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Real-time monitoring of urban high-altitude data is an important goal in the

construction and development of smart cities today. However, with the

development of modern cities, the monitoring space becomes complicated

and narrow because of the different building heights and no-fly zones, which

makes UAV trajectory planning more difficult. In this paper, a multi-strategy

sparrow search algorithm (MSSA) is proposed to solve the UAV trajectory

planning problem in a three-dimensional environment. The algorithm aims

tominimize the flight distance andmaximize the use efficiency of the UAV. First,

the improved algorithm employed a reverse-learning strategy based on the law

of refraction to improve the search range and enhance the optimization

performance. Second, we introduced a random step size generated by Levy

flight into the position update strategy of the participant. The algorithm

accuracy and speed of convergence were improved by the randomness

feature. Finally, the algorithm incorporated the Cauchy mutation to improve

the scout position, which enhanced its ability to jump out of the local optimum

of the algorithm. Sixteen benchmark test functions, Wilcoxon rank sum test, and

30 CEC2014 test function optimization results demonstrated that MSSA had

better optimization accuracy, convergence speed, and robustness than the

comparison algorithms. In addition, the proposed algorithm was applied to the

UAV trajectory planning problem in different complex 3D environments. The

results confirmed that the MSSA outperformed the other algorithms in complex

3D trajectory planning problems.
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Introduction

With the continuous development of information technology and smart cities (Van

Steen and Leiba, 2018), UAV technology plays an important role in urban emergencies

and transportation networks. Due to their usefulness, reliability, safety, and relatively low

cost (Rodríguez et al., 2021), UAVs (commonly referred to as drones) have become an

indispensable part of the operations of a smart city. In research on UAV technology,
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trajectory planning is the key to the whole system. The main

technical difficulty is to find a feasible way to avoid obstacles

when the starting and ending points are known (Zhao et al.,

2018). At present, many cities around the world are facing the

problem of traffic congestion. In particular, there are periodic or

sudden increases in the number of vehicles during peak hours,

large events, construction work or accidents. In an emergency,

the use of drones can assist traffic police in implementing security

in smart cities, and rapid deployment can collect real-time

information (Qadir, 2021). However, due to the complexity of

the flight environment in modern urban spaces, UAV

monitoring tasks are becoming more and more difficult

(Mohamed, 2020). Therefore, how to outfit a UAV so that it

can find a flight path that avoids obstacles but still maintains the

shortest distance to the destination is a main focus of today’s

UAV research.

The process of UAV trajectory planning is a combinatorial

optimization problem. Currently, UAVs have a low efficiency in

completing tasks in complex areas because of the large scale of

the mathematical model and its high computational complexity.

The complexity and difficulty of real-world optimization

problems continue to increase, as they are subject to strong

constraints and require long computation times, non-convexity,

and wide search space (Shin and Bang, 2020). Path length is the

primary factor to be considered in engineering scenarios, and

optimizing path is of great research significance for improving

flight efficiency. Path optimization aims to maximize the

execution efficiency of the UAV within permissible limits. The

methods for deducing the optimal power flow in trajectory

planning can be divided into traditional optimization

algorithms and metaheuristic algorithms. Traditional

optimization algorithms mainly include the gradient descent

method Salgado et al., 1990), the Newton method (Tinney ea

al., 1967), linear programming (Olofsson et al., 1995), and the

interior point method (Momoh, 1999). These algorithms are

characterized by their use of the objective function to solve the

first- or second-order gradient of control variables. Traditional

optimization algorithms are generally trapped in local optima;

hence, the optimization results depend greatly on the initial value

in solving large-scale problems. In recent years, researchers have

proposed many metaheuristic algorithms by simulating various

biological behaviors and physical phenomena in nature. The

metaheuristic algorithms commonly include Archimedes

optimization algorithm (AOA) (Hashim ea al., 2021), the

tunicate swarm algorithm (TSA) (Kaur et al., 2020), Aquila

optimization (AO) (Abualigah et al., 2021), Harris hawks

optimization(HHO) (Heidari et al., 2019), ant colony

optimization (ACO) (Zhang et al., 2015), grey wolf optimizer

(GWO) (Mirjalili et al., 2014), differential evolution (DE) (Price,

2013), and particle swarm optimization (PSO) (Marini and

Walczak, 2015).

Metaheuristic algorithms are widely used to solve

problems related to power system optimization because of

their simple structure, few adjustment parameters, and lack of

need for gradient information. Wen et al. (2022) proposed a

novel heuristic algorithm based on a three-dimensional (3D)

UAV deployment scheme that could be used by a number of

covered users without increasing the number of UAVs. Fan

et al. (2022b) proposed an improved RRT algorithm based on

the process of extending the random tree, and introduced

ACO to make the planning path asymptotically optimal. Jia

et al. (2022) described a UAV path coverage algorithm based

on a ‘greedy’ strategy and ACO (Zhang et al., 2015) to

minimize flight time and maximize coverage. Shin and

Bang (2022) offered an improved PSO algorithm for path

optimization. Belge et al. (2022) developed a new UAV

trajectory planning algorithm for optimal path planning

and tracking using HHO and GWO. Zhang et al. (2021)

proposed an adaptive convergence factor adjustment

strategy and an adaptive weight factor to update the

individual’s position based on GWO. Zhang et al. (2015)

created an improved constrained DE algorithm to generate

an optimal feasible route. Chang et al. (2021) introduced

Q-learning to improve the dynamic window algorithm and

increase its success rate for path planning in an unknown

mountainous environment. However, the calculations

necessary to use this algorithm are more complex, and

beyond the low computational power of the UAV; the local

FIGURE 1
Flow chart of the trajectory planning system.
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path planning strategy is not applicable to global

optimization.

The sparrow search algorithm (SSA), a swarm intelligence

optimization algorithm proposed by Xue and Shen (2020),

combines simplicity with flexibility. It is very effective for

solving highly nonlinear, multi-variate, and multimodal

function optimization problems. Many researchers have

studied the SSA algorithm and confirmed that it outperforms

the GWO, PSO (Poli et al., 2007), and GA (Whitley, 1994) in

solving numerous types of optimization problems. The SSA has

been used in many other fields. Wu et al. (2021) reported the

application of GGSC-SSA to solve the traveling salesman

problem (TSP); Fan et al. (2022a) even utilized SSA to

improve the quality of medical images; but few published

reports exist on the application of SSA to UAV trajectory

planning. Here we propose a new metaheuristic optimization

algorithm based on the SSA and referred to as MSSA. Since the

B-spline curve cannot guarantee absolute accuracy of the

interpolation points (Thompson and Patel, 1987), we used the

cubic spline interpolation method to smooth the path. First, we

established a 3D environmental model for UAV trajectory

planning that included reference terrain, obstacle areas, and

threat areas. Second, a comprehensive cost evaluation model

of UAV flight was proposed as the objective function. The path

was smoothed by the method of cubic spline interpolation to

obtain an optimal trajectory. Lastly, we analyzed the results and

verified the effectiveness and feasibility of the proposed algorithm

in planning the UAV’s trajectory in the 3D model.

Study area and environment
modelling

Overview of the study area

With the leapfrog development of information science,

various new technologies employing AI for advanced

communication and control have been put forward, many of

which have been applied in UAV operating systems, providing a

foundation for the rapid deployment of UAVs for numerous

uses. At present, UAVs have become an important accessory for

air power in the military, which can perform battlefield

reconnaissance, supply delivery missions, and enemy target

strikes. In addition to military applications, civilian

applications of UAVs have also been accelerating in a number

of areas, including traffic supervision, disaster relief, inspections,

and scientific data gathering. The UAV trajectory problem is a

multi-constraint combinatorial optimization problem. Due to

the size of the mathematical model and the complexity of the

calculation, a suitable cost function and an effective trajectory

planning method are both crucial to the efficient implementation

of UAVs.

Description of trajectory planning

Finding an optimal path using planning algorithms is the

main goal of UAV trajectory planning, and this path must

meet performance indicators and overcome limitations. The

UAV may encounter several hurdles throughout this

trajectory planning process, including terrain threats, fire,

no-fly zones, and performance limitations imposed by the

equipment itself (Bagherian and Alos, 2015). For testing of

this algorithm, we held the UAV’s speed constant and kept

track of the distribution of the mission environment’s peaks

and no-fly zones to make the computation model simpler. The

challenge of trajectory planning was changed into a static

space routing mission problem. The trajectory planning

system is depicted in Figure 1. Figure 1 illustrates the

components of the UAV trajectory planning process, which

included environmental modelling, cost function definition,

track optimization, and track smoothing. Our goal in this

study was to establish an optimal flight path before the UAV

flight mission. By sending the algorithm’s best path data to the

UAV’s flight master control system, the flight trajectory

planning will be accomplished successfully.

Task environment modelling

According to the 3D space environment there were

significant changes in altitude and terrain complexity along

the route (Dübel and Schumann, 2017), and the flight path

may be categorized into areas of plains, mountainous regions,

and hilly areas. A large number of complex factors need to be

considered if the flight must pass through a mountainous or hilly

area. The UAV needs to adjust the travel direction and the flight

altitude continuously in those complex environments, and

trajectory planning must be carried out in 3D space. In this

study, we developed two distinct settings for UAV trajectory

planning and used a function simulation approach to

characterize landform properties. Eq. 1 displays the function

expression:

z(x, y) � sin (y + a) + b sin (x) + c cos (d
�������
y2 + x2)√

+ e cos (y)
+ f sin (f

������
y2 + x2

√
) + g cos (y)

(1)
where (x, y) is the point coordinate of the terrain projected onto

the horizontal plane and z is the height of the corresponding

point coordinate on the Z axis. In Eq. 1, a, b, c, d, e, f, g, and h are

constant coefficients, and the different topography features can

be obtained by changing the size of the constant coefficients in

the modelling process. In this test flight, we simulated the

geographical environment, such as mountains and hills, by

superimposing the mountain model on the base terrain. The
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mathematical expression of the topography model is shown in

Eq. 2:

h(x, y) � ∑
i

hi exp[ − (xi − xoi)2
a2i

− (yi − yoi)2
b2i

] + ho (2)

In Eq. 2, ho and hi represent the height of the reference terrain

and the ith peak, respectively, (xoi, yoi) represent the central

coordinate position of the ith peak, and ai and bi are the slopes of

the ith mountain along the X and Y axes, respectively. The peaks

can show different length and width characteristics by adjusting

the value of those parameters. We can obtain Eq. 3 from Eqs 1, 2:

Z(x, y) � max[z(x, y), h(x, y)] (3)

In practical situations, UAVs frequently encounter areas with

tall buildings and trees that threaten flight safety, or no-fly areas

where UAVs have to avoid obstacles. Therefore, we included a

certain number of threat areas in the UAV trajectory plan to

judge the obstacle avoidance performance of the algorithm.

Graphically, we represented a danger area as a cylinder with a

radius of R to simplify the model. The center position of each

cylinder affords the greatest threat to the UAV, and the threat

decreases from the center to the outside.

UAV track planning modeling

When completing challenging jobs, the UAV trajectory

planner must take into consideration the inherent

performance restrictions of the drone based on environmental

modeling. The final results produced by the algorithm can be

made to comply with the specifications and guarantee that the

intended flight route is valid with a suitable design of the

trajectory evaluation function. We devised a sophisticated

track evaluation algorithm to plan the UAV trajectory based

on real circumstances. The indicators that most affected the

performance of the UAV included track length, flight height,

minimum step size, corner cost, and maximum climb angle.

Trajectory planning is inseparable from searching for the

shortest path because the length of the track is very important for

successful trajectory planning. Obviously, the shortest route can

save on fuel and time and reduce the chance occurrence of

unknown threats. We defined the path as the value of the distance

from the starting to the ending point. Suppose a complete route

has n nodes, the distance between the ith and the i+1-th waypoint

is expressed as li, the coordinates of these two flight points are

expressed as (xi, yi, zi) and (xi+1, yi+1, zi+1), denoted the two points

as g(i) and g(i+1), respectively. The trajectory needs to satisfy the

following conditions in Eq. 4:

{ li � ∣∣∣∣∣∣∣∣g(i + 1) − g(i)∣∣∣∣∣∣∣∣2
Lpath � ∑n−1

i�1 li
(4)

The UAVwill run the risk of crashing or being shot down if it

is unable to avoid obstacles or flying into a hazard region, which

is indicated by the Lpath being Lpath = ∞. Because infinite

functions are challenging to depict in real-world situations, we

deal with them in a penalizing approach. The UAV should fly as

low as it can in the real world to avoid potential radar detection.

However, it is crucial to choose a steady flight altitude because a

low flight altitude would increase the probability of the UAV

colliding with trees, mountains, or the ground. The flying altitude

should not change much because a constant altitude eases the

strain on the control system and conserves fuel. To make the

UAV flight safer, the flight height model given in Eq. 5:

hheight �
�������������
1
n
∑n−1

i�0 (z(i) − �z

√
)2

�z � 1
n
∑n−1

i�0 z(i)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

The maneuverability of a UAV is limited by its corner cost

function. During the flight of the UAV trajectory planning, the

turning angle should not be greater than the preset maximum

turning angle, because of the turning angle size will affect the

flight stability. In this paper, we set the maximum turning

angle to φ and the current turning angle to θ, and ai is the

vector of the ith route segment. The corner formula is shown

in Eq. 6:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos θ � aTi ai+1

|ai||ai+1|
Jturn � ∑n

i�1(cos(Φ − cos θ)) (6)

In Eq. 6, |a| represents the length of the vector a. Through the

description of the above three aspects, we established the cost

function of UAV trajectory planning as follows in Eq. 7:

FIGURE 2
Refraction-learning process in one-dimensional space.
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Jcos t � w1Lpath + w2hheight + w3Jturn (7)

Jcost is the total cost function, and in the parameters wi, i = 1,

2, 3 represent the weight of each cost function and satisfy the

conditions of Eq. 8:

{wi ≥ 0∑3

i�1wi � 1
(8)

We obtained a track consisting of line segments by

processing the total cost function effectively. However, the

resulting track is only theoretically feasible, it is necessary to

smooth the track to meet the actual situation. In this paper, cubic

spline interpolation is used to smooth the UAV trajectory

because the B-spline curve cannot guarantee the absolute

accuracy of the interpolation points.

Sparrow search algorithm

The sparrow search algorithm is a new type of swarm

intelligence optimization algorithm inspired by the feeding

behavior of sparrows in nature. During the food search

process, the sparrow population is divided into two roles:

discoverer and follower. Discoverers generally make up 10%–

20% of the population and lead the other individuals in the search

for food. The discoverers have a high fitness and ability to expand

the search range, while the remaining sparrows follow the

discoverers to the destination. The population requires a

particular number of sparrows to work as scouts and issue

warnings to remind the populace that they can take action in

time when the adversaries attack to escape the threat of natural

enemies. The location update formula for the discoverer is as

follows in Eq. 9:

xt+1
id �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt
i,j · exp( −h

α · T) if R2 < ST

xt
i,j + Q · L if R2 > ST

(9)

In Eq. 9, h represents the current number of iterations and T

is the maximum number of iterations. The value of xi,j denotes

the current position of the ith sparrow in the jth dimension. The

term, α, is a random number between 0 and 1, andQ is a random

value obeying a standard normal distribution. L represents a 1×D

matrix with all elements 1, alarm value R2∈[0,1], and safety value
ST∈[0.5,1].

When R2<ST, it indicates that the surrounding environment

is currently in a safe state, and the discoverers can search for food

on a wide scale. If R2>ST, it means that there may be natural

enemies in the surrounding environment, and the discoverers

will quickly lead the population from the current position to

avoid predators. Followers update their position according to

their fitness ranking, and the positional update is described in

Eq. 10:

xT+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q · exp( − xT

worst − xT
i,j

i2
) if i> n

2

xT+1
p +

∣∣∣∣∣xT
x,j − xT+1

p

∣∣∣∣∣ · A+ · L otherwise

(10)

In Eq. 10, xt w and xt+1 p represent the global worst position

of the population at the tth iteration and the global optimal

position of the population at the t+1-th iteration, respectively. A

is a matrix of 1×D in which an element is only -1 or +1, with A+ =

AT(AAT)−1. When i > n/2, it indicates that the ith participant is in

a hungry state with poor fitness. In order to obtain higher energy,

the participant needed to fly farther to find food. If i < n/2, the ith

follower will find a random location near the current optimal

position xp to forage. The location of the scouter has been

updated as shown in Eq. 11:

xT+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xT
i,j + Q ·

∣∣∣∣∣xT
i,j − xT

best

∣∣∣∣∣ fi ≠ fg

xT
i,j + K

xT
i,j − xT

worst(fi − fw) + ε
fi � fg

(11)

where K is a step coefficient, which is a random number in [-1,

1], and K represents the moving direction of the sparrows. Q is

a value close to infinitesimal, which exists to avoid the

denominator being zero. fi represents the fitness values of

the ith sparrows, fg and fw are the global optimal fitness and

global worst fitness values within the current search scope,

respectively, ε is the smallest real number, preventing the

occurrence of 0 in the denominator. Individual sparrows face

danger at the edge and approach the globally optimal sparrow

FIGURE 3
Step size of 100 Levy flights.
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when fi ≠ fg. The individual sparrows in the center of the group

can randomly walk among other individuals when fi = fg. This

setup aims to avoid too many individuals reaching a local

optimum, where the algorithm stops iterating and falls into a

local optimum.

Multi-strategy sparrow search
algorithm

The original SSA algorithm used a simple random

function to generate the initial population, which cannot

guarantee the diversity of the population and the stability

of the algorithm. In the sparrow population, the foraging

ability of the discoverers determines the foraging direction

and foraging area of the population and also indicates the

quality of the solution found by the algorithm. The formula

for updating the discoverers’ positions is one of the key

formulas in the SSA. In the later iterations of the SSA, the

sparrow population gradually approaches to the optimal

individual, which leads to a lack of population diversity

and a tendency toward premature convergence of the

algorithm. In the SSA, it can be seen from Eq. 9 that each

dimension of the individual discoverer decreases when

R2<ST. This leads to a decrease in the population diversity

of the algorithm in its later iterations and a lack of

convergence accuracy. In the iterative process of the

algorithm, the location update of sparrows mainly depends

on the information exchanged among individuals, which

easily produces population aggregation and leads to a lack

of diversity. Then, according to Eq. 10, a large number of

followers will flood into the search area around the finder.

When they perceive that the finder has searched for a better

food location, the high population density around the finder

educes the diversity of population positions and easily falls

into a local optimum. In summary, we propose three

corresponding improvement strategies for the original SSA

algorithm, which is prone to local optimal values and

insufficient convergence accuracy. The specific strategies

are discussed below.

Reverse learning strategy based on the law
of refraction

For the SSA in the finder stage, with the continuous

expansion of the search range, a broad and flexible search

mechanism is the key to guiding the entire sparrow

population to find food and avoid danger. When R2 < ST,

the discoverer individuals of each dimension decrease. To

better realize the leading role of the discoverer, this paper

proposes a reverse learning strategy based on the law of

refraction. We calculate the reverse solution of the

candidate solution and select the better solution to

continue the iterative calculation to effectively enhance the

diversity of the algorithm and help the algorithm jump out of

the local extreme value space.

As shown in Figure 2, O is the center point of [a, b], x∈[a, b];
the global optimal individual X takes O as the center point to find

its corresponding reverse individual X′, where a represents the

upper bound and b represents the lower bound. It can be derived

from the law of refraction shown in Eq. 12:

γ � sin θ1
sin θ2

� ((a + b)/2 − x)/h(x′ − (a + b)/2)/h′ (12)

Assuming the scaling factor η � h/h′, the mathematical

model of the reverse individual X′ can be obtained by

deriving Eq. 12 as shown in Eq. 13:

x′ � (a + b)
2

+ (a + b)(2ηγ) − x

ηγ
(13)

Extend Eq. 13 to n-dimensional space to obtain:

x′
j �

(aj + bj)
2

+ (aj + bj)(2ηγ) − xj

ηγ
(14)

In this formula, aj and bj represent the jth dimensional vector

of the upper bound and the jth dimensional vector of the lower

bound, respectively; xj and x’ j represent the jth dimensional

vector of X and x’, respectively. Refraction reverse learning is

performed on the optimal solution in the population, and each

dimension value is mapped to the solution space to obtain a

reverse solution, which not only avoids the interference between

various dimensions but also expands the search range of the

algorithm.

FIGURE 4
Gaussian curve and Cauchy curve distribution diagram.
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Follower position update strategy based
on Levy flight

Although the reverse learning strategy of the refraction law

can help the algorithm to jump out of the local optimal value and

improve the solution accuracy of the algorithm, it cannot expand

the search range of the original population in the optimization

process. Therefore, we introduced the Levy flight strategy to

expand the follower’s optimal range.

According to Eq. 10, a large number of followers in SSA will

flood into the search area around the discoverers when they

perceive that the finder has searched for a better food location,

which has obvious convergence and makes the population

density of the search area too high around the discoverers.

This situation will reduce the diversity of population positions

and easily fall into a local optimum. In this paper, the random

step size s generated by Levy’s flight is introduced into the

follower’s location update strategy, and the uncertainty of

Levy’s flight direction and step size is used to enhance the

multiplicity of follower’s search direction, thus improving the

diversity of population locations and avoiding the search from

falling into local optimal value. The random step size s of the Levy

flight can be calculated by Eq. 15, and the result is shown in

Figure 3:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s � μ/|v|1/β, β � 3/2
μ ~ N(0, σ2

μ), v ~ N(0, σ2v)
σμ �

⎧⎨⎩ Φ(1 + β) sin(πβ/2)
β · Φ[(1 + β)/2] · 2(β−1)/2⎫⎬⎭

1/β

, σv � 1

(15)

Figure 3 shows that Levy flight shuttles each other due to

short and long distance searches, producing random steps s with

no definite direction or size. By introducing the Levy flight

strategy, followers can both roughly search over a large range

and finely search over a small range as they approach the

discoverer, which can effectively avoid convergence and

enhance the diversity of population locations. The formula for

updating the position of the follower was changed from Eqs

10–16 with the addition of the Levy flight strategy:

xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q · exp(xt

w − xt
i,j

i2
) if i> n

2

xt+1
p + s ·

∣∣∣∣∣xt
x,j − xt+1

p

∣∣∣∣∣A+ · L otherwise

(16)

According to Formula 10, it can be seen that the individual

with lower fitness value as a follower will reset the solution to a

number near 1 after updating according to the formula, which is

more effective for some objective functions whose optimal

convergence solution is near 1 or 0. However, in practical

engineering applications, the sparrows generally fly to places

with lower fitness values on the whole. At the same time, the

sparrow individuals with moderate fitness values are directly

replaced by the current best individual. Although the

convergence speed is improved to a certain extent, it will

waste the search area of this part of the sparrow population

and reduce the search accuracy. Comprehensively comparing the

characteristics of the individual fitness values of followers,

sparrows with moderate fitness values search in the direction

of the best sparrow individual according to the current search

area, while sparrow individuals with low fitness value fly to search

TABLE 1 Introduction to benchmark functions.

Fun no. Name Function type Range Dim Optimal value

f1 Sphere Single-modal [-100,100] 30/200/500 0

f2 Schwefel’s problem 2.22 Single-modal [-10,10] 30/200/500 0

f3 Schwefel’s problem 1.2 Single-modal [-100,100] 30/200/500 0

f4 Schwefel’s problem 2.21 Single-modal [-100,100] 30/200/500 0

f5 sum spare Single-modal [-10,10] 30/200/500 0

f6 Zakharov Single-modal [-5,10] 30/200/500 0

f7 Generalized Schwefel’s problem 2.26 Multi-modal [-500,500] 30/200/500 -12569.5

f8 Generalized Rastrigin’s function Multi-modal [-5.12,5.12] 30/200/500 0

f9 Ackley’s Function Multi-modal [-32,32] 30/200/500 0

f10 Ceneralized Criewank function Multi-modal [-600,600] 30/200/500 0

f11 Apline Multi-modal [-10,10] 30/200/500 0

f12 Ceneralized penalized function 2 Fixed multi-modal [-50,50] 30/200/500 0

f13 Shekell’s foxholes function Fixed multi-modal [-65,65] 30/200/500 1

f14 Hatman’s function 1 Fixed multi-modal [0,1] 30/200/500 -3.86

f15 Hatman’s function 2 Fixed multi-modal [0,1] 30/200/500 -3.32

f16 Eggcrate Fixed multi-modal [-2π,2π] 30/200/500 0
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TABLE 2 Comparison of optimization results of different improvement strategies for SSA.

Fun no. Algorithm Optimal Worst Mean Standard

f1 SSA 0.00E+00 1.03E-50 3.44E-52 1.89E-51

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 1.32E-65 4.45E-67 2.41E-66

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 SSA 0.00E+00 2.28E-21 7.59E-23 4.16E-22

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 5.82E-272 3.09E-273 0.00E+00

SSA3 0.00E+00 5.56E-30 1.89E-31 1.01E-30

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 SSA 0.00E+00 4.72E-63 1.61E-64 8.62E-64

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 2.48E-50 8.28E-52 4.53E-51

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 SSA 0.00E+00 1.09E-23 3.65E-25 2.00E-24

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 7.88E-306 1.30E-258 4.35E-260 0.00E+00

SSA3 0.00E+00 2.20E-25 8.76E-27 4.06E-26

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f5 SSA 0.00E+00 1.47E-37 4.89E-39 2.68E-38

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 6.54E-44 2.18E-45 1.19E-44

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 SSA 0.00E+00 5.29E-37 2.25E-38 9.93E-38

SSA1 0.00E+00 5.65E-35 1.88E-36 1.03E-35

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 2.79E-46 9.29E-48 5.09E-47

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 SSA -1.26E+04 -4.77E+03 -1.14E+04 1.92E+03

SSA1 -1.26E+04 -4.13E+03 -1.02E+04 2.49E+03

SSA2 -1.26E+04 -7.95E+03 -1.20E+04 9.45E+02

SSA3 -1.13E+04 -3.96E+03 -9.30E+03 1.75E+03

MSSA -1.26E+04 -1.26E+04 -1.26E+04 2.03E-01

f8 SSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 0.00E+00 0.00E+00 0.00E+00

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F9 SSA 8.88E-16 8.88E-16 8.88E-16 0.00E+00

SSA1 8.88E-16 8.88E-16 8.88E-16 0.00E+00

SSA2 8.88E-16 8.88E-16 8.88E-16 0.00E+00

SSA3 8.88E-16 8.88E-16 8.88E-16 0.00E+00

MSSA 8.88E-16 8.88E-16 8.88E-16 0.00E+00

f10 SSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(Continued on following page)
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near the best position of the finder. The positions updated by

Levy flight of the follower is changed from Eqs 16, 17:

xt+1
i,j �

⎧⎪⎨⎪⎩ xt+1
p + s ·

∣∣∣∣∣xt
x,j − xt+1

p

∣∣∣∣∣ if i> n

2

xt+1
p + s ·

∣∣∣∣∣xt
x,j − xt+1

p

∣∣∣∣∣ · A+ · L otherwise
(17)

Scouter position update strategy based on
improved Cauchy mutations

In the SSA, the scouters enhance the global exploration

ability of the algorithm to some extent, and the ability to

jump out of the local optimal value is stronger if the number

of scouters is a high percentage of the whole sparrow population.

However, the random selection of scouters limits the more active

sparrow individuals. The mechanism of fixing the number of

scouter in the sparrow optimization algorithm slows down the

optimization accuracy and convergence speed to a certain extent.

Therefore, the improved scouter formula proposed in this paper

on the original Eq. 11 is as follows:

xt+1
i,j � { xt

i,j + Q ·
∣∣∣∣∣xt

i,j − xt
b,j

∣∣∣∣∣ fi ≠ fg

xt
b,j + Q ·

∣∣∣∣∣xt
w − xt

b,j

∣∣∣∣∣ fi � fg

(18)

Because the sparrow optimization algorithm easily falls into a

local optimum, the peak value of the Cauchy distribution

function at the origin is small, but the distribution at both

ends is relatively long. Because the range of the Cauchy

TABLE 2 (Continued) Comparison of optimization results of different improvement strategies for SSA.

Fun no. Algorithm Optimal Worst Mean Standard

SSA3 0.00E+00 0.00E+00 0.00E+00 0.00E+00

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f11 SSA 0.00E+00 5.04E-19 1.68E-20 9.21E-20

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 1.73E-261 5.78E-263 0.00E+00

SSA3 0.00E+00 1.72E-23 5.74E-25 3.14E-24

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f12 SSA -1.03E+00 1.88E-121 -9.63E-01 2.62E-01

SSA1 -1.03E+00 0.00E+00 -9.28E-01 3.15E-01

SSA2 -1.03E+00 -1.03E+00 -1.03E+00 2.32E-11

SSA3 -1.03E+00 -1.03E+00 -1.03E+00 6.45E-05

MSSA -1.03E+00 -1.03E+00 -1.03E+00 1.47E-05

f13 SSA 3.98E-01 3.98E-01 3.98E-01 3.15E-05

SSA1 3.98E-01 8.45E-01 4.13E-01 8.16E-02

SSA2 3.98E-01 3.98E-01 3.98E-01 5.35E-07

SSA3 3.98E-01 6.42E-01 4.23E-01 6.90E-02

MSSA 3.98E-01 3.98E-01 3.98E-01 7.41E-05

f14 SSA -3.86E+00 -3.09E+00 -3.75E+00 2.00E-01

SSA1 -3.86E+00 -3.60E+00 -3.82E+00 5.91E-02

SSA2 -3.86E+00 -3.09E+00 -3.81E+00 1.96E-01

SSA3 -3.86E+00 -3.01E+00 -3.65E+00 2.03E-01

MSSA -3.86E+00 -3.86E+00 -3.86E+00 2.10E-03

f15 SSA -3.24E+00 -1.40E+00 -2.96E+00 3.62E-01

SSA1 -3.30E+00 -2.82E+00 -3.10E+00 1.31E-01

SSA2 -3.32E+00 -3.03E+00 -3.25E+00 9.02E-02

SSA3 -3.17E+00 -1.17E+00 -2.65E+00 5.33E-01

MSSA -3.32E+00 -3.03E+00 -3.23E+00 9.01E-02

f16 SSA 0.00E+00 1.63E-33 5.53E-35 2.97E-34

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 4.17E-52 1.39E-53 7.62E-53

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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distribution function is relatively wide, it is easier to jump out of

the local optimum by using the distribution at both ends of the

Cauchy variation (Li et al., 2017). We used the Cauchy mutation

to generate larger disturbances near the currently mutated

sparrow individual to improve the local search ability of the

algorithm and expand the search space of the algorithm. The

standard Cauchy distribution function formula is as follows:

fc(x) � 1
π( γ

(x − x0)2 + γ2
) −∞< x<∞ (19)

If the random variable x of the Cauchy distribution obeys the

position parameter of x0 and the scale parameter of γ, it is

recorded as Cauchy(γ, x0). When the special case of γ = 1 and x0 =

0, it becomes the standard Cauchy distribution function, and the

corresponding cumulative distribution function is shown in

Eq. 20:

Fc(x) � 1
2
+ 1
π arctan(x − x0

γ
) (20)

There are two main differences because the density function

of the Cauchy distribution is similar to the Gaussian density

function. On the one hand, the Cauchy distribution in the vertical

direction is slightly smaller than the Gaussian distribution. On

the other hand, the closer the Cauchy distribution is to the

horizontal axis in the horizontal direction, the slower the change,

so the Cauchy distribution can be regarded as infinite.

The comparison of the two distributions is shown in Figure 4.

The Cauchy distribution and the Gaussian distribution have

FIGURE 5
Mean convergence curve of the benchmark function. (A) f1mean convergence curve. (B) f2mean convergence curve. (C) f3mean convergence
curve. (D) f4mean convergence curve. (E) f5 mean convergence curve. (F) f6mean convergence curve. (G) f7 mean convergence curve. (H) f8mean
convergence curve. (I) f9 mean convergence curve. (J) f10 mean convergence curve. (K) f11 mean convergence curve. (L) f12 mean convergence
curve. (M) f13 mean convergence curve. (N) f14 mean convergence curve. (O) f15 mean convergence curve. (P) f16 mean convergence curve.
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TABLE 3 Comparison with the results of five metaheuristic algorithms.

Fun no. Name 30 dim 200 dim 500 dim

Mean SD Mean SD Mean SD

f1 SSA[26] 1.28E-52 6.76E-52 5.12E-40 2.80E-39 4.12E-64 2.25E-63

GWO[16] 2.12E-27 3.08E-27 1.17E-07 7.25E-08 1.66E-03 5.71E-04

WOA[34] 2.21E-73 9.78E-73 4.55E-67 2.49E-66 2.68E-71 9.22E-71

TSA[12] 1.91E-21 7.58E-21 3.64E-06 3.57E-06 2.77E-02 1.82E-02

EO[35] 2.48E-41 3.99E-41 1.44E-25 2.04E-25 1.11E-22 1.64E-22

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 SSA[26] 3.12E-20 1.71E-19 3.18E-19 1.74E-18 1.89E-26 1.04E-25

GWO[16] 1.18E-16 9.88E-17 3.26E-05 7.11E-06 1.21E-02 2.11E-03

WOA[34] 3.09E-51 1.09E-50 6.10E-49 2.18E-48 6.87E-49 3.18E-48

TSA[12] 9.65E-14 1.78E-13 5.24E-05 3.37E-05 6.84E-03 4.31E-03

EO[35] 5.63E-24 4.83E-24 1.56E-15 8.88E-16 8.77E-14 6.13E-14

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 SSA[26] 7.58E-49 3.99E-48 1.04E-42 5.70E-42 2.66E-56 1.46E-55

GWO[16] 1.79E-05 4.40E-05 2.02E+04 8.92E+03 3.22E+05 8.03E+04

WOA[34] 4.52E+04 1.34E+04 5.17E+06 1.56E+06 3.02E+07 1.04E+07

TSA[12] 1.22E-03 5.79E-03 1.72E+05 4.14E+04 1.42E+06 2.42E+05

EO[35] 4.95E-09 5.06E-10 7.62E+02 1.53E+03 2.95E+04 3.08E+04

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 SSA[26] 7.37E-20 4.04E-19 1.41E-23 7.74E-23 3.32E-34 1.82E-33

GWO[16] 9.14E-07 6.67E-07 2.38E+01 7.22E+00 6.40E+01 5.40E+00

WOA[34] 5.07E+01 2.83E+01 7.59E+01 2.58E+01 8.04E+01 2.32E+01

TSA[12] 4.57E-01 6.01E-01 9.39E+01 4.14E+00 9.91E+01 3.10E-01

EO[35] 5.06E-10 9.39E-10 2.23E+01 2.48E+01 6.81E+01 1.59E+01

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f5 SSA[26] 1.72E-51 9.40E-51 4.54E-49 2.49E-48 8.45E-50 4.63E-49

GWO[16] 4.03E-29 5.75E-29 1.68E-08 8.39E-09 8.45E-04 2.78E-04

WOA[34] 1.56E-72 8.53E-72 3.49E-71 1.19E-70 1.70E-68 6.15E-68

TSA[12] 3.22E-23 3.46E-23 1.07E-06 1.60E-06 1.32E-02 1.52E-02

EO[35] 1.90E-42 3.16E-42 4.63E-26 1.30E-25 9.77E-23 9.61E-23

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 SSA[26] 1.93E-38 1.06E-37 3.33E-40 1.82E-39 1.38E-29 7.56E-29

GWO[16] 2.59E-07 7.08E-07 9.92E+02 2.21E+02 3.88E+03 5.58E+02

WOA[34] 4.98E+02 1.34E+02 3.33E+03 3.94E+02 8.03E+03 1.06E+03

TSA[12] 2.79E-10 3.32E-10 5.03E+02 1.04E+02 1.93E+03 3.31E+02

EO[35] 1.46E-05 3.12E-05 9.35E+02 3.08E+02 3.08E+03 9.19E+02

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 SSA[26] -1.13E+04 1.90E+03 -7.62E+04 8.05E+03 -1.84E+05 2.15E+04

GWO[16] -6.15E+03 8.82E+02 -2.70E+04 6.46E+03 -5.67E+04 9.18E+03

WOA[34] -1.05E+04 1.79E+03 -6.86E+04 1.12E+04 -1.75E+05 2.84E+04

TSA[12] -5.96E+03 5.65E+02 -1.94E+04 1.19E+03 -3.09E+04 1.95E+03

EO[35] -8.85E+03 6.65E+02 -4.26E+04 2.74E+03 -7.41E+04 4.79E+03

MSSA -1.26E+04 9.57E-02 -8.38E+04 1.95E-01 -2.09E+05 1.12E+00

f8 SSA[26] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

GWO[16] 2.30E+00 2.95E+00 2.55E+01 1.45E+01 7.42E+01 2.30E+01

WOA[34] 0.00E+00 0.00E+00 1.52E-14 8.30E-14 3.03E-14 1.66E-13

TSA[12] 1.82E+02 3.73E+01 2.19E+03 2.31E+02 5.89E+03 5.98E+02

(Continued on following page)
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TABLE 3 (Continued) Comparison with the results of five metaheuristic algorithms.

Fun no. Name 30 dim 200 dim 500 dim

Mean SD Mean SD Mean SD

EO[35] 0.00E+00 0.00E+00 1.52E-14 5.77E-14 6.06E-14 2.31E-13

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f9 SSA[26] 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00

GWO[16] 1.11E-13 1.57E-14 2.42E-05 6.94E-06 1.95E-03 3.93E-04

WOA[34] 5.27E-15 2.02E-15 5.27E-15 2.41E-15 3.85E-15 2.48E-15

TSA[12] 1.87E+00 1.57E+00 2.72E-04 1.74E-04 1.06E-02 5.51E-03

EO[35] 8.70E-15 2.17E-15 9.49E-14 2.87E-14 4.85E-13 2.46E-13

MSSA 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00

f10 SSA[26] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

GWO[16] 4.22E-03 1.01E-02 6.69E-03 1.43E-02 6.75E-03 2.50E-02

WOA[34] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.70E-18 2.03E-17

TSA[12] 1.39E-02 1.98E-02 2.63E-02 5.94E-02 3.74E-02 7.96E-02

EO[35] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.11E-03 6.07E-03

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f11 SSA[26] 1.95E-33 1.06E-32 7.03E-24 3.20E-23 5.12E-20 2.81E-19

GWO[16] 4.46E-04 6.57E-04 1.30E-02 3.27E-03 6.83E-02 1.38E-02

WOA[34] 2.53E-43 1.38E-42 1.20E-49 4.86E-49 2.45E-50 7.46E-50

TSA[12] 2.58E+01 6.50E+00 3.50E+02 4.66E+01 8.75E+02 1.96E+02

EO[35] 1.41E-07 7.17E-07 1.23E-15 5.16E-15 1.19E-14 5.56E-15

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f12 SSA[26] -1.03E+00 2.40E-07 -1.01E+00 1.45E-01 -8.60E-01 3.91E-01

GWO[16] -1.03E+00 1.82E-08 -1.03E+00 1.03E-08 -1.03E+00 6.06E-09

WOA[34] -1.03E+00 6.71E-10 -1.03E+00 6.26E-09 -1.03E+00 6.69E-10

TSA[12] -1.03E+00 8.02E-03 -1.03E+00 1.09E-02 -1.03E+00 5.77E-03

EO[35] -1.03E+00 6.39E-16 -1.03E+00 6.18E-16 -1.03E+00 6.39E-16

MSSA -1.03E+00 1.46E-05 -1.03E+00 1.31E-05 -1.03E+00 1.46E-05

f13 SSA[26] 3.98E-01 8.02E-06 3.98E-01 9.38E-06 3.98E-01 5.02E-06

GWO[16] 3.98E-01 3.88E-05 3.98E-01 1.32E-06 3.98E-01 1.27E-04

WOA[34] 3.98E-01 4.45E-05 3.98E-01 9.77E-06 3.98E-01 8.92E-06

TSA[12] 3.98E-01 9.97E-05 3.98E-01 3.50E-05 3.98E-01 8.92E-05

EO[35] 3.98E-01 0.00E+00 3.98E-01 0.00E+00 3.98E-01 0.00E+00

MSSA 3.98E-01 9.24E-05 3.98E-01 5.85E-05 3.98E-01 6.99E-05

f14 SSA[26] -3.81E+00 6.70E-02 -3.76E+00 1.95E-01 -3.80E+00 1.47E-01

GWO[16] -3.86E+00 2.46E-03 -3.86E+00 2.60E-03 -3.86E+00 1.64E-03

WOA[34] -3.85E+00 1.92E-02 -3.86E+00 6.28E-03 -3.86E+00 1.07E-02

TSA[12] -3.86E+00 1.43E-03 -3.86E+00 1.41E-03 -3.86E+00 1.10E-04

EO[35] -3.86E+00 1.44E-03 -3.86E+00 2.49E-15 -3.86E+00 2.49E-15

MSSA -3.86E+00 2.03E-02 -3.86E+00 6.59E-03 -3.86E+00 4.01E-03

f15 SSA[26] -3.05E+00 2.17E-01 -2.96E+00 4.63E-01 -2.91E+00 3.37E-01

GWO[16] -3.25E+00 7.06E-02 -3.24E+00 7.51E-02 -3.27E+00 6.64E-02

WOA[34] -3.25E+00 9.10E-02 -3.20E+00 1.26E-01 -3.26E+00 8.98E-02

TSA[12] -3.24E+00 1.26E-01 -3.26E+00 7.44E-02 -3.25E+00 1.04E-01

EO[35] -3.24E+00 6.99E-02 -3.28E+00 5.85E-02 -3.25E+00 6.92E-02

MSSA -3.21E+00 8.80E-02 -3.24E+00 7.45E-02 -3.21E+00 9.89E-02

f16 SSA[26] 4.77E-40 2.61E-39 1.48E-59 8.09E-59 3.49E-64 1.91E-63

GWO[16] 9.42E-207 0.00E+00 8.88E-205 0.00E+00 1.00E-210 0.00E+00

(Continued on following page)
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certain similarities and their own characteristics. The Cauchy

distribution has a wider range than the Gaussian distribution.

The Cauchy distribution easily generates a random number far

from the origin, which means that the sparrow individual after

Cauchy mutation has a higher probability of jumping out of the

local optimal area. In addition, the peak value of the Cauchy

distribution function is lower than that of the Gaussian

distribution, which can shorten the search time of the

mutated sparrow individuals around the neighborhood.

Therefore, this paper integrates the Cauchy mutation to

improve the scouter position update strategy, increases the

diversity of the population and improves the ability of the

algorithm to jump out of the local optimum. The position

update formula is as follows:

xt+1
i,j � xt

best + xt
i,j · Cauchy (0, 1) (21)

Eqs 9–11, derived from the original work of SSA, specify how

the sparrow is updated and construct the basic flow of the

TABLE 3 (Continued) Comparison with the results of five metaheuristic algorithms.

Fun no. Name 30 dim 200 dim 500 dim

Mean SD Mean SD Mean SD

WOA[34] 4.18E-111 2.29E-110 4.90E-106 2.68E-105 1.38E-109 7.56E-109

TSA[12] 6.90E-95 3.78E-94 1.47E-94 8.04E-94 7.55E-105 4.13E-104

EO[35] 3.42E-205 0.00E+00 4.86E-213 0.00E+00 4.10E-208 0.00E+00

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

FIGURE 6
Comparison of optimization of each algorithm. (A) f1 mean convergence curve. (B) f2 mean convergence curve. (C) f3 mean convergence
curve. (D) f4mean convergence curve. (E) f5 mean convergence curve. (F) f6mean convergence curve. (G) f8mean convergence curve. (H) f9mean
convergence curve. (I) f10 mean convergence curve. (J) f11 mean convergence curve. (K) f13 mean convergence curve. (L) f16 mean convergence
curve.
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algorithm. Based on the idealization and feasibility of the above

model, the basic steps of the improved SSA can be summarized in

the pseudo-code shown in Algorithm 1.

Simulation experiments of MSSA

Experimental environment parameters
and test functions

The computer configuration used in the simulation

experiment is Intel Core i7-6700HQ, the main frequency is

2.60 GHz, 8 GB memory, 64 bit operating system, and the

computing environment is MATLAB 2019(b). We compare

the SSA, GWO, WOA (Mirjalili and Lewis, 2016), TSA, and

EO (Faramarzi et al., 2020) with MSSA. The basic parameters of

the algorithms were set to the same value, including population

size N = 30, the maximum number of iterations Tmax = 500. The

test function dimensions were divided into low-dimensional (d =

30) and high-dimensional (d = 200 and d = 500).

To test the optimization performance of the MSSA

algorithm, 16 benchmark functions with different

characteristics used in the literature were selected for the

function optimization test. The selected test functions were

divided into three categories. The first category was the single-

modal test function, f1-f6, which is mainly used to evaluate the

optimization accuracy and convergence speed of the algorithm.

The second type is the multi-modal test function, f7-f11, which is

used to test the exploration ability of the algorithm and the ability

to jump out of the local optimal value. The third type is the fixed

multi-modal test function, f12-f16. This paper used the

16 benchmark functions to evaluate the comprehensive ability

of the algorithm. The detailed description and related

information are shown in Table 1.

Comparing MSSA with various
improvement strategies

Optimization performance experiment
To fully verify the optimization effect of the proposed

improved strategy, we denoted the three improvement

strategies as SSA1, SSA2, and SSA3, and compare them

with SSA and MSSA. Each algorithm was independently

run 30 times on 16 benchmark functions, and the optimal

value, worst value, mean value, and standard value were

recorded. The optimal value and the worst value reflected

the single optimization ability of the algorithm, the average

value reflected the convergence accuracy, and the standard

deviation reflected the stability and robustness of the

algorithm. Parameters were uniformly set as follows:

population size N = 30, search space dimension dim = 30,

and maximum number of iterations, Tmax = 500. The results of

experimental optimization are shown in Table 2:

Table 2 shows that for the single-modal test functions, f1-f6,

MSSA can find the theoretical optimal value, illustrating that the

stability is strong. At the same time, SSA1 can reach the

theoretical optimal value and the more stable standard,

showing that the introduction of the lens imaging learning

strategy helps the algorithm to jump out of the local optimal

TABLE 4 Wilcoxon rank sum test results.

Fun. No SSA(p1) GWO(p2) WOA(p3) TSA(p4) EO(p5)

f1 1.31 × 10–07 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f2 1.93 × 10–10 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f3 1.70 × 10–08 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f4 1.66 × 10–11 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f5 1.31 × 10–07 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f6 1.70 × 10–08 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f7 2.15 × 10–10 3.02 × 10–11 3.34 × 10–11 3.02 × 10–11 3.02 × 10–11

f8 NaN 1.17 × 10–12 NaN 1.21 × 10–12 NaN

f9 NaN 1.15 × 10–12 3.06 × 10–09 1.21 × 10–12 3.13 × 10–12

f10 NaN 6.62 × 10–04 3.04 × 10–01 8.86 × 10–07 NaN

f11 1.93 × 10–10 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f12 3.34 × 10–11 3.02 × 10–11 3.02 × 10–11 2.13 × 10–05 6.32 × 10–12

f13 3.83 × 10–06 1.07 × 10–09 5.00 × 10–09 8.31 × 10–03 1.21 × 10–11

f14 6.41 × 10–01 3.77 × 10–04 5.59 × 10–01 5.53 × 10–08 1.72 × 10–12

f15 1.03 × 10–06 9.79 × 10–05 6.55 × 10–04 3.34 × 10–03 3.06 × 10–11

f16 1.31 × 10–07 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

+/ = /- 13/3/3 16/0/0 15/1/1 16/0/0 14/2/2
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value. SSA2 can reach the optimal theoretical value in f1, f2, f5,

and f6, indicating that adding Levy flight can help the population

to deeply mine the global optimal values and improve the global

search ability of the algorithm. For the multi-modal test

functions, f7-f11, there are a large number of local extremes

distributed in their solution space, and it is difficult for the

algorithm to perform global optimization. The MSSA and other

comparative algorithms fall into local optimal solutions when

solving function f9. But MSSA has higher convergence accuracy

and stability in other test functions, and the standards are more

stable than other algorithms.

For the fixed multi-modal functions, f12-f16, MSSA can

find the theoretical optimal value, and the stability is

extremely strong and the standard value is lower than

SSA1, SSA2, and SSA3, indicating that MSSA has stronger

stability and robustness.

Convergence curve experiment
We used the average convergence curve to reflect the

dynamic convergence characteristics of the MSSA in this

paper. We make the algorithm run 30 times independently

under the population size N = 30, maximum number of

iterations Tmax = 500, and the search dimension dim = 30.

Figure 5 presents the average convergence curves of the

16 benchmark functions.

Figure 5 shows that the MSSA has a higher optimization

accuracy solution rate and faster convergence speed in f1-f5 than

under the same number of iterations. The values of f7-f11 and f16
show that the MSSA is able to guarantee the exploration ability

and illustrate that the MSSA can ensure the development ability

without losing the population diversity and optimization

stability. For f6 and f12-f14, the MSSA can converge to the

optimal value faster in the later stages, which indicates that

adopting the three strategies can help the algorithm jump out

of the local optimal value effectively. In general, the MSSA

average convergence curve is below the four comparison

algorithms and takes fewer iterations to reach the theoretical

optimal. From Table 2 and Figure 5, the result illustrates that the

MSSA has higher convergence accuracy, convergence speed,

stronger stability, and better robustness. The experimental

results verify the effectiveness of the proposed algorithm and

achieve the purpose of improving the standard SSA.

Comparing MSSA with other algorithms

Optimization performance experiment
To further test the optimization characteristics of the MSSA

algorithm for the benchmark function, this paper chose the

standard SSA, GWO, WOA, TSA, EO, and MSSA to compare

for optimization performance. For each benchmark function, the

search dimension is set to dim = 30/200/500, the maximum

number of iterations Tmax = 500 and the population size isN = 30.

The test functions of Table 1 are used to perform the

optimization comparison test, and each algorithm is run

30 times independently. The comparison results are shown in

Table 3:

As seen from Table 3, the solution rate of MSSA can reach

100% when solving for the single-modal test function, f1-f6,

which indicates that MSSA has good optimization accuracy

and robustness. For the multi-modal test function, f7-f11,

MSSA can find the theoretical optimal value. For the fixed

multi-modal test function, f12-f16, the MSSA solution results

are very close to or equal to the theoretical optimal value. As

the dimension of the search space increases from 30 to 200 and

500 dimensions, the search accuracy and stability of the

algorithm decrease because the optimization process requires

more computations, but MSSA still has the highest optimization

accuracy. This illustrates that the MSSA has a significant

TABLE 5 Part of the CEC2014 function.

Fun no. Dim Function type Range Optimal

CEC01 30 UN [-100,100] 100

CEC02 30 UN [-100,100] 200

CEC03 30 UN [-100,100] 300

CEC04 30 MF [-100,100] 400

CEC05 30 MF [-100,100] 500

CEC06 30 MF [-100,100] 600

CEC07 30 MF [-100,100] 700

CEC08 30 MF [-100,100] 800

CEC09 30 MF [-100,100] 900

CEC10 30 MF [-100,100] 1000

CEC11 30 MF [-100,100] 1100

CEC12 30 MF [-100,100] 1200

CEC13 30 MF [-100,100] 1300

CEC14 30 MF [-100,100] 1400

CEC15 30 MF [-100,100] 1500

CEC16 30 MF [-100,100] 1600

CEC17 30 HF [-100,100] 1700

CEC18 30 HF [-100,100] 1800

CEC19 30 HF [-100,100] 1900

CEC20 30 HF [-100,100] 2000

CEC21 30 HF [-100,100] 2100

CEC22 30 HF [-100,100] 2200

CEC23 30 HF [-100,100] 2300

CEC24 30 HF [-100,100] 2400

CEC25 30 CF [-100,100] 2500

CEC26 30 CF [-100,100] 2600

CEC27 30 CF [-100,100] 2700

CEC28 30 CF [-100,100] 2800

CEC29 30 CF [-100,100] 2900

CEC30 30 CF [-100,100] 3000
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competitive advantage and stability in solving high-dimensional

and complex optimization problems.

High-dimensional convergence curve
experiment

To compare the optimization performance of the MSSA

and other algorithms, we selected SSA, GWO,WOA, TSA, EO,

and MSSA for high-dimensional function optimization

comparison. This paper used the 12 representative

benchmark functions given in Table 1, the dimension

dim = 500, and the maximum number of iterations, Tmax =

500. The high-dimensional optimization curve of each

algorithm is shown in Figures 6A–L. The convergence

accuracy and speed of the MSSA were significantly higher

than those of the other algorithms, which indicate that the

multi-strategy can effectively prevent the algorithm from

falling into local optima. The results of the optimization

curve illustrated that for the single-modal test functions, f1-

f6, the multi-modal functions test functions, f8, f10, f11, and the

fixed multi-modal function, f16, MSSA can find the optimal

value faster with fewer iterations and higher convergence

accuracy. For the multi-modal function, f9, the optimal

value of MSSA was similar to several other contrast

functions, but the MSSA converged much faster. For the

fixed multi-modal function, f13, MSSA fell into a local

optimum similar to the five compared algorithms, but it

still could find the theoretical optimum; thus, MSSA has

significant advantages over the other algorithms.

TABLE 6 CEC2014 function optimization comparison.

No. SSA GWO WOA TSA EO MSSA

Mean SD Mean SD Mean SD Mean SD Mean SD Mean Std

CEC01 9.554E+08 2.631E+08 1.098E+08 8.610E+07 2.175E+08 1.105E+08 4.116E+08 2.529E+08 1.607E+07 7.842E+06 7.625E+08 2.612E+08

CEC02 7.477E+10 8.241E+09 3.206E+09 2.525E+09 6.849E+09 2.531E+09 3.020E+10 1.016E+10 1.450E+05 1.666E+05 5.933E+10 8.122E+09

CEC03 8.759E+04 3.076E+03 5.134E+04 1.349E+04 1.364E+05 7.675E+04 5.817E+04 1.096E+04 2.289E+04 1.232E+04 8.518E+04 4.116E+03

CEC04 1.369E+04 3.074E+03 6.920E+02 8.595E+01 1.350E+03 3.125E+02 3.325E+03 2.152E+03 5.261E+02 3.970E+01 9.841E+03 2.116E+03

CEC05 5.212E+02 9.680E-02 5.211E+02 7.219E-02 5.209E+02 1.063E-01 5.211E+02 7.515E-02 5.210E+02 8.605E-02 5.210E+02 7.811E-02

CEC06 6.432E+02 2.736E+00 6.169E+02 2.231E+00 6.388E+02 3.369E+00 6.331E+02 3.501E+00 6.112E+02 2.621E+00 6.405E+02 2.563E+00

CEC07 1.258E+03 1.513E+02 7.296E+02 2.719E+01 7.462E+02 1.945E+01 9.799E+02 8.968E+01 7.002E+02 1.168E-01 1.105E+03 9.123E+01

CEC08 1.134E+03 2.557E+01 9.024E+02 3.450E+01 1.052E+03 5.699E+01 1.072E+03 3.917E+01 8.621E+02 1.661E+01 1.099E+03 3.076E+01

CEC09 1.280E+03 3.438E+01 1.023E+03 3.495E+01 1.218E+03 5.999E+01 1.228E+03 4.629E+01 1.004E+03 2.524E+01 1.226E+03 2.770E+01

CEC10 8.566E+03 6.372E+02 3.904E+03 1.268E+03 6.099E+03 9.402E+02 6.759E+03 8.883E+02 3.408E+03 6.872E+02 7.815E+03 5.461E+02

CEC11 8.764E+03 6.220E+02 5.338E+03 1.774E+03 7.636E+03 4.399E+02 7.387E+03 6.106E+02 5.206E+03 7.782E+02 8.437E+03 5.112E+02

CEC12 1.204E+03 1.267E+00 1.203E+03 1.223E+00 1.202E+03 5.587E-01 1.203E+03 4.669E-01 1.202E+03 5.199E-01 1.203E+03 6.070E-01

CEC13 1.308E+03 9.376E-01 1.301E+03 2.225E-01 1.302E+03 9.442E-01 1.304E+03 7.534E-01 1.300E+03 1.018E-01 1.307E+03 7.269E-01

CEC14 1.608E+03 3.762E+01 1.406E+03 7.359E+00 1.420E+03 1.042E+01 1.505E+03 2.852E+01 1.400E+03 1.942E-01 1.578E+03 2.299E+01

CEC15 1.105E+05 4.523E+04 1.804E+03 5.126E+02 2.550E+03 1.105E+03 2.256E+04 3.623E+04 1.510E+03 2.472E+00 5.588E+04 2.556E+04

CEC16 1.613E+03 3.680E-01 1.612E+03 4.505E-01 1.613E+03 4.879E-01 1.613E+03 3.369E-01 1.612E+03 6.038E-01 1.613E+03 2.314E-01

CEC17 1.063E+08 9.442E+07 3.127E+06 2.652E+06 2.355E+07 1.383E+07 1.336E+07 1.277E+07 1.116E+06 7.946E+05 9.002E+07 5.939E+07

CEC18 3.101E+09 2.708E+09 2.865E+07 3.139E+07 6.831E+06 6.326E+06 6.929E+08 1.498E+09 6.086E+03 1.168E+04 1.666E+09 1.164E+09

CEC19 2.377E+03 1.769E+02 1.959E+03 2.991E+01 2.020E+03 6.305E+01 2.090E+03 9.015E+01 1.915E+03 1.975E+01 2.230E+03 1.034E+02

CEC20 6.555E+05 1.016E+06 3.720E+04 1.914E+04 1.578E+05 1.533E+05 7.574E+04 5.123E+04 2.100E+04 9.639E+03 2.980E+05 2.909E+05

CEC21 5.064E+07 4.092E+07 2.340E+06 3.394E+06 1.183E+07 9.843E+06 6.214E+06 6.954E+06 5.188E+05 3.946E+05 3.479E+07 3.409E+07

CEC22 5.127E+03 1.861E+03 2.708E+03 1.610E+02 3.238E+03 2.960E+02 3.487E+03 8.483E+02 2.608E+03 2.130E+02 4.939E+03 5.236E+03

CEC23 2.500E+03 0.000E+00 2.641E+03 1.343E+01 2.715E+03 3.445E+01 2.740E+03 9.350E+01 2.615E+03 1.493E-01 2.500E+03 0.000E+00

CEC24 2.600E+03 0.000E+00 2.600E+03 3.613E-02 2.610E+03 6.295E+00 2.610E+03 2.017E+01 2.600E+03 7.775E-03 2.600E+03 0.000E+00

CEC25 2.700E+03 0.000E+00 2.713E+03 5.881E+00 2.718E+03 2.124E+01 2.730E+03 1.082E+01 2.701E+03 2.503E+00 2.700E+03 0.000E+00

CEC26 2.769E+03 4.420E+01 2.747E+03 5.048E+01 2.717E+03 3.770E+01 2.806E+03 6.982E+01 2.727E+03 4.479E+01 2.766E+03 4.594E+01

CEC27 2.900E+03 0.000E+00 3.422E+03 1.145E+02 3.924E+03 3.295E+02 3.867E+03 2.875E+02 3.282E+03 1.095E+02 2.900E+03 0.000E+00

CEC28 3.000E+03 0.000E+00 4.327E+03 5.250E+02 5.274E+03 7.162E+02 7.836E+03 9.600E+02 3.777E+03 1.204E+02 3.000E+03 0.000E+00

CEC29 3.100E+03 0.000E+00 3.670E+06 5.556E+06 1.800E+07 1.944E+07 8.854E+07 7.142E+07 3.425E+06 4.721E+06 3.100E+03 0.000E+00

CEC30 3.200E+03 0.000E+00 9.243E+04 6.681E+04 5.368E+05 3.128E+05 6.287E+05 3.630E+05 1.109E+04 7.519E+03 3.200E+03 0.000E+00
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Wilcoxon rank-sum test experiment

In general, only the mean and standard deviation are used

for data analysis. The Wilcoxon rank-sum test is a non-

parametric test method for the mean that is not limited by

the overall distribution and has a wide range of applications

(Derrac, J. et al., 2011). To more comprehensively analyze the

performance difference between the MSSA and other

algorithms, we selected the running results of MSSA and

five comparison algorithms in sixteen test functions to

conduct the Wilcoxon rank sum test. The p value can be

considered to reject the null hypothesis when p < 5%,

indicating that there is a significant difference in the test

results. NaN indicates that there are no data to compare with

the algorithm, +, =, and - indicate that the MSSA algorithm’s

optimization performance is better than, equal to, and worse

than the compared algorithms, respectively. The results of the

Wilcoxon rank sum test are shown in Table 4:

As seen from Table 4, the MSSA p value of the Wilcoxon

rank sum test is less than 5%. The experimental results

indicate that there is a significant difference between the

MSSA and the other five algorithms, and the MSSA is

significantly better than the others, further reflecting the

robustness of the MSSA.

FIGURE 7
3D map model information of two environments. (A) 3D map of environment 1. (B) 3D map of environment 2.

FIGURE 8
Simulation results of 3D trajectory planning in environment 1 from two different views.
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CEC2014 test functions experiment

Most of the CEC2014 test functions (Tejani, 2018) are

composed of the weights of multiple basic optimizations test

functions, which makes the characteristics of the test functions

more complex. In this paper, the proposed MSSA was tested

against these complex test functions. On the one hand, these

functions can effectively reflect the superior performance of

MSSA for optimization of a complex function. On the other

hand, the combinatorial optimization of multiple test functions

reflects the applicability of SMSA to different complex

optimization problems. To further test the performance of

MSSA, this paper chose the CEC2014 single objective

optimization function for solution analysis, including unit-

modal, multi-modal, Hybrid, and composition type functions.

Table 5 shows the relevant information of CEC2014 functions.

This study compared the MSSA with five algorithms, including

SSA, GWO, WOA, TSA, and EO. To ensure fairness of the

algorithm comparison, the maximum number of iterations,

Tmax = 1000, the population size was N = 30, and the

dimension, dim = 30, were set to the same values in each

algorithm, which were run 30 times independently, and the

mean and standard deviation were recorded. The results are

shown in Table 6.

The algorithm initialization phase:

1. T: the maximum iterations;

2. Dd: the number of discovers;

3. Sd: the number of scouters;

4. R2: the alarm value;

5. n: the number of sparrows;

6. Perform sparrow population position

initialization;

The algorithm iterates the search phase:

7. while t < Tmax;

8. Ranking of individual fitness values to find the best

and worst individuals;

9. R2 = rand (1);

10. for i = 1: Dd;

11. Using Eq. 14 update the sparrow’s location;

12. end for;

13. for i = 1: (Dd+1);

14. Using Eq. 17 update the sparrow’s location;

15. end for;

16. for i = 1: Sd;

17. Using Eq. 21 update the sparrow’s location;

18. end for;

19. Get the current optimal position;

20. t = t+1;

21. end while;

22. Output global optimum;

Algorithm 1. The framework of the MSSA.

Table 6 shows that MSSA was better than SSA on 22 test

functions, including CEC01, CEC02, CEC03, CEC04, CEC05,

CEC06, CEC07, CEC08, CEC09, CEC10, CEC11, CEC12,

CEC13, CEC14, CEC15, CEC17, CEC18, CEC19, CEC20,

CEC21, CEC22, and CEC26. MSSA can find values close to

SSA on CEC16, CEC23, CEC24, CEC25, CEC26, CEC28, CEC29,

and CEC30. In terms of standard deviation, MSSA is better than

SSA, GWO, and TSA on most test functions. It is worth noting

that MSSA is better than SSA in the remaining 25 test functions

except CEC03, CEC05, CEC16, CEC22, and CEC26. Generally,

FIGURE 9
Comparison of 2D track planning in environment 1.

FIGURE 10
Convergence diagram of track cost function in
environment 1.
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the proposed algorithm has more prominent advantages in the

CEC2014 test function compared with the other eight algorithms.

UAV trajectory planning based on
MSSA

In this section, we established two mathematical models of

trajectory planning constraints in MATLAB and simulation

experiments were carried out in a 3-D environment. This

experiment combines the content of the above sections, and

we conducted simulation experiments on UAV trajectory

planning in two challenging mission environments. We

compared MSSA with the SSA, BOA, WOA, and TSA to

verify the performance improvement of the MSSA in the

trajectory planning problem.

Experimental simulation parameters

The first step in UAV trajectory planning was to initialize the

relevant parameters. The basic parameters of SSA before and

after the improvement were set as follows: the population size

was N = 50, the maximum number of iterations was Tmax = 30,

FIGURE 11
Simulation results of 3D trajectory planning in environment 2 from two different views.

FIGURE 12
Comparison of 2D track planning in environment 2.

FIGURE 13
Convergence diagram of track cost function in
environment 2.
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the proportion of discoverers was set to 20%, the scouter is 10%,

and the alert threshold is set to 0.7.

To compare the performance of MSSA in the trajectory

planning problem, we used two different map models as the

task environment for simulation experiments.We built the three-

dimensional environment and superimposed the threat area on it

to make the model closer to the real environment. The area sizes

of the two environments were 200×200×10 and

200×200×15 respectively. The start and end coordinates were

set as S = (0, 0, 5) and E = (200, 200, 5). The height of the no-fly

zone in the two environments was uniformly set at 10, the radius

are R1 = [10; 8; 6; 7; 5] and R2 = [20; 15; 15]. The center

coordinates were T1 = [115,161; 50,150; 90,20; 175,70] and T2 =

[128,161; 50,150; 60,20]. The coordinates of the center of the

mountain area were A1 = [48,41; 90,90; 162,96; 134,165; 30,135;

150,35] and A2 = [83,37; 149,36; 131,113; 54,118; 66,176;

131,178]. The heights were H1 = [7; 9;7; 6;6; 9] and H2 = [12;

8;7; 11; 6;9]. Slopes along the X axis direction were a1 = [25; 25;

35; 25; 25; 20] and a2 = [25; 25; 35; 30; 25; 20], and slopes along

the Y axis direction were b1 = [25; 25; 30; 20; 30; 20] and b2 = [25;

35; 30; 35; 30; 20]. The 3-D environmental models are shown in

Figure 7.

Convergence curve experiment
The trajectory simulation results of the two mission

environments are shown in Figures 8 and 11, respectively. The

two-dimensional trajectory planning results can be seen in Figures 9

and 12, respectively. The convergence graphs of the track cost

function are in Figures 10 and 13, respectively. Figures 8 and 9

show that the five algorithms can both avoid the no-fly area from

starting point to the target point in the environment. However, SSA,

WOA, BOA, and TSA have large fluctuations. At the same time, the

path is far away from themountain peak and the no-fly area in the 2-

D environment. This indicates that the algorithm falls into a local

TABLE 7 Experimental data of environment 1.

No. SSA BOA WOA TSA MSSA

1 221.9858 428.1988 194.8475 477.7604 223.6669

2 200.8703 249.9676 194.8475 412.8379 214.5968

3 198.3777 249.9676 194.8475 370.6239 211.5184

4 180.7114 222.4805 194.8475 313.0749 211.5184

5 166.1277 211.9584 194.8475 313.0749 211.5184

6 166.1277 211.9584 194.8475 313.0749 208.6994

7 159.4911 211.9584 194.8475 313.0749 183.4661

8 159.4911 211.9584 194.8475 286.9255 180.6388

9 159.4911 211.9584 194.8475 258.2724 177.8031

10 159.4911 211.9584 194.8475 258.2724 177.8031

11 159.4911 206.6703 194.8475 252.3117 177.8031

12 159.4911 206.6703 186.2235 252.3117 176.5868

13 159.4911 169.1189 186.2235 251.7576 176.4338

14 159.4911 169.1189 186.2235 247.0899 174.2706

15 159.4911 169.1189 181.2497 247.0899 174.2706

16 159.4911 169.1189 181.2497 247.0899 168.9351

17 159.4911 169.1189 181.2497 247.0899 168.9351

18 159.4911 169.1189 181.2497 247.0899 148.9273

19 159.4911 169.1189 181.2497 247.0899 148.9273

20 159.4911 169.1189 174.2521 171.1681 134.4919

21 159.4911 169.1189 174.2521 171.1681 134.4919

22 159.4911 169.1189 174.2521 171.1681 132.033

23 159.4911 169.1189 174.2521 171.1681 132.033

24 159.4911 158.9664 174.2521 171.1681 131.4209

25 159.4911 158.9664 174.2521 171.1681 130.6637

26 159.4911 158.9664 154.1683 171.1681 130.3178

27 159.4911 158.9664 146.8336 171.1681 130.3178

28 154.0068 158.9664 144.2572 171.1681 130.3178

29 154.0068 158.9664 139.5953 171.1681 130.3178

30 154.0068 158.9664 139.5953 171.1681 130.26

TABLE 8 Experimental data of environment 2.

No. SSA BOA WOA TSA MSSA

1 395.4108 411.9735 420.1169 459.6827 449.4203

2 350.7416 236.5109 241.8295 357.607 425.1031

3 303.5717 236.5109 241.8295 342.8342 356.2115

4 267.1788 236.5109 241.8295 313.7257 235.2283

5 243.3833 236.5109 241.8295 313.5049 235.2283

6 241.4834 236.5109 186.2959 283.0012 230.3628

7 212.6503 236.5109 186.2959 283.0012 183.3411

8 212.1987 236.5109 186.2959 283.0012 157.4026

9 210.5834 230.8149 186.2959 283.0012 133.7521

10 210.5834 230.8149 186.2959 283.0012 132.6643

11 210.5834 230.8149 186.2959 273.8353 123.9401

12 210.5834 230.8149 186.2959 258.2411 123.9401

13 196.827 230.8149 186.2959 206.6917 123.9401

14 196.827 230.8149 186.2959 206.6917 122.3308

15 196.827 230.8149 186.2959 206.6917 121.5816

16 196.827 197.1322 185.5324 206.6917 121.3304

17 196.827 197.1322 170.6196 206.6917 121.3304

18 196.827 197.1322 170.6196 206.6917 121.3304

19 196.827 197.1322 170.6196 206.6917 121.3304

20 196.827 197.1322 170.6196 206.6917 121.3304

21 196.827 197.1322 170.6196 206.6917 121.3304

22 196.827 197.1322 164.3505 206.6917 121.3304

23 196.827 197.1322 164.3505 206.6917 121.3304

24 196.827 197.1322 164.3505 206.6917 121.3304

25 188.1075 197.1322 154.1458 206.6917 121.3304

26 163.5779 197.1322 153.9173 188.88 121.3304

27 153.2322 197.1322 153.9173 188.88 120.4412

28 153.2322 193.691 153.7423 188.88 120.3047

29 153.2322 193.691 146.4014 188.88 120.2426

30 153.2322 193.691 146.4014 188.88 120.1591
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optimum when planning the trajectory. It is worth noting that the

trajectory planned by MSSA is more stable, the fluctuation range is

moderate, the trajectory is relatively stable, and it maintains a safe

distance from the mountain and the threat area.

In Figure 10, the SSA converges from the seventh iteration to

the 27th iteration, indicating that the original SSA algorithm fell

into a local optimum during the iteration. The values of BOA and

TSA decreased rapidly at the beginning of the iterations, but fell

into a local optimum many times in the later stage. In contrast,

MSSA found the optimal value and jumped out of the local

optima many times, which resulted in an ideal cost function

value, thus demonstrating that MSSA can better avoid falling into

local optima and find the best path.

Figures 11, 12 show that in the second task environment, the

trajectories planned by the four comparison algorithms fluctuated

greatly, which confirms the poor solution quality and insufficiency

of these algorithms in complex trajectory planning. The MSSA is

more stable, and it can be clearly seen that the path planned by the

MSSA is the shortest. Figure 13 shows that MSSA’s optimal fitness

values are lower than those of the comparison algorithms in the 8th

iteration, and the local optimal value is still continuously removed at

the end of the iteration. This shows that the trajectory cost function

obtained by MSSA is smaller and the comprehensive performance

index is better.

Optimization performance experiment

To more objectively compare the performance of the MSSA

with that of the other four algorithms in trajectory planning, this

experiment used five algorithms to conduct 30 repeated

experiments in two task environments. The population size

was N = 30, and the maximum number of iterations was

Tmax = 30. The experimental results are shown in Tables 7

and 8. The statistical results of the experimental data are

shown in Tables 9 and 10. The performance of each

algorithm was evaluated by comparing the optimal value,

worst value, average value, and standard deviation of the track

cost function values obtained.

From Tables 9, 10, MSSA has obvious advantages in the

performance of the UAV trajectory planning problem in the two

environments. In the first environment, although MSSA is not

the fastest in convergence, it did find the best value. In the second

environment, MSSAwas not only faster in convergence speed but

also found the best value. The optimal values showed that the cost

value of the MSSA for acquiring tracks was lower than that of the

SSA, BOA, WOA, and TSA, illustrating that the MSSA had a

stronger global search ability and higher convergence accuracy.

The MSSA had a lower value than the other four algorithms on

average, indicating that the MSSA had better trajectory planning

quality and higher solution stability. In summary, the three

improvement mechanisms proposed in this paper can

effectively improve the algorithm global search ability,

convergence accuracy, convergence speed and stability in

terms of trajectory planning. The MSSA can balance the

global search ability and local development ability of the

algorithm and has excellent performance in solving complex

multi-constraint combinatorial optimization problems such as

UAV 3D trajectory planning. Thus, the trajectory planned by

MSSA can meet the follow-up flight requirements for the UAV.

TABLE 9 Statistical data of experimental results in environment 1.

Algorithm name Optimal value Worst value Mean value

SSA 154.0068 221.9858 164.8511

BOA 158.9664 428.1988 193.6259

WOA 139.5953 194.8475 179.2734

TSA 171.1681 477.7604 247.9587

MSSA 130.26 223.6669 165.4328

TABLE 10 Statistical data of experimental results in environment 2.

Algorithm name Optimal value Worst value Mean value

SSA 153.2322 395.4108 213.1830

BOA 193.691 411.9735 220.9971

WOA 146.4014 420.1169 189.6867

TSA 188.88 459.6827 245.5276

MSSA 120.1591 449.4203 165.6743
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Discussion

As one of the key technologies of the UAV autonomous control

system, flight path planning is a hot research area in current

information science. The UAV trajectory planning problem in a

3-D environment is complicated, computationally intensive and has

many local optimal solutions, which poses great challenges to the

performance of optimization algorithms. Based on analysis of the

path planning problem and swarm intelligence algorithm, a new

sparrow algorithm was proposed. First, the algorithm adopted a

reverse learning strategy based on the law of refraction, enhanced the

diversity of the algorithm, and improved the optimization accuracy

of the algorithm. Second, the random step size of Levy’s flight

boosted the local search capability of the algorithm. Lastly, theMSSA

combined the fusion Cauchy mutation to increase the ability of the

algorithm to jump out of local optima. We performed multiple

ablation experiments in sixteen benchmark test functions with

different characteristics. In the comparison of optimization

performance of various improvement strategies and MSSA

convergence experiments, the results indicated that Levy flight

could help the population to deeply mine the global optimal

values and improve the global search ability of the algorithm,

proving that MSSA had greater stability and robustness than SSA.

In the comparison of convergence performance and high-

dimensional performance with other algorithms, the results

illustrated that MSSA had a significant competitive advantage

and stability in solving complex, high-dimensional optimization

problems. In addition, the Wilcoxon rank sum test and

30 CEC2014 complex functions were tested, and the results were

compared with other metaheuristic algorithms and improved

algorithms. The experimental results demonstrated that the

improved MSSA algorithm had better stability, convergence

accuracy, and optimization performance than other algorithms.

Despite the significantly better performance demonstrated in this

paper, the algorithm strategy could still be further improved. In

subsequent work, refinements to the improved MSSA will be

compared and analyzed with other advanced optimization

algorithms to further improve the global search ability and local

development ability of the algorithm.

Conclusion

An improved sparrow search optimization technique termed

MSSA was proposed to increase the effectiveness of UAV trajectory

planning in a three-dimensional environment. UAV trajectory

planning simulation experiments were carried out in two different

established three-dimensional geographic environments. The results

showed that the path length of the obtained trajectory was

considerably shorter while satisfying the constraints, further

proving the feasibility and applicability of the proposed MSSA for

trajectory planning in a three-dimensional environment. However, in

this paper, the UAV simulation was simplified to a particle and a

fixed flight speed was preset for solving the UAV path planning

problem. In subsequent work, a more realistic UAV dynamics model

should be established, and the flight restrictions of the UAV should

be further studied. The UAV trajectory planning problem can be

solved using the enhanced MSSA algorithm in subsequent work to

significantly enhance the performance of complex environment

trajectory planning from a variety of perspectives.
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