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Mesoscale convective cloud systems have a small horizontal scale and a short
lifetime, which brings great challenges to quantitative precipitation estimation
(QPE) by satellite remote sensing. Combining machine learning models and
geostationary satellite spectral information is an effective method for the QPE of
mesoscale convective cloud, while the interpretability of machine learning model
outputs remains unclear. In this study, based on Himawari-8 data, high-density
automatic weather station observations, and reanalysis data over the North China
Plain, a random forest (RF) machine learning model of satellite-based QPE was
established and verified. The interpretation of the output of the RFmodel of satellite-
based QPE was further explored by using the Shapley Additive Explanations (SHAP)
algorithm. Results showed that the correlation coefficient between the predicted
and observed precipitation intensity of the RF model was .64, with a root-mean-
square error of .27 mm/h. The importance ranking obtained by SHAP model is
completely consistent with the outputs of random forest importance function.
This SHAP method can display the importance ranking of global features with
positive/negative contribution values (e.g., current precipitation, column water
vapor/black body temperature, cloud base height), and can visualize the marginal
contribution values of local features under interaction. Therefore, combining the RF
and SHAP methods provides a valuable way to interpret the output of machine
learning models for satellite-based QPE, as well as an important basis for the
selection of input variables for satellite-based QPE.
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1 Introduction

Precipitation plays an important role in the interaction of the hydrosphere, atmosphere and
biosphere (Hobbs, 1989; Ren et al., 2021). Ameasurement of this quantity is needed not only for
an understanding of atmospheric processes but also for a wide range of practical applications
ranging from flood forecasting and water resource management to microwave
communications. Its uneven spatial and temporal distribution often lead to extreme
weather events such as rainstorms and drought, which have a serious impact on human
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activities (Futrell et al., 2005; Gao, 2022). Traditional ground-station
observations of precipitation exhibited extremely high measurement
accuracy on the point scale, but they cannot accurately reflect the
precipitation on the regional scale owing to the sparse distribution and
network density of stations. Ground-based radar observations can give
the spatial and temporal distribution of precipitation within a 300-km
radius range, but their spatial coverage cannot be scaled up to the
global scale (Li et al., 2021a). With the development of meteorological
satellites, satellite-based quantitative precipitation estimation (QPE)
technology has been greatly conducted (Tang et al., 2015; Yang et al.,
2018; Zheng et al., 2021). Because precipitation is a highly complex
process, however, there is a non-linear relationship between the
surface precipitation intensity and cloud-top optical physical
variables, resulting in certain limitations in the precipitation
estimation equation constructed with statistical methods (Atkinson
and Tatnall, 1997).

Machine learning has been widely proved to be effective for
solving such complicated problems that have non-linear correlation
among their numerous inner components, to which it is extremely
difficult to set up simple physical models by using ordinary
mathematic analysis or statistical skills (El-Alfy and Mohammed,
2020). Therefore, machine learning algorithms such as random
forests have the advantages in satellite-based QPE (Li et al., 2021b;
Lao et al., 2021; Lao et al., 2021). However, most of their working
processes are in a black box state, extremely complex, lack
transparency, and are often difficult to interpret and fully
understand. (Barredo Arrieta et al., 2019; Vilone and Longo, 2020).
Currently, most studies set out to improve the accuracy of machine
learning models for QPE and ignore the interpretation of the output of
the machine learning model and the interaction between input
variables (Bochenek and Ustrnul, 2022). In general, the complexity
of a random forest is proportional to the number of training samples
and decision trees. The deeper the decision tree, the more leaf nodes,
and the higher the complexity of the random forest. However, with the
increase in the complexity of the model, it has become a greater
challenge to interpret the output of machine learning algorithms, and
the interpretability of machine learning is still an issue. Models trained
through algorithms are treated as black boxes, seriously hampering the
use of machine learning in certain areas. As an interpretable approach
to artificial intelligence, the Shapley Additive Explanations (SHAP)
algorithms are defined as arbitrary interpreted approximations of the
original model and are compatible with several types of machine
learning algorithm (Pathy, et al., 2020; Ning et al., 2022). Machine
learning algorithms used in combination with SHAP include random
forest (RF) (Kim and Kim, 2022), extreme gradient enhancement
algorithm (XGBoost) (Min, et al., 2022) and gradient enhanced
decision tree (LightGBM) (Wen et al., 2021), etc.

In recent years, many studies have begun to use SHAP models to
optimize machine learning models and interpret their output results
(Bi et al., 2020; Ning et al., 2022). Covering the fields of clinical
medicine (Wang et al., 2021), finance (Pérez-Castrillo and Sun, 2022),
structural engineering (Mangalathu et al., 2020) and the environment
(Tang et al., 2022). For instance, based on the RF algorithm and SHAP
model, (Li et al., 2021a) analyzed the temporal and spatial variations of
selected key factors affecting PM2.5 (fine particulate matter) in
Zhejiang Province, China. The results showed that the factors
influencing PM2.5 varied greatly during the study period, but the
Shapley values indicated that their relative importance was consistent.
Shapley values provide a valuable means for identifying regional

differences in key factors affecting atmospheric PM2.5 values and
provide a reliable reference for pollution control strategies (Li
et al., 2021b). All these previous studies demonstrate that SHAP, as
an emerging artificial intelligence interpretable model, is increasingly
being applied to different algorithms and fields, its reliability and
practicality are being gradually tested, and its deep logic and
significance are worthy of further study.

At present, few scientists in the field of meteorology, either in China
or internationally, have combined SHAP models to analyze the
influence of the output of machine learning models on feature
dependence. Mesoscale convective systems (MCSs) are one of the
most impactful weather phenomena on Earth (Chen et al., 2020).
The small horizontal range and short life history of MCSs pose a
great challenge to precipitation prediction. MCSs are defined as
convective systems with contiguous area extends ≥100 km in at least
one horizontal direction (Gray, 2011). More importantly, MCSs
contribute to warm-season precipitation, both in the tropics and
mid-latitude regions (Nesbitt et al., 2006; Rasmussen et al., 2016).
Accompanied with MCSs, strong weather phenomena, such as
strong thunderstorms, gales, rainstorms, hail, etc., often occurred
(Parker et al., 2000; Johnson et al., 2021; Gao, 2022). Apparently, the
MCSs with heavy precipitation were caused by even more complicated
environment, which is worthy of examination from the machine
learning perspective. To date, spectral information based on
geostationary satellites combined with machine learning (ML)
models is an effective way to predict precipitation in MCSs
(Kühnlein et al., 2014; Sanò et al., 2015; Min et al., 2019; Gaur et al.,
2020), while there have been no reports on predicting mesoscale
convective cloud precipitation in combination with SHAP models.

Therefore, an attempt was made to explore the QPE issue of
mesoscale convection by combining SHAP with the random forest
algorithm. In particular, it is necessary to use interpretable models
such as SHAP to improve the transparency of the model and explore
the specific effects of global and local features on the results to support
more accurate QPE. This paper takes MCSs in eastern China during
April-Jun of 2016 as a case study (Figure 1). By using ground-based
high-density automatic station data, European Centre for Medium-
Range Weather Forecasting (ECMWF) reanalysis data, and
Himawari-8 satellite data, 15 variables, such as relative humidity
(RH), current precipitation, and black body temperature (tbb), were
used as input factors to build an RF model of satellite-based QPE. The
SHAP model was introduced to elaborate on the global and local
interpretability, with our objective is to explore: 1) the order of
importance and dependencies of global features; 2) under their
interaction, the influence of two local features and individual local
features on the prediction results; and 3) the interpretability of random
forest models to provide scientific reference for more accurate QPE.

2 Material and methodology

2.1 Material

The Himawari-8 meteorological satellite is one of the Himawari
series of satellites designed and manufactured by the Japan Aerospace
Exploration Agency, and is a new generation of meteorological
satellites launched by Japan on 7 October 2014. The Himawari-8
data have 16 observation bands, distributed from the visible, to near-
infrared, to thermal infrared wavelengths.
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Himawari-8 carries an Advanced Himawari Imager (AHI)
scanning five areas: Full Disk (images of the whole Earth as seen
from the satellite), the Japan Area (Regions 1 and 2), the Target Area
(Region 3) and two Landmark Areas (Regions 4 and 5). While the scan
ranges for Full Disk and the Japan Area will be preliminarily fixed,
those of the Target Area and Landmark Areas will be flexible to enable
prompt reaction to meteorological conditions. At the beginning of
Himawari-8’s operation, Landmark Area data will be used only for
navigation, and are not intended for use as satellite products. No
matter what shooting mode, the time resolution can reach at least
10 min. The time resolution of the mode of shooting Landmark Areas
can reach .5 min. The spatial resolution is up to 500 m, and cloud
parameter information can be inverted from Himawari-8 data (links
to data: https://www.eorc.jaxa.jp/ptree/).

The European Centre for Medium-Range Weather Forecasting
(ECMWF, an international organization supported by 34 countries, is
currently the world’s leading international weather forecasting
research and business organization. It was officially established in
1975 and then expanded its operations in June 1979 to real-time
medium-term weather forecasts. ERA5 is the ECMWF’s latest (fifth
generation) atmospheric reanalysis dataset, covering the Earth on a
30-km grid and using 137 horizontally resolved atmospheric layers
from the surface to an altitude of 80 km, with a horizontal resolution of
.25 × 0.25 (links to data: https://cds.climate.copernicus.eu/cdsapp#!/
home).

The precipitation dataset was obtained from the hourly
observation data of China’s ground-based, high-density network of
automatic weather stations. These stations are an important means to
fill the gaps not covered by spaceborne meteorological detection data,
and can be used for all-weather on-site monitoring of more than a
dozen meteorological elements such as wind speed, wind direction,
rainfall, air temperature, and air humidity.

2.2 Methodology

The overall design of the study is illustrated in Figure 2. The
specific details are explained in the following subsections.

2.2.1 Pre-processing of data and input variables
In this paper, the geographic and precipitation information of

high-density automatic stations with 1-h resolution, HW8/AHI
observation data and ERA5 reanalysis data are selected as RF
model inputs. According to the geographic location and time
information of high-density automatic stations, the ERA5 and
satellite data were matched with data from the station by using the
bilinear interpolation method. The fused data, such as tbb, RH, and
precipitation in the previous hour, were used as input variables to train
a random forest model (see Table 1).

2.2.2 Random forest model
Random forest () is a machine learning algorithm (Breiman, 2001;

Ziegler and Koenig, 2014). The superiority of the random forests
approach is reflected in i) its high level of accuracy compared to all
other current algorithms and its ability to run efficiently on large data
sets; ii) its ability to process input samples with high-dimensional
features without the need for dimensionality reduction; and iii) its
ability to assess the importance of individual features in classification
issues. Furthermore, it can also obtain good results for the default
value problem, is increasingly being used in various industries, and is
widely regarded as one of the best algorithms at present (Genuer et al.,
2010).

This paper uses Random Forest Regressor packets in the Python
language to construct a random forest model to predict the
precipitation intensity for the next hour. The independent variables
of the model input are the real-time data of this time, including current
precipitation, tbb, and RH, etc., as shown in Table 1, and the dependent
variable is the log value of the precipitation rate of the next hour [lg
(Rain Rate)]. For the constructed data set, the sites in the MCS domain
of several times are randomly extracted from it, so that they do not
participate in the modeling process at all. They are used as the final
verification set of the model, and the rest of the data are training sets.
The training set is input into the RF model for grid parameter
adjustment based on cross validation, so as to construct the
precipitation prediction model with the highest accuracy. Finally,
the order of importance of modeling variables is given to obtain
the characteristic analysis with physical significance. The specific

FIGURE 1
Object of study: (A) the trajectory of convective clouds studied; (B) maximum instantaneous precipitation in the MCS (mm).
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parameters are set as follows: the number of branches of the decision
tree is 250; the maximum depth of the tree is 30; the minimum number
of samples required at the leaf node is two; the minimum number of
samples for each division is two when dividing the nodes according to
attributes; and the number of samples for features to consider when
finding the best split on each node is 80.

Finally, the training set is input into the RF model for grid
parameter adjustment based on 10-fold cross-validation (CV), so as
to construct the precipitation prediction model with the highest
accuracy. Finally, the order of importance of modeling variables is
given to obtain the characteristic analysis with physical significance. In
the 10-fold CV, the training set is divided into 10 sample subsets, and
9/10 of the samples are randomly selected as the training dataset to
establish a random forest model with each instance of training, and the
remaining 1/10 samples are used as the test dataset for verification of
the prediction accuracy of the established random forest model. The
process is repeated until all the samples have been predicted at least
once. The complexity of 10-fold CV calculations is relatively high, but

the data are fully utilized, which has obvious advantages for the case of
a relatively small dataset, and can improve the accuracy of model
prediction. Finally, the model is judged by the correlation coefficient
(r) and root-mean-square error (RMSE), in which r represents the
correlation between the predicted value of the model and the true
value, and the RMSE is the sum of squares of the deviation of the
predicted value from the true value divided by the number of
predictions, and then taking the square root of the value of the
result. The higher the r value, the smaller the RMSE value and the
higher the model accuracy (Kuhnlein et al., 2014).

3.3 SHAP model

3.3.1 Definition and implementation of SHAP model
SHAP is a game theory method used to interpret the output of any

machine learning model. SHAP interprets the Shapley value as an
additive feature attributionmethod that interprets the predicted values

FIGURE 2
Research roadmap.
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of the model as the sum of the attributed values of each input feature,
thus achieving an arbitrary explanatory approximation of the original
model. Referring to previous studies (Shapley, 1952; Roth and Shapley,
1991; Kuhnlein et al., 2014), the principles of implementation for
SHAP can be briefly described as follows: Each input feature has a
corresponding attribution value—namely, Shapley values (ϕi)—and
then Shapley interaction values (ϕij ) are interaction attribution values
between two features that capture the effect of paired interactions. Its
connection to the attribution value is that the attribution value that
each feature has is determined by the sum of a series of interactive
attribution values (∑ϕij � ϕi), so that the predicted value of the
training sample can be expressed as the sum of the predicted mean
and the total sample attribution value (y � ϕ0 +∑

i�1
ϕi , where ϕ0 is the

predicted mean of the training sample). When the model changes so
that the marginal contribution value of the feature value increases or
remains unchanged (regardless of other features), the attribution value
also increases or remains unchanged.

In the SHAP plot, if the Shapley value is greater than 0, it indicates
that the prediction is pushed higher, i.e., a positive contribution; and if
the Shapley value is less than 0 it means the forecast is pushed lower,
i.e., a negative contribution.

3.3.2 Classification in a SHAP diagram
SHAP can be classified according to different evaluation criteria,

and this paper divides it into visual feature importance, realizing the
clustering of samples and features, and interpreting the model output.
When visualizing the sorting of feature importance, a simple plot (plot
type = ‘bar’) or a bar plot is often used to reflect the importance of all
features. When clustering samples and features (Lundberg et al., 2018),
hierarchical clustering is achieved using shap. utils.hclust, i.e., a
hierarchical nested clustering tree is created by calculating the
similarity between data points in different categories. In feature

clustering, by controlling the degree of redundancy, you can
analyze features with a high degree of correlation. In sample
clustering, the distribution intervals of high-quality samples can be
visualized to some extent. When interpreting the model output, the
summary plot or beeswarm plot is used to demonstrate the positive
and negative effects of all features, and include the ranking of feature
importance. A force plot or waterfall plot is used to demonstrate the
influence of features on single or multiple samples. A dependence plot
is used to explore the interaction between one or more pairs of features
to obtain Shapley interaction values (Lundberg et al., 2020). This is a
method of generalizing SHAP to higher-order interactions, enabling
fast, precise, two-by-two interaction calculations that show whether
the relationship between dependent variables and features is linear,
monotonous, or more complex. Dependence plots tend to reveal
interesting hidden relationships between features, which is the
focus of this paper.

3.2.3 Advantages of the SHAP model
Currently, many of the methods used to interpret local predictions

of machine learning models belong to the attribution of added
features, such as LIME, DeepLIFT, and hierarchical correlation
propagation. SHAP, on the other hand, can unify the interpretation
prediction framework of the above methods. The advantages of the
SHAP model can be broadly summarized as simplicity, visibility,
reliability, and comprehensiveness. More specifically, SHAP is a
“model explanation” package developed by Python, which can be
used by users after installation. The SHAP model visualizes complex
Shapley values, and the relationship between features and features or
features and variables can be intuitively explored through analysis
graphs. Shapley values are the only method of interpretation with solid
theories, the main idea of which is the Shapley value, a method from
cooperative game theory created by Shapley (1952) that can rigorously

TABLE 1 Input variables for the random forest model.

Number Variables Physical explanation

1 tbb/(K) Blackbody temperature

2 minBT/(K) Minimum brightness temperature

3 mcs AI230 Proportion of pixels with a light temperature of less than 230 K in the MCS to total pixels

4 dtbb10 Information on brightness temperature timing changes

5 convective cloud type Convective cloud type

6 convective cloud radius/(km) Convective cloud radius

7 total totals index Use of vertical gradients of temperature and humidity to indicate thunderstorm intensity

8 RH/(%) Relative humidity

9 cloud base height/(m) Height of the cloud base

10 k index Use of the temperature of the lower part of the atmosphere and the dewpoint temperature to indicate thunderstorm
intensity

11 total column water vapor/(kg/m2) The total amount of water vapor in a column extending from the surface of the Earth to the top of the atmosphere

12 current precipitation/(mm/h) Current precipitation

13 precipitation in the previous hour/
(mm/h)

Precipitation in the previous hour

14 station altitude/(°) Station altitude

15 UTC/(h) Time at which the data were observed
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prove its reliability. SHAP has the ability to interpret both global and
local features (Lundberg et al., 2020) while exploring overlooked
physical laws based on interactions between features.

4 Results and discussions

4.1 Verification of the random forest model
and ranking of feature importance

The RF model was verified by the 10-fold CV method, where the r
of the training set was .92 and the RMSE was .14 mm/h. The r of the
test set was .64 and the RMSE was .27 mm/h, which is more accurate
for predicting the precipitation. A frequency scatter plot (logarithm) of
the training set prediction results predicted by the random forest
model and the precipitation data observed at the site is shown in
Figures 3A frequency scatter plot (logarithm) of the test set prediction
results versus the precipitation data observed at the site is shown in
Figure 3B. From the color shading, which indicates the density
distribution, it can be seen that a large amount of the precipitation
observations and estimations are concentrated around 1:1 line,
indicating that the algorithm has a high quantitative estimation
ability for precipitation. However, due to the error of the dataset
itself after the spatiotemporal matching, the accuracy of the model will
be affected to some extent. Thus, in Figure 3A, B it is clear to see that
the data have a certain inclination, a slope of less than 1, and there is a
certain degree of underestimation in the model. The Python language
provides an importance function that sorts the variables of the input
model by importance, as shown in Figure 3C.

4.2 Interpretation of global features from the
SHAP model

4.2.1 Ordering and influencing the importance of
features

The global features are all the input variables of the RF model. In
this paper, the order of global feature importance with positive and

negative influences was sorted based on the output of the RF model
using the summary plot (Figure 4). Color shading in Figure 4 indicates
the size of the features, with red representing the larger values and blue
the smaller values. The top-down ordering in the figure indicates that
the feature importance is from high to low, and it can be known in
Figure 3C, and the importance ranking obtained by the SHAPmodel is
exactly the same as the result of the random forest importance
function. In particular, Figure 4 can also exhibit the influence of a
certain feature on the prediction in a certain interval segment based on
the change of the Shapley values.

Taking current precipitation, which is the most important feature,
as an example, the redder the color, the larger the value of current
precipitation, and the corresponding Shapley value increases and is
always greater than zero, i.e., the positive contribution to the
prediction (overestimation) increases; and the bluer the color, the
smaller the value of current precipitation, and the corresponding
Shapley value gradually decreases from positive to negative, i.e., the
contribution to the prediction changes from positive (overestimation)
to negative (underestimation). Overlapping data points are scattered
in the y-axis direction, e.g., the blue area of current precipitation is
obviously more discrete on the y-axis than the red area, which
indicates that the data contain a large number of samples with low
values of current precipitation. This is highly consistent with the
samples used for training. In the surface station observation data,
the number of non-precipitation pixels was 493760, the number of
precipitation pixels was 199119, and the number of non-precipitation
samples was obviously more than that of precipitation samples.

Meanwhile, the values of current precipitation and mcs Al230 are
positively proportional to the Shapley values, and the positive and
negative effects are obvious. In addition, the values of tbb and cloud base
height are inversely proportional to the Shapley values, and their positive
and negative effects are also obvious. When the values of k index and
total column water vapor increase, the Shapley value increases, which
has an obvious positive effect. However, when these two values decrease,
the Shapley value decreases less, suggesting that their negative effects are
not obvious. The similarity of the relationship between different features
and Shapley values can explain the similarity between features to some
extent. This can be demonstrated in feature clustering.

FIGURE 3
Scatter density plot of logarithmic values of predicted precipitation rates and measured precipitation data in the training set (A) and test set (B) for fusion
parameter modeling, and (C) the ranking plot of the importance of features.
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4.2.2 Clustering of features and samples
Cluster analysis is an important unsupervised learning method

whose importance as a tool for data analysis is widely recognized in
various fields (Rui and Wunsch, 2005). The purpose of clustering is to
look for “natural groupings” in a dataset—the so-called “clusters.” Put
simply, it refers to the analysis process of grouping a collection of
physical or abstract objects into classes consisting of similar objects.
Clustering algorithms are not always effective, or even completely
unreasonable, but there are multiple meaningful ways to divide them
that are worth exploring.

Feature redundancy is measured in SHAP by model loss
comparison using the shap. utils.hclust method and by training a
RF model to predict the results of each pair of input features, which is
used to build hierarchical clustering of features (Mahlstein and Knutti,
2010). Features of typical structured datasets are more accurate than
those obtained from unsupervised methods such as correlation
(Yogiraj and Ashish, 2016). The results of the computed clustering
are passed to the bar chart, which visualizes both the feature
redundancy structure and the feature importance. Suppose that the
distances in a cluster are approximately scaled between 0 and 1, where
0 represents full redundancy among features and 1 means they are
completely independent. By default, the shap. utils.hclust method only
displays the clustering part of the distance <.5, and changing the value
of the clustering cutoff can obtain different degrees of clustering, such
as for clustering cutoff = .6, the clustering part of the distance <.6 is
displayed. As shown in Figure 5A, when clustering cutoff = .5, only k
index and total column water vapor are displayed with more than 50%
redundancy. It can be said that the two are highly correlated, and there
is a multicollinear problem of features, so they are the only features
grouped in the bar chart. In the summary plot, we found similarities
between the k index and the total column water vapor in their influence
on the predictions, confirming our conjecture of the similarity of the
two through feature clustering. From the physical perspective, the k
index is a measure of the development potential of thunderstorms
calculated based on the temperature of the lower part of the
atmosphere and the dewpoint temperature. In addition to

representing the rate of vertical decrease in temperature, it also
contains the humidity conditions and saturation of the middle and
lower layers of the atmosphere. The more abundant the water vapor at
low altitude, the larger the k index value, and the more unstable the
atmospheric stratification, the higher the probability of MCSs
development (Ruoyun et al., 2021). Total column water vapor
represents the total tower water vapor, which is the total amount
of water vapor in a column that extends from the Earth’s surface to the
top of the atmosphere. The three elements conducive to the
occurrence and development of thunderstorms refer to unstable
layer junctions, good low-altitude water vapor conditions and
appropriate triggers (Colman, 1990; Ban et al., 2015). It can be
seen that water vapor conditions play an important role in the
occurrence of MCSs, thus confirming the high correlation between
the characteristics of k index and total column water vapor. As shown
in Figure 5B, when clustering cutoff = .7, the groupings of current
precipitation and precipitation in the previous hour were added, as well
as minBT and mcs Al230 after completing the first layer of clustering,
and continued to complete the grouping of the second layer of
clustering with convective cloud radius. This indicates that each
group has more than 30% redundancy.

In addition to clustering features, we can also use
shap. plots.heatmap to perform heat mapping analysis on samples.
As shown in Figure 5C, the sample color patches are so evenly
distributed because the dataset first undergoes a hierarchical
clustering of shap. utils.hclust. In this plot, the numerical values of
the x-axis represent the sample series, and the f(x) function plot above
the x-axis is the sum of the Shapley values of all the features of each
sample (the sum of the Shapley values of the sample dimension),
representing the degree of deviation from the mean (the dotted line in
the figure represents the mean). The left-hand y-axis is the feature
name, the right-hand y-axis is the feature importance (the sum of the
Shapley values of the feature dimensions), and the streak in the middle
is the size of the Shapley value for each feature in each sample. It can be
clearly seen that from the zero to fifth sample, the tbb color block
shows a clear blue color, indicating that these five samples are greatly

FIGURE 4
Summary plot of feature importance ranking and positive and negative influence in SHAP.
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affected by the negative direction of tbb, and the sum f(x) of the sample
Shapley value is also lower than the average line, which is unified. In a
sense, the zero to fifth samples are high-quality samples when the
study features tbb.

4.3 Interpretation of local features in SHAP
models

Local features refer to some of the input variables of RF models,
and we can interpret local features through analyzing the feature
dependency and interaction. Interaction refers to the phenomenon
whereby the difference in the amount of reaction between the levels
of one variable changes with the different levels of other variables.
The presence of interaction suggests that the effects of several
variables studied at the same time are not independent. Shapley
interaction values are interaction attribution values between two
features that capture the effect of interactions in pairs, which can

maintain consistency while explaining the interaction of individual
predictions.

4.3.1 Understanding interactions with tbb
In the previous random forest feature importance ranking and

SHAP’s supreme plot graph, tbb ranked second. Next, therefore, we
attempt to understand the interaction with tbb.

Tbb is used to indicate the radiant temperature of a cloud-top
black body and is closely related to the development of precipitation. If
it is a strong convective weather development, the blackbody
temperature is generally below −60°C; and the lower the blackbody
temperature, the higher the cloud top, the more vigorous the
convection, and the greater the potential for precipitation (Adler
and Mack, 1984; Chen et al., 2007). Tbb ranks second in the order
of feature importance of random forests, and has a clear negative
correlation with Shapley values, so the role of tbb in precipitation
prediction is further explored by combining feature dependency
graphs with interactions. The following analysis is carried out with

FIGURE 5
Feature clustering: (A) cluster distance <.5; (B) cluster distance <.7; and (C) sample cluster plots.
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reference to existing studies (Wieland et al., 2020; Feng et al., 2021). In
Figure 6A, tbb is the first feature and current precipitation is the second
feature. It is found that when tbb > 230 K, the colors have a
pronounced differentiation in the vertical direction. In this interval,
when the current precipitation value is larger, the Shapley value of tbb
is small, basically below zero, which has an underestimated effect on
the QPE result, corresponding to the red data point. When the current
precipitation value is small, the Shapley value of tbb is larger, basically
located at or above zero, which has no impact on the QPE result or has
an overestimated effect, corresponding to the blue data point. This
shows that the interaction effect of current precipitation on tbb shows a
clear negative correlation with the size of the Shapley value of tbb.

Figure 6B is a feature dependency graph of tbb that also shows the
variance on the y-axis, and this is because there is an interaction of all
other features, so the dependency graph diverges vertically. Figure 6C
is a dependency plot that removes the interaction, and it can be clearly
seen that after removing the interaction of other features, the vertical
divergence of the data point distribution is weakened. It tends to
fluctuate up and down in a certain concentration area. At the same
time, all three graphs have an inflection point near the tbb value equal
to 230 K. When the tbb value is less than 230 K, the slope is less than
zero, and the absolute value is larger. When the tbb value is greater
than 230 K, the absolute value of the slope decreases rapidly, even close
to zero. This means that in the interval where the tbb value is less than
about 230 K, the tbb is inversely correlated with its Shapley value and
the rate of change is large, and the Shapley value increases rapidly with
the decrease of the tbb value; that is, the overestimated effect on the
QPE is rapidly enhanced, and the estimated precipitation probability is
increased. In the interval where the tbb value is greater than 230 K, tbb
is negatively correlated with its Shapley value and the rate of change
decreases obviously, and the Shapley value hovers around −.1 with the
increase of the tbb value; that is, it has a weak underestimated effect on
the QPE, and the underestimated effect does not change much with
the tbb, reducing the probability of estimated precipitation.

As can be seen in Figure 4, the red and blue colors are obviously
layered near where the Shapley value is equal to zero, which means
that it is close to the mean of tbb. Comparing the length of the red and
blue bars, when the Shapley value is positive and the tbb value changes
from the lowest value to the mean, the absolute value of the Shapley
value changes greatly. When the Shapley value is negative and the tbb
value changes from the highest value to the mean, the absolute value of
the Shapley value change is smaller. That is, the inflection point of the
image should appear near the Shapley value of zero, i.e., the tbb value
in the feature dependency graph is near 230 K. According to existing
studies, there is an obvious non-linear change between the blackbody
temperature and the precipitation, and the two are negatively
correlated within a certain temperature range. Some studies that
have comprehensively considered the relationship between tbb and
precipitation in different regions (Molinie and Jacobson, 2004) found
that values of blackbody temperature prone to precipitation are
concentrated between 210 K and 250 K, which is basically
consistent with the conclusions observed from the SHAP plot.

4.3.2 Explaining the anomalous prediction of RH
Water vapor at low-level atmospheric layer accounts for a large

proportion of the total atmospheric water vapor content of the whole
layer, and the total amount of water vapor in the whole atmosphere is
closely related to the ground humidity, which can reflect the amount of
water vapor content of the whole atmosphere through the ground
humidity (Brenner, 2004). Relative humidity at surface, hereinafter
referred to as RH, is defined as the percentage of the ratio of the actual
water vapor pressure (e) to saturated water vapor pressure (es) on the
surface, which characterizes the saturation of water vapor in the
atmosphere. As an important factor in regulating the balance of
surface water and energy, the change of RH is closely related to
precipitation and air temperature. The same approach as before is used
with RH to make feature dependency plots (Figure 7A) and feature
dependency plots after eliminating interactions (Figure 7B).
Anomalous predictions occur approximately in the range where
RH is less than 30%, at which point RH corresponding to a
Shapley value greater than zero implies an overestimation of

FIGURE 6
Characteristic-dependent plots of tbb (K): (A) feature dependency
graph showing the interaction of current precipitation with tbb(K); (B)
feature dependency graph that represents the comprehensive
interaction of all the remaining input features on the tbb (K); (C)
feature dependency graphs that eliminate interactions.
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precipitation predictions, which is contrary to the experience of model
predictions of no precipitation when the relative humidity is low (Lin
et al., 2007; Todd et al., 2018). Therefore, this section attempts to
provide a physical explanation for the occurrence of anomalous
predictions at RH less than 30%.

In addition, there are two more noteworthy points in the range
where RH is greater than 80%. Firstly, in this interval, the upper and
lower edges of the Shapley value distribution band show an obvious
upward trend. This suggests that, to some extent, RH may be
constraining the upper and lower limits of precipitable water.
Secondly, the change in slope in the feature-dependency graph of
the eliminated interaction is obviously greater than that in the plot
when the interaction is not eliminated, which suggests that when RH is
larger, the interaction of other features mitigates the effect of RH on
precipitation prediction.

In the range of RH less than 30%, the Shapley value distribution
band is almost horizontal, indicating that precipitation prediction is
less affected by RH changes and there is almost no interaction effect
of other factors. Therefore, it is speculated that in this area
(31.7167°–43.3°N, 103.717°–128.183°E), when RH < 30%, the
precipitation in the next moment is mainly from non-local water
vapor. According to previous studies (Xu et al., 2020; Zheng et al.,
2021; Yang et al., 2022), local water vapor comes from local surface
evaporation and plant transpiration, and the starting height is the
same as the surface height, which belongs to the relatively low layer
of water vapor. Non-local water vapor comes from surface
evaporation and plant transpiration in other places, and is
transported horizontally and vertically to the local sky, which has
a higher average altitude and belongs to the relatively high-rise water
vapor. According to this, comparing the relative humidity and
absolute humidity of different levels in the region for this period,
if the relative humidity and absolute humidity values meet, the
upper-layer water vapor is greater than the near-surface layer
water vapor. To a certain extent, the source of precipitation can
be characterized as non-local water vapor. Therefore, this paper uses
the ground station data to extract the longitude, latitude and time
corresponding to RH < 30%, matches the ERA5 reanalysis data of
different levels of relative humidity and absolute humidity in this
time and space, and uses 925 hPa to approximate the near-surface

layer and 700 hPa to approximate the middle and upper layers. After
averaging the time, the results present in Table 2 were obtained. It
can be seen that the relative humidity of the 700 hPa level is
obviously greater than the relative humidity of the 925 hPa level,
and the absolute humidity of the two is smaller and the size is close,
so it can be confirmed to some extent that precipitation mainly
comes from the transboundary water vapor.

To further explore the causes, the sites with RH less than 30% in
this space and time were located, and the precipitation intensity at
different times of the corresponding stations was determined by using
the surface automatic weather station data. Figure 8A shows that the
data points that meet an RH of less than 30% are concentrated in the
North China Plain region, and there are also a small number
distributed in the Northeast Plain and the Yunnan-Guizhou
Plateau regions. Figures 8B–G show that the first 3 hours to the
previous hour have less precipitation and a smaller impact range,
and the subsequent one to 3 hours of precipitation increase obviously
and the scope of influence is expanded. This proves to some extent the
accuracy of the results of the SHAP model; that is, when the RH is less
than 30%, it makes a positive contribution to the prediction of
precipitation, increasing the probability of predicting precipitation.
In order to verify the spatiotemporal characteristics of water vapor
transport (He et al., 2007), the 850-hPa level horizontal wind field and
geopotential height reanalysis data from April, May and June
2016 were used, and the 850-hPa wind pressure field representing
the low altitude level was obtained after averaging the time,
respectively (Figures 9G–I). Using the multi-layer wind field and
specific humidity reanalysis data under 1,000 hPa to 300 hPa in
April, May and June, the integral of 1,000 hPa to 300 hPa in the
vertical direction after taking the time average, respectively, obtained
the water vapor flux field representing the whole layer (Figures 9D–F)

FIGURE 7
Characteristic-dependent plots of relative humidity (%): (A) feature dependency graph that represents the comprehensive interaction of all the remaining
input features on the RH (%); (B) feature dependency graphs that eliminate interactions.

TABLE 2 Comparison of relative and absolute humidity at the 925 hPa and
700 hPa levels.

Level 925 hPa 700 hPa

Relative humidity (%) 18.3364 42.7196

Absolute humidity (g/m3) .00253 .00115
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and the water vapor flux field of the 850-hPa single layer (Figures
9A–C). It can be clearly seen that a very deep south-branch trough
appears in the southwest direction of China (Figures 9G–I), which is
consistent with the findings of (Ke et al., 2021), and the southwest
wind blows before the trough (east side of the trough), which can be
used as a warm conveyor belt. The air makes an upward movement to
transport warm and humid air over the Indian Ocean and the Bay of
Bengal to the middle and low latitudes of China. A powerful cold
vortex system (Northeast Cold Vortex) appears in the northeast
direction, and a distinct westerly wind conveyor belt appears on
the south side of the cold vortex, bringing cooler air masses to
North China. In addition, studies have shown that the Northeast
Cold Vortex affects precipitation in eastern China and has a clear
correlation with the Western Pacific Subtropical High (Liu et al., 2015;
Gao, 2022). There is a pronounced subtropical high pressure in the
southeast direction (Yuan et al., 2020) from April to June, and on the
eve of the first north jump of the subtropical high pressure, a southeast
monsoon will be on its southwestern side to deliver warm and humid
air flow through the tropical western Pacific Ocean to southeast China.
Warm and humid air currents from the southwest and sub-high edges
intersect with strong cold air from the northeast around at 33°–40°N,
roughly coinciding with the data point concentration area. The
connection between the above weather systems transports water
vapor, heat and momentum from low to higher latitudes, creating
conditions for cloud rain to form in mid- and high-latitude regions.
The water vapor flux field is basically the same as the wind field
situation, and the low and middle latitudes have obvious southwest air
flow and west wind air flow to transport a large amount of water vapor
to the North China Plain. This feature is most pronounced in June.

Further statistical analysis of the observation data with less than
30% RH reveals that the observation time distribution of the data has
obvious diurnal variation characteristics (Figure 10G). Maximums
occur at 0300–1,000 and 1,500–1800 Beijing time (BJT), respectively,
of which the number of occurrences at 0300–1000 BJT accounts for
more than 63% of the total number of times, and the average time of
data point occurrence is about 0900 BJT. This is associated with low-
level jet stream with obvious daily variations in intensity (Yan et al.,
2021). The northern hemisphere’s low-level jet streams are strong in
the morning and weakest in the afternoon, generally in the south or
southwest, appearing on the west or north edge of the subtropical

high pressure, and play a role in transporting heat, water vapor and
momentum to the lower atmosphere. The updraft is mostly located
on the left or at the front of the axis of jet stream, and another
obvious feature is that on its north or west side there is a lot of cold
air sinking from the middle and pelagic layers, which flows all the
way to the front and converges with the airflow from the south or
east, further strengthening the airflow in the ascendant branch.
When the warm and humid air is transported north to the
bottom of the drier and cooler air, a convectively unstable
stratification is formed, and under the trigger of the upward
movement on the left side of the low-level jet stream, it is easy
for convective precipitation to be produced, such as heavy rain and
hail, and even tornado weather. The same meteorological elements
were selected and the data were analyzed. The day was divided into
three time periods (0300–1000 BJT, 1,100–1800 BJT, and
1900–0200 BJT) and then the time averaged to obtain the
1,000–300 hPa whole layer of the water vapor flux field (Figures
10D–F) and the 850 hPa single-layer water vapor flux field
(Figure 10A–C) in the three periods. Among them, after the
average value of the water vapor flux value of the 850-hPa single-
layer, the situation of each time period is as follows: the time period
of 0300–1000 BJT has a maximum value; the time period of
1900–0200 BJT has a large value; and the time period of
1,100–1800 BJT has a minimum value. This is basically consistent
with the diurnal variation characteristics of low-level jet streams.
Therefore, the water vapor transport at 0300–1000 BJT is related to
the low-level jet streams from the southwest direction.

In summary, through the humidity conditions, wind pressure
fields, and water vapor flux fields of different atmospheric levels, we
have preliminarily verified the conjecture that precipitation in areas
with relative humidity of less than 30% comes from non-local water
vapor transport. At the same time, the seemingly abnormal output of
the SHAP model is thus physically explained, which verifies its
rationality.

4.4 Advantage and limitation

Using SHAP to explain the machine learning model used to
predict meteorological elements, its advantages and reliability have

FIGURE 8
(A)Data point distribution plot with relative humidity of less than 30%. The hourly rainfall intensity distributionmap for the data points in (A): (B) rainfall for
the first 3 hours; (C) rainfall for the first 2 hours; (D) rainfall the previous hour; (E) rainfall in the next hour; (F) rainfall in the next 2 hours; (G) rainfall in the next
3 hours.

Frontiers in Environmental Science frontiersin.org11

He et al. 10.3389/fenvs.2022.1057081

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1057081


been tested in previous studies (Ghafarian et al., 2022; Song et al., 2022;
Tang et al., 2022). For instance, Tang et al. (2022) combined machine
learning and SHAP to find potential climate remote links and
improve the prediction of other climate signals. Their results
show that SHAP can eliminate the difference in the importance
of features caused by the selection of different indicators, which is
meaningful for revealing the objective phenomenon that has not
been found, and it helps to fill the gap in the interpretability of
machine learning models. Compared with other studies that use
machine learning to predict precipitation (Min et al., 2019; Li et al.,

2021a; Lao et al., 2021; Lao et al., 2021), nevertheless, our present
work focuses on interpreting the output of the model, exploring the
features and models, and the influence between different features.
SHAP is an after-the-fact interpretation approach that is suitable for
any machine learning model. In the future, we need to find a
meteorology-based physical interpretation model for SHAP to
apply to the actual operation of machine learning model
interpretation. In addition, for the anomalies in relative humidity
that appear in this paper, we will further explore the physical
mechanisms of MCSs (Mishra, 2018).

FIGURE 9
Monthly-averaged single-layer water vapor flux field at 850 hPa (unit: g· Pa−1 ·m−1 · s−1):(A) April; (B)May; (C) June. Monthly-averaged whole-layer water
vapor flux field of 1,000–300 hPa (unit: g· Pa−1 ·m−1· s−1): (D) April; (E)May; (F) June. Monthly average geopotential height (gpm) and wind vector field (m/s) at
850 hPa. The vector denotes the size and direction of wind and water vapor flux, the shading indicates the value of potential height: (G) April; (H)May; (I)June.
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5 Conclusion

Based on ERA5 reanalysis data, AHI observation and inversion
data carried by the Himawari-8 meteorological satellite, and high-
density automatic weather station data, a QPE model for MCSs was
constructed by using a random forest algorithm, and the
interpretation of the output of the random forest was explored by
using a SHAP model. The main conclusions can be summarized as
follows:

The output of the random forest model for QPE can be analyzed
by the SHAP model for global and local feature influence, and the
feature importance ranking and local contribution values can be

obtained. The importance ranking obtained by SHAP model is
completely consistent with the outputs of random forest
importance function. This SHAP method can display the
importance ranking of global features with positive/negative
contribution values (e.g., current precipitation, column water
vapor/black body temperature, cloud base height), and can
visualize the marginal contribution values of local features under
interaction. Taking current precipitation, tbb and cloud base height
as examples, the local influence was analyzed and combined with
objective facts, which proved the reliability of the SHAP model
applied to the random forest model for QPE. Clusters of features
and samples can be achieved through SHAP, assisting in the search

FIGURE 10
Diurnal variation of the single-layer water vapor flux field at 850 hPa (unit: g· Pa−1· m−1· s−1): (A) 0300–1000 BJT; (B) 1,100–1800 BJT; (C)
1900–0200 BJT. Diurnal variation of the water vapor flux field of the whole layer of 1,000–300 hPa (unit: 2· 102 · g· m−1 · s−1): (D) 0300–1000 BJT; (E)
1,100–1800 BJT; (F) 1900–0200 BJT. (G) The number of times the relative humidity is less than 30% during different data observations, and the corresponding
relative humidity value. The vector represents the water vapor flux value.
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for highly relevant features as well as high-quality samples. Taking
tbb as another example, the SHAP model can visualize the
interaction between features, which is conducive to exploring the
influence of features on the output of the model and the interaction
between features, and even the physical meaning implied in the
interaction. In contrast, by analyzing anomalies in the RH Shapley
value, we can still find a relatively reasonable physical explanation
to justify its results. In general, our findings show that combining
the RF and SHAP methods provides a valuable way to interpret the
output of machine learning models for satellite-based QPE, as well
as an important basis for the selection of input variables for
satellite-based QPE.
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