissions can be accurately assessed taking into coefficient the

changes in the emission factors of each energy source; then the

Thiel index and Gini coefficient can be used to quantify the

differences in CO2 emissions in the construction industry in each

region, and on the basis of the clarification of regional differences, a

more accurate assessment of CO2 emissions in the construction

industry can bemade in order to achieve the goal of “carbon peaking

and carbon neutrality” as soon as possible. On the basis of clear

regional differences, a more comprehensive regional carbon

reduction policy for the construction industry will be formulated

in order to achieve the goal of carbon peaking and carbon neutral” as

soon as possible.
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