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Accurate runoff prediction can provide a reliable decision-making basis for

flood and drought disaster prevention and scientific allocation of water

resources. Selecting appropriate predictors is an effective way to improve

the accuracy of runoff prediction. However, the runoff process is influenced

by numerous local and global hydrometeorological factors, and there is still no

universal approach about the selection of suitable predictors from these factors.

To address this problem, we proposed a runoff prediction model by combining

machine learning (ML) and feature importance analysis (FIA-ML). Specifically,

take the monthly runoff prediction of Yingluoxia, China as an example, the FIA-

MLmodel usesmutual information (MI) and feature importance rankingmethod

based on random forest (RF) to screen suitable predictors, from 130 global

climate factors and several local hydrometeorological information, as the input

of ML models, namely the hybrid kernel support vector machine (HKSVM),

extreme learning machine (ELM), generalized regression neural network

(GRNN), and multiple linear regression (MLR). An improved particle swarm

optimization (IPSO) is used to estimate model parameters of ML. The results

indicated that the performance of the FIA-ML is better than widely-used long

short-term memory neural network (LSTM) and seasonal autoregressive

integrated moving average (SARIMA). Particularly, the Nash-Sutcliffe

Efficiency coefficients of the FIA-ML models with HKSVM and ELM were

both greater than 0.9. More importantly, the FIA-ML models can explicitly

explain which physical factors have significant impacts on runoff, thus

strengthening the physical meaning of the runoff prediction model.
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1 Introduction

Water resources are important for social and economic

development and the ecological environment, and accurate

runoff forecasting can provide a reasonable decision-making

basis for the optimal allocation and utilization of water

resources (Huang et al., 2014; Xiong et al., 2019; Feng et al.,

2020a; Yan et al., 2021a; Jian et al., 2022). However, under

changing environments, the runoff process and associated

hydrological system have been altered by human activities and

climate change (Song et al., 2018; Sun et al., 2018, 2022; Jiang

et al., 2019; Lu et al., 2020; Yan et al., 2020; Hu et al., 2022), and

the runoff series becomes nonlinear and nonstationary, which

makes it challenging to capture the variation characteristics of

runoff (Sun et al., 2014; Lin et al., 2020; Yan et al., 2021b;

Samantaray et al., 2022a; Samantaray et al., 2022b;

Samantaray et al., 2022c; Zhou et al., 2022). Therefore, there

is an urgent need to develop a runoff prediction model with

robustness and high forecasting accuracy under a changing

environment (Sit et al., 2020; Niu et al., 2021; Zhao et al.,

2021). In recent years, there have been many studies trying to

transform the complex runoff series into stationary sub-

sequences using wavelets or mode decomposition methods,

and then predict the sub-sequences to improve the accuracy

of prediction (Meng et al., 2019; Feng et al., 2020b; Niu et al.,

2020). However, these studies often ignore the relationship

between hydrometeorological factors and the variation

characteristics of runoff.

As revealed by recent studies, the changing characteristics of

runoff process are controlled by numerous factors, such as

astronomy, meteorology, ocean, and underlying surface

conditions (Tang et al., 2018; Shi et al., 2021; Bian et al.,

2022; Ma et al., 2022). When there are no significant changes

for the underlying surface conditions, the runoff process mainly

depends on precipitation and evaporation, which are influenced

by atmospheric circulations (Talaee et al., 2014; Huang et al.,

2017; Luo et al., 2017). On the other hand, the interaction

between the ocean and the atmosphere drives the exchange of

matter and energy between regions of the Earth, which can affect

regional weather and climate change (Nugent and Matthews,

2012; Singh and Roxy, 2022). Therefore, the sea temperature

indices, such as Pacific Decadal Oscillation Index (PDO) and El

Niño–Southern Oscillation index (ENSO), are also important

affecting factors of runoff (Yang et al., 2021; You et al., 2021).

From the analysis of the physical mechanism of runoff,

atmospheric circulation, sea temperature index, precipitation,

and evaporation are all important influencing factors in the

runoff prediction.

Variations of runoff are closely related to large-scale climate

factors in hydrometeorological teleconnection analysis (Lima

and Lall, 2010; Peters et al., 2013; Steinschneider and Lall,

2016; Wang et al., 2022). Therefore, many studies combining

teleconnection analysis have been proposed to strengthen the

physical meaning of runoff prediction. Wang et al. (2020)

established a runoff prediction model by combining

teleconnection analysis and ensemble empirical mode

decomposition (EEMD) and achieved good application results,

but they mentioned the cross-correlation method used in their

paper is not suitable for analyzing nonlinearity and non-

stationary time series. Maity and Kashid (2011) combined

genetic programming (GP) with importance analysis, and

used global climate factors and local meteorological variables

as predictors to carry out the weekly-scale runoff forecasting for

the Mahanadi River in India. It has been proved that the model

derived by GP for a complex runoff system can effectively

improve the accuracy of weekly runoff prediction. Yang et al.

(2017) selected 17 known climate phenomenon indices, such as

PDO and ENSO, and used several machine learning (ML)

regression models to predict and simulate the runoff 1-month

in advance of headwater reservoirs in USA and China. The

results indicated that the climate phenomenon indices are

beneficial for improving the accuracy of monthly or seasonal

reservoir runoff prediction.

Based on the previous studies, we can find that enriching the

input features of regression models is an effective method to

improve the accuracy of runoff prediction. However, since

numerous physical factors are expected to jointly affect the

variation of runoff, there is expected to exist a mutual

correlation among these factors. Thus, finding a suitable set of

predictors from the high-dimensional data, consist of physical

factors, as the input of the runoff prediction model is still a

challenge for medium and long-term runoff prediction. In

information theory, mutual information (MI) method is a

powerful tool for analyzing linear and nonlinear relationships

between variables (Elkiran et al., 2021), but simply selecting

predictors through correlation analysis provided by MI will

introduce many redundant features (Tiwari and Chaturvedi

2022). To solve this problem, in traditional high-dimensional

data preprocessing, principal component analysis (PCA) is

typically used to reduce dimensionality and it can effectively

reduce redundant variables and feature dimensions (Ouyang

et al., 2022). But PCA cannot accurately measure the

importance of each feature on runoff prediction results. Thus,

how to select the input predictors of regression model needs

further investigation. In this study, we attempted to develop a

runoff prediction model by combining ML with importance

analysis for each feature (FIA-ML) to improve the accuracy of

runoff prediction and explain the variation law of runoff from the

view of physical causes.

In a summary, the aims of this study are: 1) to select

appropriate predictors according to the importance measures

computed by random forest (RF) for each feature; and 2) to

construct the runoff prediction models by fitting the correlation

between predictors and monthly runoff based on the MLmodels,

whose hyper-parameters are optimized by an improved particle

swarm optimization (IPSO). To fulfill these aims, the monthly
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runoff data collected from the Yingluoxia station in China was

selected for illustration purposes, and the performance of the

developed FIA-ML models was compared with two widely-used

runoff time series analysis models, i.e., long short-term memory

neural network (LSTM) and seasonal autoregressive integrated

moving average (SARIMA).

2 Study area and data

2.1 Hydrological characteristics of the
study area

The Heihe River Basin (HRB) is the second-largest inland

watershed in Northwest China, whose geographic coordinates

are roughly between 98+ − 101+E and 38+ − 42+N, with a

drainage area of about 142, 900km2. From the upper to the

lower reaches of HRB, the annual average precipitation is:

284, 112, and 41 mm, respectively, and the annual average

water surface evaporation is: 891, 1221, and 1,372–2081 mm,

respectively. The climate of HRB is mainly influenced by the

westerly circulation in the middle and high latitudes and the

polar cold air mass, and the precipitation is sparse and

concentrated.

The HRB originates from the Qilian Mountains in the south,

with a total length of 821 km. It flows through Qinghai, Gansu,

and Inner Mongolia provinces and finally into Juyanhai. In this

study, the Yingluoxia basin (YLX) is selected as the study area,

which is in the upper reaches of the HRB, with a controlled

catchment area of about 10, 018km2 (Figure 1). The main sources

of surface water supply in YLX are the melting of snow and ice in

the mountains and atmospheric precipitation, and the base flow

is mainly supplied by groundwater, and most of the water

resources of YLX concentrate in spring and summer. We

collected 684 months of runoff data at YLX from 1960 to

2016 for the further analysis and research. The average annual

runoff of YLX is 16.41 × 108m3. Meanwhile, the Mann-Kendall

method (Mann, 1945; Kendall, 1975) was used to analyze the

trend of the annual runoff series. The results indicated that the

annual runoff series showed an upward trend after 1980, and a

significant upward trend was detected after 1988. The annual

runoff rising rate is 0.1 × 108m3/yr from 1960 to 2016. The

increasing trend of the annual runoff of YLX is most likely due to

global warming, since YLX is in the upper reaches of the HRB

and is less affected by human activities (Wen et al., 2019; Zou

et al., 2022).

2.2 Meteorological and large-scale
climate factors

The 130 large-scale climate factors used in this study are

provided by the National Climate Center of China

Meteorological Administration (NCC-CMA) (https://cmdp.

ncc-cma.net/cn/download.htm), including 88 atmospheric

circulation indices, 26 sea temperature indices, and 16 other

indices. In this study, these large-scale climate factors are

sequentially numbered for 1–130, which is consistent with the

FIGURE 1
The location of the study area andmeteorological observation stations. YNG denotes Yeniugou (Meteorological station 1), ZY denotes Zhangye
(Meteorological station 2), QL denotes Qilian (Meteorological station 3) and YLX denotes Yingluoxia (Hydrological station).
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serial number of the datasets provided by the NCC-CMA. As for

the local meteorological information, namely the evaporation

(factor numbers: 131–133) and precipitation data (factor

numbers: 134–136) of the Yeniugou (YNG), Zhangye (ZY),

and Qilian (QL) meteorological stations, are collected from

the National Tibetan Plateau/Third Pole Environment Data

Center (https://data.tpdc.ac.cn/zh-hans/). In addition, we also

considered the previous runoff of YLX (factor number: 137) as a

factor. Therefore, a total of 137 physical factors were considered

for further building the monthly runoff prediction model in this

study.

3 Methodologies

3.1 Mutual information based on k-nearest
neighbors

Mutual information (MI) is a nonparametric statistical

method used to measure the degree of correlation between

variables. MI does not have any special requirements for the

distribution type of variables, and it can describe both linear and

nonlinear correlation. Therefore, it has been widely used in

variable selection in hydrology, meteorology, and other fields

(He et al., 2015; Fang et al., 2018). Given variables X and Y, the

MI between them is defined as follows:

I(X;Y) � ∫∫ μ(x, y)log μ(x, y)
μX(x)μY(y)dxdy (1)

where μ(x, y) represents the joint probability density of variables
X and Y. μX(x) and μY(y) are the marginal probability densities

of X and Y, respectively. The greater the MI, the more

information the variable X contains about Y, in other words,

it would demonstrate a stronger dependence between these two

variables.

MI has difficulties in estimating probability density. Thus,

Kraskov et al. (2004) proposed a method based on k-nearest

neighbors to avoid directly estimating the probability density of

the variables. As for the significance test of MI, the method

proposed by Sharma (2000) is applied, and the significance level

is set to be 0.01 in this study.

3.2 Feature importance analysis based on
random forest

Random forest (RF) is an extended variant of the bagging

parallel ensemble learning method (Breiman, 2001). During the

training period, it uses bootstrap sampling to generate a subset of

training samples. Therefore, each base learner only uses about

63.2% of the samples in the initial training set, and the remaining

36.8% of the samples can be used as the validation set to evaluate

the generalizability of RF. This way of assessing the

generalization of the model is called out-of-bag (OOB)

estimation.

As shown in many studies, reasonable predictors can

significantly improve the accuracy and robustness of the

regression model in runoff prediction (Taormina and Chau,

2015; Sharifi et al., 2017). RF can efficiently deal with the

multivariate samples and measure the importance of each

variable (Genuer et al., 2010; Hapfelmeier et al., 2014). The

importance measure of each feature in runoff forecasting is

computed as follows: 1) to obtain the mean square error

vector {MSEt|t � 1, 2, . . . , T} for the T base decision trees in

OOB estimation; 2) shuffling each feature of the OOB samples in

turn, and the variation of MSEt for each feature perturbation is

represented by the following matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
MSE11 MSE12 / MSE1T

MSE21 MSE22 / MSE2T

..

. ..
.

1 ..
.

MSEm1 MSEm2 / MSEmT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where m and T are the number of features and the number of

decision trees, respectively.MSEmt is the OOBmean square error

of the t base decision tree after shuffling the m − th feature.

Therefore, Eq. 3 can be used to measure the perturbation degree

of the m − th feature to the model.

Hoob
m � 1

T
∑T
t�1
(MSEmt −MSEt) (3)

If the feature is shuffled, the greater the accuracy of OOB

estimation decreases, the greater the degree of disturbance to the

model by the feature. By normalizing Hoob
m to the range of [0,1],

the importance measure of each feature (FIM) can be obtained.

In previous studies, the impurity weighted increments of the leaf

nodes of the tree model were mostly used to measure the

importance of features (Zuo et al., 2020). However, the

impurity-based method usually causes the feature importance

to drop rapidly, and the identification of feature importance is

relatively insensitive. Therefore, we used the decreases of

accuracy of OOB estimation to measure the influence of each

feature on the runoff prediction result in this study.

3.3 Regression model

3.3.1 Hybrid kernel support vector machine
Support vector machines (SVM) can solve nonlinear

problems, mainly using the kernel function to map the input

factors to the high-dimensional space and then performing linear

regression. Different kernel functions will significantly affect the

fitting ability of SVM to different kinds of nonlinear problems.

Among the commonly used kernel functions, the polynomial

kernel function κPoly (see Eq. 4) has strong generalization ability
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and weak learning ability. On the contrary, the localized

Gaussian radial basis kernel function κRbf (see Eq. 5) has

robust learning ability, but its generalization ability is

relatively weak. According to the Mercer kernel theory, it

can effectively overcome the shortcomings of the existing

kernel functions by combining these two types of kernel

functions into a new hybrid kernel function (Zheng et al.,

2005; Zhou et al., 2018). Therefore, the polynomial kernel

function and the Gaussian radial basis kernel function are

combined into a hybrid kernel function κHK (see Eq. 6), and

the hybrid kernel support vector machine (HKSVM) is

developed in this study.

κPoly(x, xi) � (γp(x · xi) + 1)3 (4)
κRbf(x, xi) � exp(γr‖x − xi‖2) (5)

κHK(x, xi) � λκPoly + (1 − λ)κRbf (6)

where x is the input predictors, and xi is the input predictors of
the i − th training sample. γp and γr are the kernel parameters.

λ ∈ [0, 1] represents the proportion of κPoly and κRbf in the

hybrid kernel function κHK. It should be noted that HKSVM also

has two important parameters, which are the penalty factor C

and the insensitivity coefficient ε.

3.3.2 Extreme learning machine
Extreme learning machine (ELM) is a machine learning

method based on feedforward neural network. ELM consists

of a three-layer structure: input layer, hidden layer, and output

layer. During the training period, the weights of the output layer

can be obtained by the least square method (LSM). Given the

input predictors x, the runoff prediction value y is calculated by

the following equation:

y(x) � ∑L
l�1
βlG(ωl, bl, x) (7)

where L is the number of hidden layer neurons. ωl and bl are

the input weights and thresholds of the hidden layer neurons,

respectively. G(·) is the activation function. βl is the

connection weight vector connecting the hidden layer

neurons and the output layer neurons, which can be

obtained by the Moore-Penrose generalized inverse method

(Huang et al., 2006).

3.3.3 General regression neural network
Generalized Regression Neural Network (GRNN) is of high

fault tolerance and strong robustness, which is suitable for

solving nonlinear problems and can also handle unstable data.

The network structure of GRNN consists of the input layer, mode

layer, summation layer and output layer. After the input

predictors x is input from the input layer, the following Eq. 8

can express the runoff prediction value.

y(x) �
∑N
i�1
yi exp[ − ‖x − xi‖2/2σ2]
∑N
i�1
exp[ − ‖x − xi‖2/2σ2] (8)

whereN is the number of training samples, and yi is the observed

runoff corresponding to the i − th training sample. σ is the

smoothing factor.

3.3.4 Multiple linear regression
Multiple Linear Regression (MLR) can be used to fit a linear

relationship between multiple independent and dependent

variables. After the specific MLR equation is obtained through

training, the dependent variable can be predicted by the following

equation:

y(x) � b0 + b1x1 + b2x2 +/ + bmxm + μ (9)

where xi and bi are the i − th input predictor and regression

coefficient, respectively. μ is a random error satisfying the

Gaussian distribution. The solution of the regression

coefficients in Eq. 9 usually adopts the LSM.

3.4 Hyper-parameters optimization for
regression models

The performance of machine learning (ML) may be limited

in practice since its forecasting results are largely influenced by

the choice of hyper-parameters. Therefore, it is critical to obtain

the hyper-parameters combination with the best generalization

performance. In this study, we use the K-Fold cross-validation

method (Soper, 2021) to evaluate the model performance.

However, the cross-validation results of ML models are

sensitive to the choice of hyper-parameters. When using

conventional particle swarm optimization algorithms to

estimate their hyper-parameters, there are problems of

premature maturity and local convergence. To overcome these

problems, we employed an improved particle swarm

optimization algorithm (IPSO) in this study to determine a

set of hyper-parameters that optimize the cross-validation

results. Please refer to Lei et al. (2022) for more details about

IPSO. The hyper-parameters that need to be tuned by IPSO are

displayed in Table 1.

3.5 Model performance evaluationmetrics

In this study, we selected several indicators to quantitatively

analyze the performance of various models, which are Nash-

Sutcliffe efficiency (NSE), root mean square error (RMSE), the

coefficient of correlation (R), and Kling-Gupta efficiency (KGE)

(Gupta et al., 2009).
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The value range of NSE is (−∞, 1]. The closer it is to 1, the

better the prediction effect and the higher the reliability of the

model. It is calculated by the following equation:

NSE � 1 −
∑n
i�1
(yo,i − ys,i)2∑n

i�1
(yo,i − �yo)2 (10)

where n is the number of testing samples. yo,i and ys,i are the

i − th observed value and predicted value. �yo is the mean of the

observed series.

The smaller the RMSE, the higher the prediction accuracy. It

is calculated by the following equation:

RMSE �
�������������
1
n
∑n
i�1
(yo,i − ys,i)2√

(11)

R is a statistical indicator that reflects the correlation between the

predictions and the observations. The closer it is to 1, the higher

the prediction accuracy. It is calculated by the following equation:

R �
∑n
i�1
(yo,i − �yo)(ys,i − �ys)����������������������∑n

i�1
(yo,i − �yo)2∑n

i�1
(ys,i − �ys)2√ (12)

where �ys is the mean of the predicted series.

KGE is a new metric proposed to address the deficiencies of

NSE in model calibration and evaluation. It is calculated by the

following equation:

KGE � 1 −

���������������������������
(r − 1)2 + (σs

σo
− 1)2

+ (μs
μo

− 1)2

√√
(13)

where r is the linear regression coefficient between the observed

and predicted values. μo, σo, μs, σs correspond to the mean and

standard deviation of the observed and predicted series,

respectively.

3.6 Monthly runoff prediction using the
proposed feature importance analysis and
machine learning model

The main purpose of this study is to screen out suitable input

predictors for the ML models and to explore which physical

factors have a significant impact on the monthly runoff of YLX

station. In this study, the monthly runoff of the first 564 months

(1960–2006) of YLX station was used as training data to train the

model, and the monthly runoff of the last 120 months

(2007–2016) was used as testing data to test the predictive

accuracy of the monthly runoff prediction model. The

flowchart of the monthly runoff prediction model by

combining ML with feature importance analysis (FIA-ML) is

presented in Figure 2.

This study proposed a novel monthly runoff prediction

model combining ML with teleconnection analysis, which is

different from the commonly used time series analysis model

(TSAM). Therefore, to show the superiority of the proposed

FIA-ML model, it is necessary to make a comparison with

some traditional TSAMs. In the following analysis, we

compared the FIA-ML model with the widely used long

short-term memory neural network (LSTM) and seasonal

autoregressive integrated moving average (SARIMA) in

previous studies. LSTM is a variant of recurrent neural

network (RNN), which can effectively solve the gradient

explosion or disappearance of simple RNN, and control the

transfer of runoff time series information through a gating

mechanism (Yuan et al., 2018; Ghose et al., 2022). Considering

that the monthly runoff series is affected by the interaction of

seasonal effects, long-term trend effects and random

TABLE 1 The range of hyper-parameters to be optimized for the model used in this paper.

Model Hyper-parameter Search range Parameter type

RF The number of trees in the forest [10, 200] Integer

The maximum depth of the tree [10, 100] Integer

Min samples split (0, 1] Real

Min samples leaf (0, 0.5] Real

HKSVM Polynomial kernel parameter [2−10, 210] Real

Gaussian radial basis kernel parameter [2−10, 210] Real

The proportion of κPoly and κRbf [0, 1] Real

Penalty factor C [2−10, 210] Real

Insensitivity coefficient ε [0, 1] Real

ELM The number of hidden layer neurons L [1, 100] Integer

Random state [20–1, 232–1] Integer

GRNN Smoothing factor σ [10−10, 10] Real
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fluctuations, SARIMA transforms the nonstationary monthly

runoff series into stationary series by performing trend

difference and seasonal difference operation, and then

establish a statistical analysis model (Valipour, 2015). The

TSAM requires less basin information and is easy to use, so it

has been widely used in practice. However, with the impact of

changing environmental on the stationariness of the runoff

series, the prediction accuracy of TSAM will also be affected to

a certain extent. In contrast, although the FIA-ML model is

more complex, it fully considers a variety of physical factors

affecting runoff, and it has better application prospects in the

context of climate change. It should be noted that when

comparing the runoff prediction accuracy of TSAM and

FIA-ML models below, the input predictors of the FIA-ML

models adopted their corresponding best input scenario.

4 Results and discussion

4.1 selection of model input predictors

The choice of model input predictors will directly affect the

final runoff prediction results. In this study, we aimed to

construct a set of physical predictors for the runoff prediction

model by identifying the key physical factors affecting runoff,

from the 137 physical factors including large-scale climate index,

precipitation, and evaporation, etc. To ensure the quality of the

data and the reliability of this study, we directly discarded the

physical factors with missing data to avoid unreasonable

interpolation. It should be mentioned that the influence of the

physical factors on runoff has a lag effect. Thus, in this study, the

predictors with 1–12-month lags were employed to inform the

FIGURE 2
The flowchart of monthly runoff prediction using the FIA-ML model.
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runoff prediction model, considering the seasonal variation

characteristics of monthly runoff.

As shown in Figure 3, there are several comments should be

noted as follows: 1) among the 88 large-scale circulation factors,

NPVI (factor number 55: Northern Hemisphere Polar Vortex

Intensity Index) with a 1-month lag and EATI (factor number 64:

East Asian Trough Intensity Index) with a 12-month lag are the

most important factors for improving the accuracy of runoff

prediction. 2) The effect of evaporation on runoff is more

important than precipitation, which is consistent with the

climate characteristics of more evaporation and less

precipitation in Northwest China. 3) YLX basin was less

affected by oceanic action, such as ENSO and PDO. Among

the sea temperature indices, the influence of IOWPA (factor

number 101: Indian Ocean Warm Pool Area Index) with a 4-

month lag and WPWPA (factor number 103: Western Pacific

Warm Pool Area Index) with an 11-month lag was relatively

significant.

In this study, we synthesized 10 scenarios (Figure 2) for

4 prediction models, that is HKSVM (M1), ELM (M2), GRNN

(M3), and MLR (M4). Thus, four metrics, namely NSE, KGE,

RMSE and R, are used to find the optimal input scenario for each

model. According to the level of MI (Figure 3A), we selected the

top 50 physical factors, and then RF is used to order the

importance of these factors (Figure 3B). Based on the order of

importance, we sequentially added 5 physical factors each time as

the model input. So, a total of 10 input scenarios was generated

(Figure 2). Synthesizing the prediction accuracy of the four

regression models under 10 input scenarios, the HKSVM and

MLR perform best in scenario 4, and the ELM and GRNN

perform best in scenario 3. It can be seen from Figure 4 that

with the increase of input features, the prediction accuracy of

each model firstly becomes better, but after the optimal input

scenario appears, increasing the input features is not conducive

to further improve the prediction accuracy. There are two main

reasons for this result: 1) the input features are too few to reveal

the complex variation mechanism of runoff, but the increase the

number of input features will introduce some redundant features;

2) if the number of input features are too large, it will increase the

observation error of samples and the complexity of the model,

which is not good for training the model and could weaken its

promotion potential. Therefore, this study adopted the method

of gradually increasing the number of input features in order of

the feature importance, and selected the best predictors set

according to the performance of each model during the

testing period.

4.2 Monthly runoff prediction simulation

The statistical results of the prediction accuracy evaluation

indicators of each model during the training period and the

testing period were summarized in Table 2. The training period is

the learning phase of the model, and the quality of the learning

will directly affect the actual runoff prediction effect. In practical

engineering, the performance of the model during the testing

FIGURE 3
themutual information value among the 137 factors and the observed runoff at a lag of 1–12 months, and the blanks are missing factors (A), and
the importance score of the physical factors whose mutual information values are ranked in the top 50, which are filled with color (B).
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phase is usually more concerned, because it reflects the

generalization ability and practical application effect of the

model. As shown in Table 2, the overall performance of FIA-

ML models showed better during the testing period,

compared with the runoff time series analysis models.

Furthermore, among the FIA-ML models, HKSVM and

ELM have better runoff forecasting ability, which further

demonstrates that choosing an appropriate machine learning

algorithm is also a way to improve the accuracy of runoff

prediction. Besides, we can see that GRNN is the best model

during the training period, but its performance is not good

enough during the testing period. Obviously, GRNN shows

overfitting, which is because GRNN is too sensitive to the

samples appearing in the learning stage, resulting in the lack

of ability to explore the general variation of out-of-sample

data. In contrast, HKSVM combines the advantages of

polynomial kernel and Gaussian radial basis kernel

function, and has relatively strong learning ability and

generalization ability. To further compare the effect of

each model in practical application, we show the fitting

quality of each model during the testing period

Figures 5,6,7,8.

FIGURE 4
The results of NSE (A), KGE (B), RMSE (C), and R (D) of eachmodel for 10 input scenarios. The best input scenario is selected by the red circle. The
models represented by M1-M4 are shown in Table 2.

TABLE 2 Prediction accuracy evaluation metrics of different models during training and testing period.

Model Training period Testing period

NSE KGE RMSE R NSE KGE RMSE R

FIA-ML HKSVM (M1) 0.863 0.924 0.429 0.934 0.908 0.930 0.411 0.956

ELM (M2) 0.844 0.879 0.456 0.919 0.911 0.920 0.406 0.956

GRNN (M3) 0.985 0.955 0.141 0.993 0.873 0.802 0.484 0.948

MLR (M4) 0.817 0.855 0.493 0.904 0.885 0.873 0.460 0.945

TSAM LSTM (M5) 0.839 0.905 0.464 0.918 0.870 0.795 0.490 0.946

SARIMA (M6) 0.831 0.850 0.476 0.912 0.868 0.763 0.494 0.949
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Figure 5 shows the fitting performance of the 120-month

runoff observations and the predictions of the monthly runoff

prediction models during the testing simulation phase. The

monthly runoff of YLX during the wet season fluctuates

obviously across different years. The FIA-ML models can

relatively better capture the variation of monthly runoff,

especially with HKSVM and ELM regression models.

Figure 6A is a boxplot of absolute residuals, which can

describe the distribution of the difference between the

predicted and observed values. Figure 6B is a Taylor diagram

(Taylor, 2001), which skillfully integrates the correlation

coefficient, centered root mean square error, and standard

deviation into a polar plot, avoiding the limitations of a single

evaluation metric. Therefore, it can more intuitively show the

difference between the predicted and observed values. One can

see from Figure 6 that the simulation prediction results of M1

(HKSVM) and M2 (ELM) are closer to the actual runoff

observations. This indicated that ELM and HKSVM have

more robust capabilities to reveal the correlation between

predictors and observed runoff.

Figure 7 shows the linear relationship between the observed

runoff and the simulated value obtained by different prediction

methods during the testing period. It is found that both the FIA-

MLmodels and the runoff time series analysis models are feasible

in tracking the dynamic changes of monthly runoff. In addition,

ELM has the best effect from the perspective of R2, and MLR is

the worst. While if we analyze from the trend line of linear fitting,

HKSVM is closer to the actual trend line, and the runoff time

series analysis models perform worse.

In practical engineering, the prediction accuracy of peak

monthly runoff is more significant than runoff in other

months. For this reason, we compared the prediction effect of

FIGURE 5
Comparison of observed and fitted runoff by different models for 2007–2016 (testing period).

FIGURE 6
Boxplot of absolute residuals (A) and Taylor diagrams (B) of the results of monthly runoff prediction during the testing period. The models
represented by M1–M6 are shown in Table 2.
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each model on peak monthly runoff during the testing period.

According to the standard for hydrological information and

hydrological forecasting formulated by the Ministry of Water

Resources of China, for medium and long-term runoff

prediction, when the relative error of the prediction result is

less than 20%, it is considered a valid prediction value (Zhang

et al., 2011). As displayed in Figure 8, M1 (HKSVM) and M2

(ELM) have eight years to meet the design requirements, but the

performance of M3 (GRNN) and M6 (SARIMA) are relatively

poor, with only five years to meet the design requirements.

FIGURE 7
Scatter plot of observations and predictions by HKSVM (A), ELM (B), GRNN (C), MLR (D), LSTM (E), and SARIMA (F) during the testing period.

FIGURE 8
Observations and predictions of peak monthly runoff with different models during the testing period are displayed in (A), and the number of
years that the predictions of each model meet the design requirements is displayed in (B). The models represented by M1-M6 are shown in Table 2.
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4.3 Discussion

When usingML for runoff prediction, the choice of predictors is

critical. Because the quality of the effective information carried by

the features will directly affect the accuracy of runoff prediction. Our

simulations revealed that appropriately increasing the number of

features can improve the accuracy of monthly runoff prediction.

However, too many input features will increase the complexity of

training the model and reduce the ability to capture the general

changing characteristics of runoff process. In this study, the NSEs of

FIA-ML models (M1-M4) were initially 0.878, 0.866, 0.815, and

0.818. When the optimal number of input features for each model

was reached, their NSEs were improved by 3.4%, 5.2%, 7.1%, and

8.2%, respectively. However, if the number of input features

continue to increase, the accuracy of runoff prediction will not

continue to get better. This should be mainly because too many

inputs will make the model training subject to some abnormal

information interference, and reduce the training efficiency.

AlthoughRF is an effective tool tomeasure the feature importance,

it also has some shortcomings.One of themost important issues is that

if there are too many input features in RF, the efficiency and accuracy

of calculating the importance score of each feature will be affected.

Thus, this study first uses MI to select the top 50 factors related to the

observed runoff, which is equivalent to a rough screening from

numerous possible factors. The method combined RF with MI can

effectively overcome the shortcomings of the single use RF or MI to

select predictors as the inputs of the ML models.

Compared with the TSAM, the FIA-MLmodel can improve the

NSE by up to 5%, and more importantly, can explain the variation

characteristics of runoff from the physical meaning. However, it

should be noted that although the FIA-ML models can improve the

prediction accuracy to a certain extent, some issues should be noted

in the application. One is that the meteorological information we

used is relatively less in this study, so, in future work, we can further

consider more meteorological factors related to prediction of

monthly runoff. Another is that although the IPSO can

effectively improve the global search ability of particles, there is

still the problem of falling into local convergence, so it is necessary to

explore a more efficient methods for improving the global search

ability in selecting model hyper-parameters. In addition, simply

depending on the correlation between the runoff process and these

physical factors is not enough to fully reveal the variation

characteristics of runoff, since the runoff prediction system is

open and complex. Therefore, the system dynamics

characteristics of the runoff process can be considered in

machine learning in further studies.

5 Conclusion

We proposed the model by combining ML with the feature

importance analysis (FIA-ML), which can select key predictors from

the numerous physical factors and effectively integrate

hydrometeorological information and teleconnection climate

factors into the ML models. This paper verified the applicability of

the model in the YLX basin, and compared with the traditional time

series analysis model (TSAM). Under changing environments, the

TSAM cannot accurately capture the impact of climate change on the

characteristics of runoff variability. By contrast, the FIA-ML models

not only have better runoff prediction ability, but can, more

importantly, explain which physical factors have a significant

impact on the runoff in the YLX basin.

The FIA-ML models can effectively improve the learning

efficiency of ML models and the accuracy of runoff prediction.

Especially, HKSVMand ELMoptimized by IPSOhave a good fitting

ability for the relationship between observed runoff and input

predictors. Therefore, the FIA-ML model is a useful attempt to

improve the accuracy of runoff prediction by establishing the

teleconnection between climate change and runoff change.
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