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This study adopts a relatively infrequent approach to explore the impact of

environmental regulation and technological innovation on energy efficiency

(EFF) based on the undesired superefficiency SBM and random Tobit model. To

study the universal EFF, we establish the undesired superefficiency SBMmodel,

which is composed of three input indexes such as energy, one expected output

index, and three pollution emissions as the undesired output index, consider the

EFF of the sample with an effective decision-making unit (DMU) value less than

1, and calculate with the MATLAB software, according to panel data of

30 Chinese provincial-level regions from 2001 to 2019. The empirical results

show that the EFF has an N-type trend in the eastern, central, and western

regions of China. When exploring the impact of environmental regulation and

technological innovation on EFF, we conduct an empirical analysis of the

eastern, central, and western regions with the random Tobit model. The

regression results indicate that the impact of environmental regulation on

EFF in the different regions varies significantly. Technological innovation has

different impacts on EFF in different regions and is themain influencing factor of

EFF. Moreover, we strive to analyze the impact of cross-term environmental

regulation and technological innovation and find that the cross-term has a

significant positive impact on EFF in each region. These results emphasize that

environmental regulation and technological innovation have positive or

negative impacts on EFF, and both impacts may exist simultaneously, which

is a perfection of the EFF theory.
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1 Introduction

In the past 20 years, China’s economy has grown rapidly. This rapid growth requires

the support of a large amount of energy consumption. Unfortunately, this large amount of

energy consumption has also brought about problems of major social development. First,

the degree of environmental contamination in China is getting higher. Large-scale haze

weather has repeatedly appeared in China, indicating that the degree of industrial

pollution has approached the limit of environmental carrying. According to the

2010 World Energy Statistical Yearbook, it is the largest energy consumer that China
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has become in the world. A large amount of energy consumption

will inevitably bring about air and serious water pollution (Liu

et al., 2019). With China’s economic development in the future,

energy consumption is likely to increase (Feng and Wang, 2017),

and balancing environmental protection and economic

development has become an important factor affecting the

sustainable development of China’s economy and society

(Zhang and Zhou, 2020). Therefore, reducing environmental

pollution and improving energy efficiency (EFF) have become

urgent in China. Second, it is difficult to achieve the goals of

energy conservation, emission reduction, and EFF improvement

simply by relying on the market; therefore, environmental

regulations proposed by the government are needed to

compensate for the market failure. The so-called

“environmental regulation” refers to the direct intervention of

the government in the utilization of environmental resources

through non-market means (Zhao et al., 2009). China’s

environmental regulation is aimed at improving

environmental quality and forcing enterprises to improve EFF

(Zhang et al., 2019). However, any policy, like a coin, has two

sides. Although environmental regulation can interfere with

pollution emissions of enterprises, it is worth studying

whether it can improve EFF. Third, the energy-saving effect of

many emission reduction policies in China is unsatisfactory, and

environmental pollution has not been alleviated from the root.

However, there is no unified opinion on whether technological

innovation, as the main factor of technological progress, can

achieve EFF improvement and pollution reduction. It is generally

believed that technological innovation can improve the level of

the production process and is an effective way to improve energy

utilization efficiency (Kemfert and Truong, 2007). However, not

all innovations can improve EFF (Jia and Zhang, 2013). Whether

environmental regulation and technological progress can affect

EFF also needs further exploration. Therefore, studying the

relationship between environmental regulation, technological

innovation, and EFF, as well as how to reduce environmental

pollution and improve EFF, has become an issue of great concern

to academia, the Chinese government, and even the world. This is

an important practical value to meet the era requirements of

China’s eco-efficient development economy.

The study on this issue has many meanings. First, it is

beneficial to explore the impact mechanism of environmental

regulation and technological innovation on EFF. Theoretically,

the relationship is explored between environmental regulation

and technological innovation to EFF to provide theoretical

support for energy conservation and emission reduction in

developing countries. The second aspect is helpful to clarify

the differences in the impact of EFF among the three major

regions of China in the process of economic development, which

provides a reference for the balanced economic development of

various regions in China. The third point is conducive to

reducing pollution emissions and improving the environment,

making the economy of various regions in China shift to the

green growth of low energy consumption and high output, and

providing a certain reference for other countries when

formulating energy policies.

This study has three main contributions: first, it explores the

mechanism of environmental regulation and technological

innovation on China’s EFF. The impact of this mechanism on

EFF of the three regions in China is quite different; the internal

reasons for its impact on EFF are also different. This provides a

theoretical reference for China to save energy, reduce emissions,

and improve EFF in the process of economic development.

Secondly, the cross-terms of environmental regulation and

technological innovation have significant positive effects on

EFF in different regions. However, the coefficients are

different, and the impact coefficients are different at the same

time. This indicates that part of technological innovation and

part of environmental regulation are put into the production

process of energy saving and efficiency improvement, which

improved the EFF. This can further explain why scientific and

technological innovation has a positive or negative impact on

EFF in the literature. Thirdly, the EFF of the three regions is

approximately N-shaped, and it is concluded that the EFF of the

economically developed regions is sometimes lower than that of

the undeveloped regions.

The idea of this study is divided into five parts. The first

part is an introduction, which explains the research

background, significance, and contributions. The second

part is the literature review, which summarizes the impact

of environmental regulation, technological innovation, and

the two variables on EFF. The third part is the study design,

which mainly introduces the undesired superefficiency SBM

model, Tobit models, and variable setting. The fourth part is

the analysis of empirical results. It includes whether the Tobit

model needs to contain the cross-term, the selection of the

random Tobit model, and the quantitative analysis of the

influence on EFF of the three major regions and the whole

country in the random Tobit model. The fifth part is the

research conclusions and suggestions. Based on the

measurement results and the existing research, this study

sorts out the research conclusions and puts forward

suggestions.

2 Literature review

EFFmeans that the actual energy input was optimal when the

production output was fixed (Patterson, 1996). In the early

research of EFF, the traditional DEA and SFA models were

mostly applied. Such models did not consider the impact of

undesired output, and the results of the models were difficult to

reflect the true level of EFF. Therefore, some scholars began to

use the superefficiency DEA method and build the SBM model

that can deal with unwanted output to study EFF (Fan andWang,

2013).
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2.1 Impact of environmental regulation
on EFF

At present, environmental regulation has made remarkable

achievements in controlling environmental pollution, but there

were differences in the research views on the impact of

environmental regulation on EFF.

(1) Environmental regulation had a negative impact on EFF

“following costs” because environmental regulation

increased pollution control costs of enterprises, which

directly increased production costs. Thus, EFF can be

reduced by environmental regulation. Jorgenson and

Wilcoxen (1990) reported that environmental regulation

led to the decline in the gross national product, through

their empirical research on the economic growth of the

United States through environmental regulation.

Levinsohn and Petrin (2003) concluded that the high cost

of pollution control in the US paper industry had a

dampening effect on the productivity of the paper

industry. Li et al. (2019) pointed out that the reduction of

EFF had only become apparent when the intensity of

environmental regulation increased to a certain extent.

(2) Environmental regulation positively affects “innovation

compensation” on EFF, which improves EFF.

Environmental regulation forces enterprises to perform

energy-saving technology innovation, which reduces the

demand for energy under the condition of constant

output, which improves the energy intensity. Porter

(1991) proposed that environmental regulation, in an

appropriate way, had offset the constraint of “compliance

cost” and had improved the level of enterprise productivity.

Costantini and Crespi’s (2008)’ research showed that the

dynamic impact of environmental regulation on the export

of energy technology improved the efficiency under the

background of international trade, which was in line with

Porter’s hypothesis. Mandal (2010) conducted an empirical

study on India’s cement industry and found that

environmental regulation reduced pollution and improved

EFF. Bi et al. (2014) suggested that limiting pollutant

emissions improved EFF by comparing the change of total

factor EFF in the thermal power generation industry, which

was the idea of improving EFF that Peng (2020) also

supported.

(3) Environmental regulation may have a nonlinear effect on

increasing or decreasing EFF. According to Yang et al.

(2016), there was an inverted U-shaped relationship

between environmental regulation and EFF. When

environmental regulation reached certain conditions, per

capita energy consumption was reduced. Albrizio et al.

(2017) found that regulation intensity had different effects

on the productivity growth of enterprises with different

productivities. For enterprises with high productivity,

strict environmental regulations boosted their

productivity, while for enterprises with low productivity,

strict environmental regulation reduced their product

productivity. Hu et al. (2019) believed that environmental

regulation had a positive effect of U-shaped on the EFF and a

lower environmental regulation, leading to reduced EFF.

2.2 Impact of technological innovation
on EFF

It is almost common sense that technological innovation, as

the main source of technological progress, contributes to EFF.

However, there are two types of technological innovation (Lee,

2010). The first category is product innovation, which refers to

technological innovation based on product design changes, and

the second category is process innovation, which refers to

technological changes in the production (service) process,

which is an effective part of improving energy utilization.

Although there are a lot of research achievements in the field

of technological progress and EFF at home and abroad, most of

the literature from unilateral or involving other factors. However,

few studies directly describe the relationship between

technological innovation and EFF (Trianni et al., 2013).

(1) Technological innovation has a positive impact on EFF; it

improves EFF by saving scarce production factors and

changing the proportion of the marginal output of each

factor. Technological progress was originally proposed by

Hicks (1932), who believed that technological progress had

been the use of abundant production factors to save scarce

production factors and who divided it into capital-saving,

labor-saving, and neutral technological progress. Acemoglu

(2002) believed that technological progress had changed the

proportion of the marginal output of each factor and the use

ratio of energy factors to non-energy factors, thus improving

EFF. Bala Subrahmanya and Kumar (2011) concluded from

their study of SMEs in the Indian machine tool industry that

technological innovation activities aimed at saving

production costs contribute to improving EFF. Ramirez-

Portilla et al. (2014) confirmed the positive correlation

between innovation and EFF of enterprises. After their

research on Italian foundry companies, Cagno et al.

(2015) found that companies of high innovation activity

preferred to use energy-saving technologies to improve EFF.

Herrerias et al. (2016) supported that technological

innovation had a significant co-directional impact on EFF.

(2) Technological innovation has a negative or insignificant

impact on EFF, which would reduce EFF. Sun et al.

(2011) believed that due to the diversity of expenditure on

technological innovation in the industry, EFF had a negative

impact when technological expenditure was mainly used for

product design rather than for the improvement of
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production process efficiency. Luo et al. (2015) showed that

technological innovation had no significant impact on EFF

and sometimes had a negative impact. Wang and Wang

(2020) used the exponential decomposition method and the

regression method to prove that excessive investment in

technological progress did not significantly improve EFF.

The reason was caused by the diversity of the expenditure

direction of technical funds and the great difference in the

investment of technical funds in various industries.

2.3 Impact of environmental regulation
and technological innovation on EFF

There were few studies on the relationship between

environmental regulation, technological innovation, and EFF.

In the long run, energy consumption was reduced only when the

positive effect of “innovation compensation”was greater than the

negative effect of “compliance cost” (Jaffe and Stavins, 1995; Liu

et al., 2017). Managi et al. (2005) studied the natural gas and oil

industry in the Gulf of Mexico and found that environmental

regulation and technological innovation had a negative impact

on the energy intensity in the current period, which had a

positive impact on energy intensity in the lagged period.

According to Yang and Zhu (2017), technological innovation

in eastern and central China had no significant positive impact

on EFF under environmental regulation. However, in western

China, it had a significant negative impact.

In summary, most of the literature mainly studied the impact

of environmental regulations on EFF of a certain enterprise from

the micro-perspective and rarely considered the impact of

environmental regulations under macro-policies. Regarding

the relationship between technological innovation and EFF,

the research literature based on Chinese data has not formed

a consistent empirical conclusion. As for the views contrary to

common sense, the formation mechanism behind them also

lacked in-depth discussion in the relevant literature. Most of

the literature on the relationship between the three aspects was

qualitative judgment, which cannot quantitatively explain the

impact of environmental regulation and technological

innovation on industrial energy consumption. Based on the

research of the above scholars and the provincial panel data

of China from 2001 to 2019, this study used the undesired

superefficiency SBM model to calculate the EFF with

undesired output, which built the Tobit model of EFF on this

basis. It further analyzed the magnitude and direction of the

impact of environmental regulation and technological

innovation on EFF in China’s three major regions while

discussing the impact of their cross-terms on EFF. This would

provide a theoretical reference for the development of low-energy

consumption and a green and sustainable economy in all regions

of China. It also provided a reference for developing countries to

make energy policies. This was the innovation and unique value

of this study.

3 Research methods and hypotheses

3.1 EFF measurement method

Currently, the superefficiency DEA model has been applied

more in different fields, but there are not many related studies

applying it to China’s EFF evaluation. The research on energy

and efficiency is not satisfied with the study of single-factor EFF,

and the research on multi-factor EFF is the development

tendency of future research in the field of EFF. Therefore, on

the basis of relevant research at home and abroad, this study

considers the following two aspects for improvement: first,

carbon dioxide emissions and other pollution emissions are

studied as unintended output indicators to examine the

relationship between emission reduction and energy saving

and EFF and second, the undesired superefficiency DEA

model is used to study the EFF value of effective decision-

making units and provides data basis for detailed research on

improving EFF.

3.1.1 Selection of superefficiency DEA model
The DEA method is first proposed by Charnes and Cooper

(1984). Up to now, the DEA model has been applied to

mathematics, management science, and many other fields, but

the original conventional DEA model is not applied to some

fields of in-depth research with the research needs of scholars on

DEA model, DEA model has also been further developed. When

there is excessive input or insufficient output, the result of the

decision-making unit (DMU) calculation will not conform to the

objective reality. Therefore, to overcome the above problems,

Tone (2001) created the measurement method of efficiency based

on slack variables, that is, the SBM model.

The efficiency value calculated by the SBMmodel can be kept

within the interval 0 to 1, and the efficient DMU takes the value

of 1, whereas the DMU less than 1 is regarded as an invalid state.

However, when quite a few DMUs are set to 1, we cannot

compare efficient DMUs. Nevertheless, the efficiency value ρ
is calculated by the superefficiency SBM model, which can be

greater than or equal to 1, and which can perfectly compare the

efficient DMUs in the SBM model. Modern production methods

increase labor productivity, while industrial production

inevitably generates a large amount of wastewater and gas (we

call it undesirable output). Tone (2004), based on his own

research, constructed an undesired superefficiency SBM model

to calculate the true efficiency of the DMU.

Based on the research of Tone (2003) and Cheng (2014), this

article constructed a non-radial and non-oriented SBM model

with constant returns to scale (CRS) and non-expected
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superefficiency. It used MATLAB software to calculate EFF to

compare and analyze the efficiency.

The model assumed that there were n DMUs, and each DMU

contained elements of input, desired output, and undesired

output (e.g., carbon dioxide and wastewater), represented by

three vectors X, Y, and Z, respectively. It was assumed that the

DMU of the SBM model with undesired superefficiency in this

study was (x0, y0, z0), and the formula was as follows:

ρ � min
1 + 1

m∑
i�1

m
sxi/xi0

1 − 1/s1 + s2(∑s1
k�1

syk/yk0
+ ∑s2

l�1
szl/zl0 )

(1)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j�1,j ≠ 0

xjλj − sxi ≤xi0,∀i;

∑n
j�1,j ≠ 0

yjλj − syk ≥yk0,∀k;

∑n
j�1,j ≠ 0

zjλj − szl ≤ zl0,∀l;

(2)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 1 − 1
s1 + s2

⎛⎝∑s1
k�1

syk/yk0
+∑s2

l�1
szl/zl0⎞⎠> 0

sxi ≥ 0, s
y
k ≥ 0, s

z
l ≥ 0, λj ≥ 0,∀i, j, l,

(3)

where sx∈sm and sz∈s2 represent the excess of input and undesired
output, respectively, and sy∈s1 represents the shortage of desired
output. ρ stands for the efficiency value of the DMU. M, S1, and

S2 stand for the number of variables for input, desired output,

and undesired output. Eq. 1 satisfies constant returns to scale

(CRS). If∑λ = 1 is satisfied in Eq. 2, then Eq. 1 satisfies the case of

variable returns to scale (VRS). Similar to the superefficient SBM

model, the efficiency value ρ is calculated for the non-desired

superefficient SBM model. When ρ is greater than or equal to 1,

DMU is valid. On the contrary, it symbolizes that DMU is not

effective and that there is room for improvement on DMU.

3.1.2 Variable selection and data sources
The undesired superefficiency SBM model of China’s EFF in

this study adopts three input indicators, one expected output

index, and three unexpected output indicators. Among them, the

input indicators include energy input and non-energy input

(including capital input and labor input), and the EFF value is

calculated by MATLAB software.

3.1.2.1 Variable choice

Energy is an avital input factor in the production process,

which mainly includes coal, crude oil, natural gas, and other

energy sources. Due to the differences in the energy consumption

structure of each province, it is uniformly converted into “ten

thousand tons of standard coal” and then summed up. The

obtained total energy consumption is taken as the energy input

(Tobin, 1958). In this study, all kinds of energy in each province

are converted into total energy consumption (Feng and Wang,

2015).

Capital input is represented by the fixed capital investment of

each province after depreciation, and the depreciation rate of this

study is calculated by the perpetual inventory method of Shan

(2008):

Kt � Kt−1(1 − δt) + It, (4)

where Kt symbolizes the capital stock, It stands for the amount of

investment, and δt represents the depreciation rate. The capital

invested in this study is 10.28%, the average of 10.96% was

estimated by Shan (2008), and 9.6% was estimated by Zhang et al.

(2004), as the depreciation rate of each province in China.

Labor input, which is the best indicator to measure, is the

labor time in the manufacturing process, but the data on labor

time cannot be obtained. Therefore, referring to relevant

literature, this study chooses to measure labor input by the

“average number of employees in industrial enterprises above

designated size” in each province (Ye and Li, 2022).

Desirable output, the pollutants emitted by energy

consumption are mainly air pollution and water pollution. It

is also the undesired output of energy consumption to the output

of the environment. The existing literature mostly uses the gross

product as the expected output, and the expected output of this

study selects the adjusted GDP of each regional gross product

index as the measurement index (Li and Li, 2018). To consider

the year 2000 as the base period, divide the GDP of each region by

the GDP deflator and get the real GDP, which is the expected

output.

• Undesirable output, the pollutants emitted by energy

consumption are chiefly air and water pollution. It is

also the undesired output of energy consumption to the

environment. By referring to the methods adopted by

Managi and Kaneko (2006) and Watanabe and Tanaka

(2007), the undesired output is measured by CO2, SO2, and

industrial wastewater emissions, as shown in Table 1.

3.1.2.2 Data sources

According to the research purpose and data availability, this

study considers 30 provinces, municipalities, and autonomous

regions of China (hereinafter referred to as “provinces”) as

independent decision-making units and selects EFF panel data

from 2001 to 2019, among which Tibet, Hong Kong, Macao, and

Taiwan are not included due to missing data. According to the

principle of combining economic development level and

geographical location, China is divided into three major

economic zones: eastern, central, and western. The eastern

region includes Beijing, Hainan, and 11 other provinces. The

central region includes eight provinces, such as Shanxi and

Hunan. The western region includes 11 provinces, including

Inner Mongolia and Xinjiang.
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Among them, the data of each input variable are summarized

from the data center of the National Bureau of Statistics of China

and the statistical yearbooks of various provinces. The research

data of expected and unexpected outputs are mainly summarized

from the China Energy Statistical Yearbook, China Statistical

Yearbook, and China Environmental Statistical Yearbook from

2001 to 2019.

3.1.2.3 Descriptive statistics of DEA model variables

In the process of calculating the EFF of China’s 30 provinces

by the DEA model, we not only study the overall EFF of China

but also divide China’s 30 provinces into three regions and make

a comparative analysis of the EFF of the three regions. Between

2001 and 2019, the average EFF in the east was 0.4435, the

maximum value was 0.8337, and the minimum value was 0.0851.

The mean value of EFF in the central region is 0.2817, the

maximum value is 0.5257, and the minimum value is 0.0364.

In the west, the mean value of EFF is 0.3944, the maximum value

is 0.6130, and the minimum value is 0.2018. The national average

EFF is 0.3824, the maximum is 0.5753, and the minimum is

0.1730. The order of EFF of the three economic zones from high

to low is eastern, western, and central.

TABLE 1 Input–output variation table of the DEA model.

Name
element

Variable name Name of
code

Meaning of variables Units

Input factor Total energy
consumed

Energy It is expressed by converting the total energy consumption of each province into
“10,000 tons of standard coal”

Ten thousand tons

Investment capital Invest Expressed as a fixed capital investment in each province (calculated by perpetual
inventory method)

One hundred million
yuan

Labor input Labor Expressed by the average number of employees of industrial enterprises above the
designated size in each province

thousands of people

Desirable output GDP GDP Divide the GDP of each region by the GDP deflator (with 2,000 as the base period) to
get the real GDP

One hundred million
yuan

Undesirable
output

Carbon emission CO2 Total regional CO2 emissions Ten thousand tons

Industrial
wastewater

Indus-Water Total industrial wastewater discharge in the region Ten thousand tons

Waste gas SO2 The total amount of SO2 emissions in the region Ten thousand tons

TABLE 2 Average EFF of China’s 30 provinces from 2001 to 2019 (unit, none).

ID PROV Mean Max Min ID PROV Mean Max Min

1 Beijing 0.6486 1.2159 0.0384 18 Hubei 0.3143 1.1352 0.0036

2 Tianjin 0.3367 0.7148 0.0262 19 Hunan 0.3114 0.5666 0.0419

3 Hebei 0.2523 1.1482 0.0016 20 Inner Mongolia 0.2097 0.5453 0.0049

4 Liaoning 0.3639 1.1272 0.0030 21 Guangxi 0.5056 1.2205 0.0348

5 Shanghai 0.5391 1.1254 0.0043 22 Chongqing 0.4112 1.2037 0.0097

6 Jiangsu 0.2785 0.6283 0.0110 23 Sichuan 0.3481 1.0220 0.0258

7 Zhejiang 0.3167 1.1064 0.0014 24 Guizhou 0.2629 1.1416 0.0393

8 Fujian 0.4833 1.0452 0.0064 25 Yunnan 0.3369 1.3006 0.0072

9 Shandong 0.2300 0.5348 0.0155 26 Shanxi an 0.3759 1.1413 0.0367

10 Guangdong 0.4599 1.0669 0.0017 27 Gansu 0.4261 1.1469 0.0423

11 Hainan 0.9692 1.2111 0.0928 28 Qinghai 0.5325 1.2513 0.0333

12 Shanxi 0.1687 0.3601 0.0158 29 Ningxia 0.6739 1.2772 0.1774

13 Jilin 0.2607 0.5104 0.0397 30 Xinjiang 0.2558 1.0317 0.0062

14 Heilongjiang 0.4014 1.0251 0.0034 31 Nation 0.3824 0.5753 0.1730

15 Anhui 0.2388 0.4856 0.0317 32 East 0.4435 0.8337 0.0851

16 Jiangxi 0.3553 1.1152 0.0063 33 Central 0.2817 0.5257 0.0364

17 Henan 0.2032 0.4542 0.0051 34 West 0.3944 0.6130 0.2018
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Meanwhile, among the 11 eastern provinces, the average EFF

of Hainan province is the highest (0.9692), and that of Shandong

province is the lowest (0.2300). Among the 11 western provinces,

the highest EFF is 0.6739 in Ningxia, and the lowest is 0.2097 in

Inner Mongolia. Among the eight provinces in central China,

Heilongjiang province has the highest average EFF of 0.4014,

whereas Henan province has the lowest average EFF of 0.2032, as

shown in Table 2.

From the average change trend (shown in Table 3), the

EFF of each region is between 0 and 0.9. From 2001 to

2008, the EFF of the three major regions fluctuated

slowly, and the order of EFF from high to low was the

eastern, central, and western regions. The period

2008–2009 was a watershed in EFF from high to low, with

a decline in EFF in all regions.

Between 2009 and 2019, the EFF of the eastern, central, and

western regions of China all fluctuated greatly. The EFF of the

western region jumped up and became the most energy-efficient

region. Then, the eastern region was the second high and the

lowest in the central region. The trend of EFF across the country

is extremely similar to that of the eastern region, and the values

for each year are the average of the EFF of the three major

regions, as shown in Figure 1.

After comparing the EFF of the three regions, the average

trend line of EFF in the west is the highest, the average trend line

of EFF in the central is the second highest, and the average trend

line of EFF in the east is the lowest. The EFF of the national

average has a very similar trend to the average of the eastern

region. There is a high possibility that this phenomenon is caused

by the undesired output in the EFF model. In other words, in the

TABLE 3 EFF statistics of China’s eastern, central, western, and national regions from 2001 to 2019 (unit, none).

EFF Nation East Central West EFF Nation East Central West

2001Y 0.5732 0.8337 0.5098 0.3589 2011Y 0.31 0.2361 0.0754 0.5546

2002Y 0.5675 0.8264 0.5088 0.3512 2012Y 0.173 0.0851 0.0899 0.3212

2003Y 0.5499 0.7875 0.4759 0.3662 2013Y 0.216 0.1444 0.1802 0.3137

2004Y 0.5623 0.8079 0.4864 0.3718 2014Y 0.3376 0.2328 0.17 0.5643

2005Y 0.5753 0.7995 0.5257 0.3873 2015Y 0.2363 0.1448 0.0479 0.4649

2006Y 0.565 0.8002 0.5192 0.363 2016Y 0.3048 0.1819 0.2578 0.4618

2007Y 0.5488 0.7862 0.501 0.3462 2017Y 0.2042 0.2304 0.1716 0.2018

2008Y 0.5486 0.7865 0.4965 0.3486 2018Y 0.3589 0.2395 0.1736 0.613

2009Y 0.183 0.2391 0.0413 0.2299 2019Y 0.2034 0.1491 0.0364 0.3792

2010Y 0.2468 0.1148 0.0853 0.4964 — — — — —

FIGURE 1
Trend of average EFF in eastern, central, western and national China.
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economic development of various regions in China, not only the

economic output, but also the emissions of environmental

pollution are concerned.

3.2 Analysis method of influencing factors
of EFF

3.2.1 Tobit model construction
The classic Tobit model is a generalization of the Probit

probability regression model in Tobin J’s research, which is a

regression model with limited dependent variables (Chen

et al., 2022). Although the superefficiency DEA model in

this study can calculate the EFF value of each DMU, it cannot

estimate the magnitude and direction of the factors affecting

EFF based on slack variables. Therefore, this study introduces

the Tobit regression model and establishes a superefficiency

DEA-Tobit two-stage model system to analyze the

influencing factors of EFF.

The Tobit regression model criterion is defined as follows:

Yi � βiXi + μi, μi ~ N(0, σ2μ i), i � 1, 2, ..., n
Yi � Yi, Yi > 0; Yi � 0, Yi < 0;

, (5)

where Yi is the explained variable, namely, the EFF value of each

province in China, Xi is the explanatory variable, namely, the

influencing factor of each province, βt is the required parameter

vector, and μi is the random error vector. When Yi is greater than

0, the actual EFF data value is taken, and when it is less than 0, the

average value of EFF is 0.

This study assumes that the Tobit model of EFF is as follows:

EFFit � αi + βiERit + βiTIit + βiPGDPit + βiISit + βiENSTit + βiOPENit + μi t
μi t ~ N(0, σ2μ i), i, t � 1, 2, ..., n
Yit � Yit, Yit > 0; Yit � 0, Yit < 0.

(6)

Among them, EFF stands for EFF, ER is energy regulation, TI

is technological innovation, PGDP stands for economic

development, IS is industrial structure, ENST represents

energy structure, OPEN represents the degree of opening to

the outside world, i represents the cross-section of each province,

and t represents the year.

In Eq. 7, M represents the cross-term of energy regulation and

technological innovation that affects EFF simultaneously. The

definitions of the remaining variables are the same as those in Eq. 6:

EFFit � αi + βiERit + βiTIit + βiMit + βiPGDPit + βiISit + βiOPENit + βiENSTit + μi t
μi t ~ N(0, σ2

μ i
), i, t � 1, 2, ..., n

Yit � Yit , Yit > 0;Yit � 0, Yit < 0.

(7)

3.2.2 Variable selection and data sources
3.2.2.1 Variable selection

The Tobit model is calculated by STATA software. The

model calculation mainly involves the following three types of

variables: explained variables, core explanatory variables, and

control variables. As for the explained variable EFF, different

scholars have different understandings of it and different

methods for calculating EFF. This study uses the non-

expected superefficiency SBM model to calculate the EFF of

each province and takes the EFF of each province as the

explained variable of the Tobit model.

The core explanatory variables of this study are the

environmental regulation and technological innovation of

each province, which is also the focus of this study. It should

be noted that if the explanatory variables used for EFF are

different, the conclusions may be inconsistent.

Environmental regulation (ER), according to the practice of

most scholars, is expressed by the completion of the investment

in industrial pollution control per thousand yuan of industrial

added value (Wang and Zhong, 2015), that is, the actual amount

of industrial pollution control investment in each province

(hundred million yuan) divided by the actual value of

industrial added value (hundred million yuan) and then

multiplied by 1,000.

For technological innovation (TI), this study draws on Dong

Huazhong to express the ratio of the research and experimental

development expenditure (100 million yuan) of each province to

the GDP of each province (Zhang et al., 2021). Many scholars use

research and experimental development expenditures as

technological innovations, but separate research and

experimental development expenditures contain inflationary

factors. Therefore, this study uses the ratio of it to provincial

GDP to eliminate inflationary factors.

In order to avoid bias due to the omission of other variables

in the EFF estimation, this study introduces four control

variables: economic development level, industrial structure,

energy structure, and degree of opening to the outside world.

• The level of economic development (PGDP) is expressed

by the per capita GDP of each region, that is, PGDP, to

measure the level of economic development (Dai and Fu,

2020; Wang, 2022). Industrial structure (IS) is caused by

the different dependences of industries on labor and energy

in different regions. Considering that the secondary

industry is the main factor of energy consumption in

China, this study adopts the proportion of the total

output value of the secondary industry in each region as

the ratio of the total industrial output value of each region

as the industrial structure (Mu et al., 2022). Energy

structure (ENST, is expressed by the proportion of coal

consumption (converted to standard coal) in each province

to the total energy consumption (converted to standard

coal) of each province (Torrie et al., 2016). The degree of

opening to the outside world (OPEN), usually the degree of

openness of a country’s economy, is related to the country’s

resource endowment, the size of the country, and the

nature of its economic system. This study uses the ratio
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TABLE 4 Explanatory variables and control variables in the Tobit model.

Types of
variables

Variable name Variable
code

Variable connotation Unit

Explanatory
variables

Environmental regulation ER The completed investment in industrial pollution control per
1,000 yuan of industrial added value in each province

Technological innovation TI Ratio of provincial expenditure on research and experimental
development to provincial GDP

The cross-term of environmental regulation
and technological innovation

M Equal to variable ER multiplied by variable TI

Control variables Economic development level PGDP Expressed by the per capita GDP of each region Ten thousand
yuan

Industrial structure IS Use the ratio of the total output value of the secondary industry in
each region to the total output value of the regional industry

Energy structure ENST The proportion of coal consumption (converted to standard coal) in
each province to the total energy act consumption (converted to
standard coal) of each province in the energy structure

Degree of openness OPEN It is calculated by the ratio of the total import and export volume of
the region to the regional GDP

TABLE 5 Statistics of Tobit variables.

Variable Options Mean Std. Dev Min Max Observations

EFF Overall 0.382 0.377 0.0014 1.301 N = 570

Between 0.169 0.169 0.969 n = 30

Within 0.338 −0.494 1.346 T = 19

ER (%) Overall 7.510 5.010 2.580 34.070 N = 570

Between 4.619 2.907 22.257 n = 30

Within 2.107 −1.543 25.597 T = 19

TI (%) Overall 0.0142 0.011 0.001 0.063 N = 570

Between 0.010 0.004 0.053 n = 30

Within 0.004 −0.003 0.029 T = 19

M (M = ER*TI) (%) Overall 0.100 0.087 0.011 0.491 N = 570

Between 0.079 0.024 0.350 n = 30

Within 0.039 −0.042 0.336 T = 19

PGDP (104 yuan) Overall 2.156 1.410 0.294 8.462 N = 570

Between 1.101 1.050 5.375 n = 30

Within 0.903 −0.466 5.243 T = 19

IS (%) Overall 0.429 0.081 0.160 0.620 N = 570

Between 0.069 0.219 0.532 n = 30

Within 0.043 0.242 0.535 T = 19

ENST (%) Overall 0.458 0.164 0.012 0.868 N = 570

Between 0.136 0.170 0.682 n = 30

Within 0.094 0.202 0.798 T = 19

OPEN (%) Overall 0.315 0.374 0.002 1.711 N = 570

Between 0.360 0.006 1.264 n = 30

Within 0.122 −0.170 0.863 T = 19
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of regional total import and export to regional GDP to

measure. The unit of total import and export is US dollars,

whereas the unit of regional GDP is RMB. Therefore the

approximate conversion is made at the exchange rate of US

dollars to RMB at the end of each year (Wu et al., 2017), as

shown in Table 4.

3.2.2.2 Data sources

The data of the explained variables are derived from the

calculation results of the undesired superefficiency SBM

model in this study. The data of explanatory and control

variables come from the 2001–2019 “China Energy Statistical

Yearbook,” “China Statistical Yearbook,” “China

Environmental Statistical Yearbook,” the data center of the

National Bureau of Statistics, and the statistical yearbooks of

various provinces.

3.2.2.3 Descriptive statistics of variables in the Tobit

model

In the process of calculating the influence of variables on EFF

by the Tobit model, there were 570 EFF samples of panel data in

all provinces, among which the mean of EFF was 0.382, the

maximum value was 1.301, the minimum value was 0.0014, and

the standard deviation was 0.377.

The mean value of environmental regulation (ER) was 7.510,

the maximum value was 34.070, the minimum value was 2.580,

and the standard deviation was 0.377. The mean value of

technological innovation (TI) was 0.014, the maximum value

was 0.063, the minimum value was 0.001, and the standard

deviation was 0.011. The mean value of the cross-term (M =

ER*TI) was 0.100, the maximum value was 0.491, the minimum

value was 0.011, and the standard deviation was 0.087. Themean,

maximum, and minimum values and standard deviation of the

four control variables are recorded in detail in Table 5.

The “overall” option represents the statistical description of

the whole sample, “between” represents the statistical description

of the 30 provinces, and “within” represents the statistical

description of the 19 years in Table 5. These three options

have different parameters in descriptive statistics except for

the same mean value.

TABLE 6 Correlation test.

Variables ER TI PGDP IS ENST OPEN M

(1) ER 1.000

(2) TI −0.130 1.000

(0.002)

(3) PGDP −0.192 0.793 1.000

(0.000) (0.000)

(4) IS −0.210 −0.222 −0.228 1.000

(0.000) (0.000) (0.000)

(5) ENST 0.097 −0.492 −0.671 0.344 1.000

(0.021) (0.000) (0.000) (0.000)

(6) OPEN −0.203 0.607 0.570 −0.067 −0.527 1.000

(0.000) (0.000) (0.000) (0.108) (0.000)

(7) M 0.546 0.727 0.489 −0.328 −0.339 0.345 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

TABLE 7 Four model outputs without cross-terms: OLS, fixed effect,
and Tobit model.

LS Fe Tobit

ER −0.0049 −0.0303*** −0.0168**

(0.0030) (0.0078) (0.0059)

TI −4.5461 −30.2454*** −15.5231***

(2.3575) (5.3905) (4.5898)

PGDP −0.1297*** −0.0152 −0.0722*

(0.0194) (0.0303) (0.0293)

IS −0.8329*** −0.5552 −0.5706

(0.1946) (0.4252) (0.3111)

ENST −0.3565** 0.1358 −0.0077

(0.1266) (0.2245) (0.1925)

OPEN 0.4609*** 0.4751*** 0.5553***

(0.0510) (0.1252) (0.0773)

_cons 1.1372*** 1.0956*** 0.9567***

(0.1111) (0.2831) (0.2020)

sigma_u 3.0172 0 0.2915 0.2132***

(0.0382)

sigma_e — 0.2996 0.3016***

(0.0094)

N 569 569 569

Standard errors in parentheses, *p < 0.05; **p < 0.01; ***p < 0.001 (the * in the following

table in this article has the same meaning).
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4 Empirical process and results
analysis

4.1 Correlation test

After the correlation analysis of all variables affecting EFF in

the TOBIT model, the correlation coefficients between almost all

explanatory and control variables were less than 0.3. Empirically,

there is no correlation between them. Meanwhile, the values in

parentheses are p-values, and most of the p-values are less than

0.05. Therefore, it can be judged that the variables are

significantly uncorrelated. Detailed data are shown in Table 6.

Therefore, it is necessary to further carry out regression or Tobit

analysis on the data.

4.2 Selection of model

4.2.1 Selection of Tobit model and cross-term M
4.2.1.1 Comparison and selection of four models

For the energy panel data of 30 provinces in China, this study

first performs OLS, random effects, fixed effects, and Tobit

regression on formula (5), and their output calculation results

are shown in Table 7. At the same time, the regression model was

tested by the Houseman test. The Houseman test result showed

that the p-value was 0.00 and less than 0.05, which was

significant. For this purpose, we chose the fixed effects model.

Secondly, after selecting the fixed effect model, it was

compared with the output results of the OLS and Tobit

regression model. In the output results of these models (see

Table 7), we clearly found that the Tobit model has a better

significance of the variables and the residual has better

significance when compared with the other three models.

Therefore Tobit’s model is superior.

4.2.1.2 Comparative selection of models with or without

the cross-term

Of course, Table 7 is the consequence of the model

calculation without the cross-term (M). For Eq. 6 with cross-

TABLE 8 Four model outputs with cross-terms: OLS, fixed effect, and
Tobit model.

LS Fe Tobit

ER −0.0143 −0.0702*** −0.0525***

(0.0085) (0.0124) (0.0116)

TI −10.7713 −51.7000*** −37.1713***

(5.8064) (7.4643) (7.4104)

PGDP −0.1234*** 0.0053 −0.0451

(0.0201) (0.0303) (0.0296)

IS −0.8257*** −0.4207 −0.4653

(0.1946) (0.4203) (0.3220)

ENST −0.3328** 0.3117 0.1395

(0.1281) (0.2254) (0.1986)

OPEN 0.4664*** 0.4862*** 0.5588***

(0.0512) (0.1234) (0.0802)

M 0.8469 3.4085*** 2.9437***

(0.7220) (0.8330) (0.8137)

_cons 1.1819*** 1.1742*** 1.0661***

(0.1175) (0.2796) (0.2128)

sigma_u — — 0.1967***

(0.0371)

sigma_e — — 0.2962***

(0.0092)

N 569 569 569

TABLE 9 Regression output of OLS, mixed OLS-Tobit, and random
Tobit models.

OLS OLS-Tobit Tobit

ER −0.0702*** −0.0143 −0.0525***

−0.0124 −0.0084 −0.0116

TI −51.700*** −10.7713 −37.1713***

−7.4643 −5.7655 −7.4104

PGDP 0.0053 −0.1234*** −0.0451

−0.0303 −0.02 −0.0296

IS −0.4207 −0.8257*** −0.4653

−0.4203 −0.1933 −0.322

ENST 0.3117 −0.3328** 0.1395

−0.2254 −0.1272 −0.1986

OPEN 0.4862*** 0.4664*** 0.5588***

−0.1234 −0.0508 −0.0802

M 3.4085*** 0.8469 2.9437***

−0.833 −0.7169 −0.8137

_cons 1.1742*** 1.1819*** 1.0661***

−0.2796 −0.1166 −0.2128

var (e.) 0.1089*** 0.1086*** —

−0.0065 −0.0064 —

sigma_u — — 0.1967***

— — −0.0371

sigma_e — — 0.2962***

— — −0.0092

log-likelihood — −146.98 −149.41

Wald R2 — — 154.35***

Pseudo R2 — 0.296 —

rho — — 0.3063

LR — 49.4 55.15

Frontiers in Environmental Science frontiersin.org11

Chen and Zhao 10.3389/fenvs.2022.1056877

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1056877


term (M), we conduct OLS, fixed effect, and Tobit regression

calculation, and the results are shown in Table 8.

In the comparison between the Tobit model without and with

cross-term M, this study has more significant variables and

smaller residuals. Therefore, it is better to choose the Tobit

model with cross-term M.

4.2.2 Comparison and selection of random Tobit
models

After the selection of the Tobit model is determined, it is

necessary to further determine the type of Tobit model to be

selected. To this end, it is necessary to compare and analyze the

three regression models of OLS, mixed OLS-Tobit, and stochastic

Tobit for the EFF model. Then, we found that the number of

significant variables in the stochastic Tobit model was more than

that in other models, and the residual significance was also better

than other models. Moreover, the Wald test results are

significant, indicating that the hypothesis of individual effect

exists; in other words, the mixed Tobit model is rejected. Finally,

the LR test of the Tobit model is significant, indicating that the

random Tobit model passes the overall test. Therefore, using the

random Tobit model for the regression calculation in this study is

appropriate. The specific calculation results are shown in Table 9.

4.2.3 Multicollinearity test of random TOBIT
model

In time series data model, a multicollinearity test is usually

performed, which is judged by the VIF of the value inflation

factor. For example, if the panel data composed of provinces and

time in this study are regarded as time series data, the VIF value

can be calculated to judge whether the model in this study was

multicollinearity. The data are shown in Table 10.

In Table 10, the VIF values of some variables are more than

10, indicating that there is collinearity in the Tobit model.

However, the model data in this study are panel data, and

VIF values are generally not calculated for random Tobit

models. When using STATA software to calculate, if there is

complete multicollinearity in the Tobit model, STATA

software will automatically omit collinearity variables. For

incomplete multicollinearity, we can ignore it if we do not

care about the specific regression coefficients and only care

about the ability of the whole equation to predict the explained

variable, or we can ignore it if we care about the specific

regression coefficients. However, multicollinearity does not

affect the significance of the variable of interest (Stock and

Watson, 2003). It is necessary to study whether

multicollinearity causes insignificant results only if the

coefficient of the core variable is insignificant.

As shown in the above description, incomplete

multicollinearity exists in the Tobit model. When the core

explanatory variables, environmental regulation (ER),

technological innovation (TI), and cross-term (M), are put

into the Tobit model together, the coefficients of these three

variables are significant. When all the control variables are put

into the model, the coefficients of several variables, including the

core variables, are insignificant. However, when the ENST

variable is removed, the coefficient significance of the core

variable is greatly improved. When the IS variable is removed

again, the coefficient significance of the core variable is little

improved.

TABLE 10 Multicollinearity test of OLS regression model for time series.

Variable M STP ER PGDP ENST OPEN IS Mean
VIF

VIF 20.18 19.32 9.32 4.12 2.27 1.89 1.26 8.34

TABLE 11 Comparison of Tobit model results in the eastern, central,
western, and national regions.

East Central West Nation

ER −0.0599* 0.0228 −0.0341 −0.0495***

(0.0283) (0.0200) (0.0196) (0.0112)

TI −28.6689** 4.6209 −28.4623 −34.6153***

(8.8812) (16.4046) (16.0901) (7.1354)

M 2.5583* 3.3219* 3.2898* 2.7473***

(1.1471) (1.6875) (1.6662) (0.7964)

PGDP −0.1553*** −0.1228* 0.0384 −0.0622**

(0.0277) (0.0516) (0.0355) (0.0224)

IS −2.2788*** — 0.7147 −0.4563

(0.4146) — (0.7405) (0.3184)

OPEN 0.6687*** 0.6608 −0.6712 0.5531***

(0.0788) (0.6109) (0.3807) (0.0764)

_cons 2.0791*** 0.4769** 0.4262 1.1266***

(0.3117) (0.1559) (0.3758) (0.1864)

sigma_u 0.1164** 0.0991* 0.1541** 0.1894***

(0.0400) (0.0403) (0.0503) (0.0349)

sigma_e 0.2752*** 0.2230*** 0.3255*** 0.2972***

(0.0140) (0.0134) (0.0166) (0.0092)

log-likelihood −35.04 6.148 −71.13 −149.69

Wald 222.16*** 67.48*** 7.55 173.95***

rho 0.151 0.164 0.183 0.288

LR 10.91*** 6.89*** 11.93*** 61.11***

N 209 152 209 570
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Therefore, according to Table 9 and the idea of the stepwise

regression method, the insignificant variable ENST is deleted

from the random Tobit model.

4.3 Analysis of results

According to the panel data of China’s EFF, we divide panel

data into four different regions: the eastern, central, western, and

national regions. The Tobit models of the four regions were

analyzed and compared. The model running results are shown in

Table 11.

On the whole, the national and eastern models are very

similar. In other words, the correlation coefficients of the

explanatory variables of the national and the eastern models

are inconsistent. However, the direction and significance of the

correlation coefficients are the same except for “IS.” In order to

avoid repetition, the following mainly introduces the eastern,

central, and western models.

The overall comparison of the eastern, central, and

western models shows that the direction, magnitude, and

significance of their correlation coefficients are quite

different. In the Tobit models of EFF, the LR test of the

EFF model is passed in the eastern, central, and western

regions, and the model is significant. However, the LR test

failed in the central model. In the eastern and national models,

the core explanatory variables ER, TI, and the cross-term (M)

passed the significance test. In the central and the western

models, only the crossover variable M is significant, except for

ER and TI.

4.3.1 The EFF shows large and regular
fluctuations in eastern, central, and western
regions after 2008

From the trend of mean value change (Figure 1), there is

the watershed on EFF change of the three regions in 2008.

Before 2008, the EFF of the first three regions fluctuated

slowly, and the order of their EFF from high to low was

eastern, central, and western regions, respectively. This was in

line with the general perception that the EFF of economically

developed regions was higher than that of underdeveloped

regions. After 2008, the EFF of the three regions fluctuated

greatly. The EFF has declined significantly in the eastern and

central regions, whereas EFF has risen to a certain extent and

has become the most energy-efficient in the western region. It

would be concluded that the EFF of economically developed

regions was sometimes lower than that of underdeveloped

regions.

The EFF in the national region is the overall average of the

three regions, and its fluctuation pattern is similar to that of the

eastern region. However, the decline in the EFF is smaller in the

national region after 2008, mainly due to increased EFF in the

western region.

4.3.2 Environmental regulation has a linear
effect on EFF

According to the output results in Table 11, the coefficients of

environmental regulation (ER) variables are −0.0599*,

0.0228, −0.0341, and −0.0495***, in the eastern, central,

western, and national models, respectively. In general,

environmental regulation has a significant negative impact on

EFF in the national model, but the impact of environmental

regulation on EFF varies among the three major regions.

Environmental regulation in the eastern region has a

significant negative linear impact on EFF, which has a

negative impact on EFF of “following costs.” The current

environmental regulations are more inclined to end-of-

production environmental pollution control in the eastern

region. This kind of environmental pollution control

expenditure will increase the production cost of enterprises

and crowd out other technological investments in production

while reducing corporate profits and EFF.

Environmental regulation in the central region has an

insignificant positive impact of “innovation compensation” on

EFF. Although the cost of pollution control has squeezed the

production cost, it forces companies to innovate in energy-saving

technologies and use the money invested in pollution control to

reduce unwanted pollution emissions. Therefore, under the

condition of constant expected output GDP, environmental

regulation reduces the energy demand and improves EFF.

Environmental regulation has an insignificant negative

impact on EFF in the western region. On the one hand,

environmental regulation has a negative effect of “following

costs” on EFF in the western region, and the pollution control

costs squeeze the production costs, resulting in a decline in EFF.

On the other hand, the western region is the source of China’s

water resources, so it has stricter requirements for environmental

protection. The increase in the state’s requirements for

environmental regulation will inevitably make pollution

control fees occupy more production costs of enterprises and

reduce the EFF.

4.3.3 Technological innovation also has a linear
effect on EFF

The results show that in the eastern, central, western, and

national models, the coefficients of technological innovation (TI)

are −28.6689**, 4.6209, −28.4623, and −34.6153***. Owing to the

great impact of technological innovation on EFF, this also

verified that technological progress is generally considered an

important factor, or even a dominant factor, affecting EFF. For

the whole country, increasing technological innovation is an

important reason for the decline in EFF in China. However, the

impact of technological innovation on EFF varies among the

three regions.

Technological innovation has a significant negative impact

on EFF in the eastern region. The main reasons are as follows.

First, there is diversity in the direction of expenditures for
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technological innovation, and the investment in technological

innovation in the eastern region is mostly used for the design of

product quality, not efficiency in the production process increase,

resulting in a decrease in EFF. Second, there are technological

innovations with high value-added output and increased energy

input in technological innovation. This type of innovation still

brings high-profit returns after deducting the cost of increasing

energy input. For example, the eastern region is an export-

intensive area of China’s manufacturing industry, which faces

fierce competition from overseas products. Companies may

invest a lot of money in technological innovation with high-

quality products and high returns to improve product

competitiveness. Such technological innovations still require

an increase in energy, resulting in a decrease in EFF.

Technological innovation has an insignificant positive

impact on EFF in the central region because the technological

innovation in the central region improves the use ratio of energy

factors to non-energy factors in the production process, thereby

improving EFF. For the central region, there is a large amount of

old and high-energy-consuming equipment and energy is a

scarce resource for them. Enterprises in the central region

may be keen on technological innovations in energy

conservation and emission reduction in the production

process to reduce the emission of undesired pollutants in the

production process. Under the condition that the expected

output GDP remains unchanged, the enterprises in the central

region reduce the energy demand, thereby improving EFF.

Technological innovation has an insignificant negative

impact on EFF in the western region. There may be two

reasons for this. First, there is diversity in the direction of

expenditure on technological innovation. Some technological

innovations may be mainly used for the design of product

quality rather than the improvement of efficiency in the

production process. Second, there is a shortage of scientific

and technological talents in the western region. Although the

western region invests a lot of money in technological

innovation, technological innovation is finally implemented in

the use of talents, and the shortage of scientific and technological

talents may be the reason why this technological innovation is

insignificant.

4.3.4 The cross-term has a significant positive
linear relationship with EFF

The results show that in the models of the eastern, central,

western, and national regions, the coefficients of the cross-terms

(M) of environmental regulation and technological innovation

on EFF are 2.5583*, 3.3219*, 3.2898*, and 2.7473***. On the

whole, the cross-term has a significant positive impact on the

national EFF. In terms of regions, the cross-terms also have

significant positive impacts on the three major regions; however,

only their coefficients are different.

The absolute value of the cross-term coefficient is greater

than the coefficient of environmental regulation and smaller than

the coefficient of technological innovation, which indicates that

the casts of some technological innovation and some

environmental regulations are invested in technological

innovation of energy conservation and emission reduction.

This conclusion is not consistent with that of Yang (2017)

because, under the requirement of the synergy between

technological innovation and environmental regulation, the

enterprises in the three major regions have improved the

proportion of production scarce factors through their own

technological innovation, which has greatly improved the

production process. Output GDP has increased substantially.

At the same time, the increased profits of enterprises far exceed

the costs incurred by environmental regulations, thereby

improving EFF.

4.3.5 Control variables have different effects on
EFF in different regions

The influence coefficients of economic development (PGDP)

on EFF in the eastern, central, western, and national areas

are −0.1553***, −0.1228*, 0.0384, and −0.0622**, respectively.

In other words, the impact of economic development on EFF in

the eastern, central, and national regions is significantly negative,

indicating that the economic development of the three regions

significantly contributed to the reduction of regional EFF. The

impact on EFF in the western region is insignificant in the

positive direction.

The influence coefficients of industrial structure (IS) on EFF

in the eastern, central, western, and national regions

are −2.2788***, −0.7147, and −0.4563, respectively. In other

words, the impact of the industrial structure on EFF in the

east is significantly negative but insignificant for regions

excluding the east.

The influence coefficients of opening to the outside world

(OPEN) on EFF of the eastern, central, western, and national

regions are 0.6687***, 0.6608, −0.6712, and 0.5531***,

respectively. In other words, the impacts of opening to the

outside world on EFF in the eastern and national regions are

significantly positive. The impact on EFF in the central region is

insignificantly positive, which is insignificantly negative in the

western region.

5 Conclusion and countermeasures

This study investigates the impact of environmental and

technological innovations and their cross-terms on EFF using

the undesired superefficiency SBM model and Tobit model. Its

main conclusions are as follows:

(1) Using the energy panel data of 30 provinces in China from

2001 to 2019, the article constructs an undesired

superefficiency SBM model that includes both desired and

undesired outputs. The results of the model showed that the
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EFF of the three major regions in China was similar to an

N-type trend and increased slowly before 2008, which was in

line with the perception that the EFF of economically

developed regions was higher than that of underdeveloped

regions. From 2008 to 2009, EFF decreased rapidly and then

slowly increased. The western region became the region with

the highest EFF, so the EFF of economically developed

regions was sometimes lower than that of less developed

regions.

(2) The impact of environmental regulation on EFF in different

regions varies greatly. Environmental regulation has a

“following cost” effect on EFF in the eastern, western, and

national regions, which has a significant negative impact,

resulting in a decline in EFF. It has an “innovative

compensation” effect on EFF in the central region and an

insignificant positive impact, increasing the EFF.

(3) Technological innovation is the main factor affecting EFF,

and its impact on EFF in different regions is also quite

different. In the eastern and national regions, technological

innovation has diversified expenditure directions, high

added value, and high energy consumption, which has a

significant negative impact on EFF of the eastern and

national regions. Technological innovation has an

insignificant positive impact on EFF in the central region.

It also has an insignificant negative impact on the western

region.

(4) The cross-term has a significant positive impact on EFF in

the three regions and the national region, indicating that part

of technological innovation and environmental regulation

costs is invested in the production innovation to improve

the EFF.

(5) The effects of control variables on EFF also differ in different

regions. Economic development impacts on EFF in the

eastern and central regions are significantly negative, the

impact of industrial structure on EFF of the eastern region is

significantly negative, and the impacts of opening in the

eastern and national regions are significantly positive. In

addition, the impacts of these variables on other regions are

insignificant.

According to the above conclusions, in order to reduce

environmental pollution, improve EFF, and make the

economy of country grow steadily and continuously, the

following suggestions are put forward:

(1) Formulating unified environmental regulations to encourage

energy-saving production in various regions.

Due to the cost effect of environmental regulation, if

enterprises consider reducing such undesirable output

emissions as waste gas and wastewater in production, it

will indeed increase the cost of enterprises. Therefore, in

places with stricter environmental regulations, some

enterprises withdraw from investment. In places where

environmental regulations have been relaxed, some

companies have increased production. In the long run,

these will only divert China’s environmental pollution

rather than reduce it. To this end, all parts of the country

should formulate a unified environmental protection policy

and treat all types of enterprises equally in implementing the

policy. In addition, we must strictly check the approval of

environmental regulations during the construction of

enterprises and must not take the old road of pollution first

and consider treatment later.

(2) Encouraging technological innovation of enterprises in

energy-saving production.

Technological innovation has the state of improving and

reducing EFF, which is the choice of enterprises in market

competition. Enterprises need more advanced production

technology and equipment for energy-saving production and

emission reduction and more energy-saving production

emissions, which will increase the production cost of

enterprises. However, the government can reduce the cost of

enterprises through policies such as financing support and tax

relief, encourage enterprises to carry out clean production,

encourage enterprises to introduce advanced energy-saving

technologies, and encourage enterprises to introduce efficient,

clean production equipment.

(3) Encouraging enterprises to use and innovate energy-saving

technologies under environmental regulation and

technological innovation

The government should design sound environmental

regulation policies, and encourage enterprises to use energy-

saving production technologies, and encourage enterprises to

optimize resource allocation to improve their energy efficiency.

On the one hand, the design and improvement of environmental

regulation policies will stimulate enterprises to invest in clean

technological innovation. On the other hand, the government

will improve policies to encourage technological innovation and

provide preferential tax policies for enterprises in the process of

technological transformation and upgrading. Energy-saving

production does indeed increase the cost of enterprises.

However, the negative impact of “cost compliance” can still be

partially or completely offset through the form of policy

dividends to encourage enterprises to innovate in energy

conservation and emission reduction. Therefore, through the

innovation and application of green technology, the economic

benefits of enterprises can be increased, and the sustainable

development of enterprises can be led.

(4) Improve the mechanisms for public participation and

environmental protection.
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We will focus on training a highly skilled labor force and

high-level R&D personnel in enterprises and encourage the

innovation and use of new energy technologies in society.

Furthermore, we will strengthen the media publicity on

energy saving and emission reduction and encourage the

public to monitor the pollution behavior of enterprises.
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