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Abstract: Geological disasters have long been a constant threat to

socioeconomic development and human life and property. Many studies

focus on the occurred geological disasters and ignore the potential risk

events. Fine-scale multi-type analysis of Potential Geological Disasters Spots

(PGDSs) is a necessary but insufficiently explored research field in China’s

mountainous areas. Taking Meigu County (Sichuan Province, Southwest

China), a typical disaster-prone region, as the study area. Average nearest

neighbor (ANN), standard deviational ellipse (SDE), kernel density estimation

(KDE), and ordinary least squares (OLS) regression are used to assess the spatial

distribution of potential geological disasters spots and their influencing factors.

The findings show that: potential geological disasters spots have a significant

spatial heterogeneity and exhibited a prominent clustering characteristic. They

were distributed in an elevation range of 1,500–2000m, which receives an

averagemonthly rainfall ofmore than 240mm, as well as in highly foliated (0.6 <
Normalized Difference Vegetation Index (NDVI) < 0.8), west-facing

(247.5–292.5°), and slopes of 10–20°. In addition, slope, aspect, population

density, and rainfall were found as the main influencing factors. The results

provide practical rural development measures with support for potential

geological disasters spots avoidance and preparedness.
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1 Introduction

In recent years, frequent climate change and geological disasters seriously obstructed

socioeconomic development and posed a serious threat to achieving sustainable

development goals worldwide (Fedeski and Gwilliam, 2007; Zhuang et al., 2020; Wan

et al., 2021;Wang et al., 2021). China is one of the countries with the highest incidence and

frequency of geological disasters in the world (Li et al., 2015; Hou et al., 2016; Xiao et al.,

2022). Geological disasters have long been a persistent threat to the development of urban
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and rural construction in China (Bulte et al., 2018; Ao et al., 2021;

Zhao Z. et al., 2021; Zeng et al., 2021; Zhou et al., 2021; Pu et al.,

2022), especially in mountainous rural areas that are more

disaster-prone (Xu et al., 2020; Lin J et al., 2021; Qing et al.,

2021; Gan et al., 2022). According to a report released by the

Ministry of Natural Resources of China, a total of

7,840 geological disasters occurred in China in 2020, resulting

in 139 deaths (missing), 58 injuries, and direct economic losses of

50.2 billion yuan (http://vod.mnr.gov.cn/). Over the past decades,

China’s rural society and economy have developed rapidly (Li K.

et al., 2021). All the rural villages were lifted out of extreme

poverty at the end of 2020. However, in the vast mountainous

regions of China, people’s lives and properties are still under

serious threat due to frequent geological disasters, accompanied

by the risk of returning to poverty due to disasters, and the

sustainable development of the rural areas is seriously hindered.

In addition, with rapid urbanization, the land use cover of the

mountainous rural areas has changed dramatically. Many

infrastructures, such as roads and gas engineering, have been

put into construction, which means that human activities are

disturbing the ecological environment more and more. The risk

of geological disasters will gradually increase (Jiang et al., 2016).

Therefore, research on the risk of geological disasters in

mountainous rural areas must be addressed.

The concept of “Potential Geological Disaster Spots

(PGDSs)” refers to a broad range of point and partial non-

point events (Gan et al., 2022), which are potentially dangerous

to occur or have already occurred but still are unstable. There are

many PGDSs, including landslides, debris flows, unstable slopes,

avalanches, ground subsidence, etc. The different causes of

different types of geological disasters lead to significant

variability in their spatial distribution and time of occurrence.

In addition, the PGDSs are widely distributed, sudden, and

temporally erratic, resulting in severe threats to people’s lives

and property (Xu D. et al., 2018; Lin J et al., 2021; Wang et al.,

2021; Yao et al., 2022). Most studies on geological disasters

mainly focus on the spatiotemporal characteristics of different

types of geological disasters (Zuo et al., 2009; Pu et al., 2022),

assessment of severity and susceptibility (Chang et al., 2022; Kim

et al., 2022), impact on human lives and production (Wu et al.,

2022), etc. However, few studies focus on potential geological

disasters. Related studies have confirmed that PGDSs are more

hidden and sudden than those that have occurred or have been

managed. Therefore, in the prevention of geological disasters,

special attention needs to be paid to identifying PGDSs where no

disaster has occurred. According to a notice issued by the

Sichuan provincial government on a geological disaster

prevention program, by the end of 2020, there are about

36,000 geological disaster potential sites in Sichuan, posing

varying degrees of threat to the lives of nearly 1.5 million

people and 850 billion yuan of property (https://www.sc.gov.

cn/). In addition, the abovementioned studies primarily focus on

the macro scale, such as city level, province level, and river basin

level, ignoring the fine-scale analysis at the county or town level.

Notably, China’s mountainous rural areas, often geological

disaster-prone areas, have faced increasing risk from PGDSs

caused by global climate change and increasing human

engineering activities (Qing et al., 2021). The residents in

mountainous rural areas are more profoundly affected by

PGDSs due to impaired transportation and delayed rescue

operations compared to the plain areas (Pan, 2016).

Therefore, to better characterize the risk and undertake

precautionary measures, scientific insight into pre-disaster

preparedness is required by identifying the spatial distribution

characteristics, patterns, and influencing factors of PGDSs.

Meigu County, the case study area of this research, is

increasingly affected by a variety of homogeneously

distributed PGDSs in Sichuan Province, Southwest China. We

select Meigu County as the case study for two reasons: 1) The case

representation. Meigu County is one of the specific areas in

China most prone to geological disasters, with a large number

and widely distributed PGDSs. 2) The urgency of studies. Due to

the unique topographical complexity, rainfall regime, and

intensive human engineering activities, the PGDSs have been

remarkable and have shown an increasing trend in recent years.

As a result, most local communities are constantly affected by

PGDSs, and people’s living and production are seriously

threatened. Thus, Meigu County is an ideal case to assess the

PGDSs spatial distribution and influencing factors in China’s

mountainous rural areas.

The contributions of this paper are as follows: 1) analyzed the

spatial distribution characteristics and fine-scale spatial

heterogeneity mapping of PGDSs; 2) Identified the main

PGDSs contributing factors using the ordinary least squares

(OLS) model; and 3) tailored PGDSs-based planning

recommendations for better pre-disaster planning and

preparedness.

The remainder of this paper is structured as follows: Section 2

reviews the existing literature on the PGDS spatial distribution

and the influencing factors. Section 3 introduces the study area,

methods, and datasets. Section 4 shows the results. Section 5

discusses the results and highlights recommendations for disaster

avoidance in mountainous rural areas. Finally, Section 6 provides

the conclusion drawn from the findings.

2 Literature review

2.1 Spatial distribution of geological
disasters in China

China has a wide distribution of geological disasters due to its

many mountainous areas and complex terrain, and different

types of geological disasters cover almost all areas of inland

China. The spatiotemporal distribution pattern of geological

disasters is influenced by the natural geographical
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environment and human activities. In the beginning, scholars

have spared no effort to study disaster risk zoning and

visualization maps (van Westen et al., 2000). Geological

disaster risk zones are divided into different classes according

to their susceptibility and hazardousness, which is a method to

reveal the spatial distribution characteristics of geological

disasters. Then, more and more scholars realize that the

distribution of geological disasters is closely related to their

causes, so the spatial distribution characteristics of different

types of geological disasters have significant differences (Jiang

et al., 2016). In recent years, many related studies have further

confirmed that the spatial distribution of different types of

geological disasters varies in China. For instance, landslide

disasters are mainly gathered in North and Southern China,

while debris flow disasters are often distributed in Southeastern

China (Liu et al., 2012). Regarding distribution, the vulnerability

to geological disasters in China is generally the lowest in eastern

China, the highest in western China, and gradually decreasing

from western to eastern (Li et al., 2015).

However, on a fine scale, the distribution of geological

disasters is closely related to their elevation, slope, rainfall,

and other natural environmental features (Lin J et al., 2021;

Chang et al., 2022). For instance, a study in the Fujian delta

region, South China, showed that the incidence of geological

disasters is higher at an altitude of 600–800 m, a slope of 6–15°, a

southwest orientation, and a distance of 200 m from the river

than other regions (Lin J et al., 2021). But another study showed

that 90.2% of the total geological disasters are distributed at

altitudes over 1,000 m in mountainous rural areas (Jiang et al.,

2016). The abovementioned studies indicate that the subdivision

of the spatial distribution of geological disasters is determined by

local topographic features. Furthermore, some scholars argue

that the disturbance of human activities is essential in inducing

geological disasters. Therefore, the geological disaster-prone

areas are primarily distributed in areas with dense populations

and economic activities (Zhao D. et al., 2021; Wang et al., 2021).

In mountainous rural areas, due to the disturbance of the rapid

construction of engineering infrastructure, geological disasters

are often distributed in a linear pattern along traffic arteries, and

in a cluster pattern along townships and settlements (Qin et al.,

2021). In addition, the distribution of geological disasters spots is

also related to other influencing factors. For instance, geological

disasters are often distributed in areas with low vegetation

coverage because the root system of vegetation can improve

soil stability.

In summary, the spatial distribution of geological disasters is

essential to disaster prevention research. A clear understanding

of the distribution pattern of geological disasters is of great

significance for formulating effective countermeasures.

Previous studies have established a cognitive system of the

spatial distribution characteristics of geological disasters in

China, revealing the heterogeneity of the spatial distribution

of geological disasters and enabling us to have a macroscopic

understanding of the distribution of geological disasters.

However, as mentioned above, the distribution of geological

disasters is closely related to the local geographical and

natural environment and human activities, and micro-scale

research can help to fine-grained knowledge of the

distribution characteristics of regional geological disasters,

which in turn can help in disaster prevention and mitigation

planning, resource allocation optimization, etc.

2.2 Influencing factors of geological
disasters

The influencing factors of geological disasters are divided

into two categories, natural environment and human activities

(Lin J et al., 2021). In recent years, geological risk assessment has

attracted increasing scholarly attention, especially regarding the

factors influencing geological disasters. Numerous studies have

shown that a complex interaction of global and functionally

region-specific factors governs geological disasters (Li et al., 2016;

Wang et al., 2020; Tang et al., 2021), such as elevation, slope,

rainfall, population density, distance from faults, etc. (Youssef

et al., 2012; Li et al., 2013; Wang et al., 2021; Siddique et al., 2022;

Wang et al., 2022). For instance, Qin et al. (2010) examined the

relationship between landslides and the topography in

Wenchuan County, which showed that the number of

landslides is positively correlated with the slope and elevation,

while negatively associated with aspect. Another study also in the

mountainous areas in southern China showed that elevation,

distance from faults and slope are the main influencing factors

causing geological disasters (Lin J et al., 2021). Furthermore,

according to the time of high frequency of geological disasters,

debris flows and landslides primarily occur in the summer

months of June to August, when there is very heavy and

prolonged rainfall. Therefore, the water system and rainfall

are crucial factors inducing geological disasters.

The abovementioned studies provide the basis for a deeper

understanding of geological disasters. However, most studies

focused on single-type disasters such as debris flow (Chiou

et al., 2015), landslides (Bai et al., 2010; Chen et al., 2017; Li

et al., 2017; Deng et al., 2022; Lv et al., 2022), rockfall (Chiessi

et al., 2010), flood hazard (Wang et al., 2015), etc., or adopted

macro-regional scale investigations such as coastal areas (China)

(Pan, 2016), Pearl River Delta (China) (Li H. et al., 2021), urban

agglomerations (Lin J et al., 2021), and river basin (Chiou et al.,

2015; Dong et al., 2021; Lv et al., 2022). Most micro-scale studies

at the county level also lacked multi-type disaster investigations

(Zhao Z. et al., 2021). In summary, to have a more precise view of

geological disasters in China’s mountainous rural areas, fine-

scale multi-type disaster analysis procedures are needed to

provide a more robust interpretation and analysis regarding

the distribution, preparedness, and avoidance of geological

disasters.

Frontiers in Environmental Science frontiersin.org03

Shu et al. 10.3389/fenvs.2022.1049333

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1049333


3 Materials and methods

3.1 Study area

Meigu County, located in Southwestern China (102°53′-
103°21′E, 28°02′-28°54′N), covers a total area of approximately

2,573 km2. At the end of 2020, the county had a population of

0.26 million distributed in one town and 35 townships according

to official statistics (Figure 1) (http://www.meigu.gov.cn/). The

region is geologically or geomorphologically complex and is

characterized by a typical four-season pattern with an annual

temperature of 11.4°C (Song et al., 2020). The rainy season with a

mean yearly rainfall of approximately 814.6 mm, stretches

between June and September, with heavy rainstorms occurring

in the summer. The complex geological, geomorphological, and

climatic characteristics of the region trigger an increasing

occurrence of geological human-affecting disasters (Tang et al.

, 2020), which primarily include landslides, desire flows, and

collapse (Figure 2). Xinhua News Agency reported that a

continuous heavy rainfall turned into severe debris flow in

Meigu County on 26 June 2016, resulting in 79 people

injured, six missing, 20 ha of arable lands and 16 houses

damaged, including ten partially affected, five collapsed and

one buried house (www.xinhuanet.com). In addition,

according to the statistics of the Megu County government,

75 PGDSs were identified from 2016–2020, resulting in

722 rural households and 68.21 million yuan in the property

at serious risk (http://www.meigu.gov.cn/). In recent years, with

increasing extreme weather conditions and continuous progress

of human engineering activities, the region’s rural settlements

have faced heightened challenges and threats of geological

disasters.

3.2 Methods

We analyzed the PGDSs spatial distribution characteristics

using Average Nearest Neighbor Ratio (ANN), Kernel Density

Estimation (KDE) and Standard Deviational Ellipse (SDE)

models. Then, we constructed OLS regression models to

identify the main influencing factors to PGDSs. The analytical

framework is shown in Figure 3.

3.2.1 Spatial distribution analysis of potential
geological disasters spots
3.2.1.1 Standard deviational ellipse

SDE explores the spatial distribution direction and trend

characteristics of point elements (Xu F. et al., 2018; Yang et al.,

2021). Its standard basic parameters include the center, long axis,

short axis and azimuth of the ellipse. The center indicates the

FIGURE 1
Geographic location of Meigu County.
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relative position of its distribution, the long axis characterizes its

dispersion in the direction of the primary trend, and the azimuth

reflects the direction of the primary distribution trend (Zhang

et al., 2022).

σx �
������������������������∑n

i�1(wix̂i cos θ − wiŷi sin θ)2∑n
i�1wi

2

√
(1)

σy �
������������������������∑n

i�1(wix̂i sin θ − wiŷi cos θ)2∑n
i�1wi

2

√
(2)

tan θ �(∑n
i�1wi

2x̂i
2 −∑n

i�1wi
2ŷi

2) + �������������������������������������(∑n
i�1wi

2x̂i
2 −∑n

i�1wi
2ŷi

2)2 + 4(∑n
i�1wi

2x̂iŷi)2√
2∑n

i�1wi
2x̂iŷi

(3)

Where θ refers to the azimuth of the ellipse and the standard

deviation along the major axis x and minor axis y of the SDE. x̂i

and ŷi are the coordinate deviations from each point to the mean

center, respectively (Kong et al., 2022).

FIGURE 2
Geological disasters in the study area. (Photo source: China Weather, http://www.weather.com.cn/).

FIGURE 3
Analytical framework.
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3.2.1.2 Average nearest neighbor

ANN measures the spatial distribution characteristics of

point-like elements by using a criterion.

R � D0

D
(4)

D � ∑N
i�1

di

N
(5)

D0 � 1
2

��
A

N

√
(6)

Where R is the ratio, D0 is the actual nearest neighbor distance, and

D is the theoretical closest neighbor distance. A is the area of the

study area, and N is the number of point-like elements. The spatial

distribution characteristics of PGDSs are evaluated according to the

value of R: R = 1 indicates random distribution, R < 1 indicates

agglomerative distribution, R > 1 indicates discrete distribution.

3.2.1.3 kernel density estimation

KDE is a common spatial analysis method (Dong et al., 2020;

Song and Li, 2020; Xu et al., 2022), used to visualize the spatial

clustering status of PGDSs.

fn(x) � 1

nh2 ∑n
i�1
k(di

n
) (7)

Where, k is the kernel function, h is the bandwidth with a value

greater than 0, n is the number of spots within the bandwidth, di

is the distance of the location from the ith observed location, and

a fixed bandwidth value is used in this study.

3.2.2 Ordinary least squares regression model
3.2.2.1 Ordinary least squares model

The OLS method involves a global linear regression model

and is a multivariate linear function between the dependent and

independent variables (Yang L et al., 2020a; Yang L et al., 2020b;

Guo et al., 2020; Yang et al., 2022).

Yi � β0 +∑
k
βkχk + ε (8)

Where Yi is the dependent variable, β0, βk and ε represent a

constant, the regression coefficient, and a random error term,

respectively.

3.2.2.2 Dependent and explanatory variables

The identification of influencing factors is critical for the

construction of the regression model. We selected the density

of PGDSs in each unit as the dependent variable. As described,

the natural environment and human activities are the two

main influencing factors inducing geological disasters.

Therefore, for the explanatory variables, we divided the

eight variables into four groups based on the previous

studies and field investigation: terrain, human activities,

climate, and ecology. Steep terrain and slopes are more

likely to form landslides and debris flows, so the terrain

category must represent the complex and variable terrain

conditions. Elevation, slope, and aspect are selected by

referencing relevant studies. For the human activities

category, we choose population density and GDP as the

variables representing the density of populations and

economic activities. Furthermore, frequent climate change

affects the distribution of rainfall and vegetation growth, to

a certain extent, can lead to the potential occurrence of

geological disasters. Thus, rainfall and temperature are

selected as the proxy of the climate category. The event of

geological disasters is usually concentrated in the summer

months of June to October in the study area; therefore, rainfall

and temperature data are collected for the same periods and

are averaged. Previous studies have shown that vegetation

coverage is an essential factor induce geological disaster. High

vegetation coverage can enhance soil stability, reduce erosion,

and prevent landslides and debris flow geological disasters.

Previously, we tried to use the biological abundance index and

soil erosion intensity to reflect the ecological environment.

But in the remote mountainous rural areas of China, it is

difficult to obtain fine data to support micro-scale studies.

Therefore, we attempt to represent the fragile ecological

environment of Meigu County using NDVI. Compared

with the relevant studies, we did not select the variables

such as stratigraphic lithology, distance from water, or

distance from fault (Xi et al., 2021; Wang et al., 2022),

because the topography of the study area is highly

undulating and significantly different from the two-

dimensional planar analysis, and the above factors can

hardly reflect the variability of the variables in the vertical

dimension. Finally, the explanatory variables include

elevation, slope, aspect, normalized difference vegetation

index (NDVI), gross domestic product (GDP), population

density, rainfall, and temperature (Table 1; Figure 4).

3.3 Data

The data source used in this research are summarized as

follows:

(1) The PGDSs data, including 137 spots, were obtained from

the geospatial data cloud (China, http://www.gscloud.cn/).

(2) The vector data were obtained from the national 1:1 million

public versions topographic data (2021) provided by

the National Catalogue Service for Geographic Information

in China (https://www.webmap.cn/main.do?method=index).

(3) Digital elevation model (DEM) data was obtained from a

geospatial data cloud (China, http://www.gscloud.cn/) and

used to calculate elevation, aspect, and slope; population

density data were obtained from World POP (https://www.

worldpop.org/). GDP, rainfall data, and NDVI data were

obtained from resource and environmental science and data
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center (China, https://www.resdc.cn/Default.aspx). The data of

rainfall and temperature were averaged over July-September data.

The study area was divided into 36 units consisting of one

town and 35 townships. Descriptive statistics of the explanatory

variables are given in Table 2.

4 Results

4.1 Spatial distribution of potential
geological disasters spots

As seen in Figure 5, Meigu county suffers from a multitude of

PGDSs, among which debris flow is the primary type of disaster,

with a number of 69, accounting for 50.36% of the total; followed

by landslide, with a number of 61 and a proportion of 44.53%.

These two PGDSs are densely distributed along the Meigu river.

The number of unstable slopes is only 7, accounting for 5.11% of

the total, mainly distributed in Jiukou Township and Erqi

Township in the south of the study area.

Combined with the SDE result (Figure 6), PGDSs present a

north-to-south direction distribution pattern except for unstable

slopes and landslides which were unevenly distributed across the

study area.

The results of the ANN model showed that the spatial

distribution of geological disasters has a significant

accumulation characteristic except for collapses (Table 3).

Regarding accumulation, desire flows were the highest, with an

R of 0.512, followed by landslides (R = 0.3854). Only the collapse

reflected a dispersed distribution characteristic (R = 1.60).

The kernel density map was divided into five levels using the

natural break-point method in ArcGIS (version 10.5): low, medium-

low, medium, medium-high, and high (Figure 7). The results

showed that: (i)The spatial distribution of landslides formed four

agglomeration areas, in which Caihong (CH) township, Equgu

(EQG) township, Jingyetexi Township (JYTX) and Bapu (BP)

Township were categorized as core areas (Figure 7A). 2) The

spatial distribution of mudslides formed two belt-like shapes

(Figure 7B). (3) The collapse was mainly concentrated in Jiukou

Township (JK), and the junction of the Lamuajue Township (LMQJ)

and Erqi Township (EQ) (Figure 7C). In summary, the spatial

distribution of PGDSs has a significant heterogeneity with cluster

formations (Figure 7D).

4.2 Patterns of potential geological
disasters spots incorporating explanatory
variables

(1) The elevation of the study area ranged from 650 to 4100 m and

was divided into 500 m interval classes referencing the previous

studies (Li et al., 2013), then we superimposed PGDSs. Through

the statistical analysis, we found that approximately 95.65% of

the PGDSs distribute below 2500m, and the largest percentage

of PGDSs distribute between 1500m and 2000m (Figure 8A).

(2) The slope ranges from 0–69.5° and can also be divided into

seven grades at 10°intervals. It is shown that 92.70% of the

population density occur below the slope of 30°. The largest

percentage of PGDSs distribute between 10° and 20°; the ratio

was 48.91% (Figure 8B).

(3) The aspect is divided into eight grades at 45° intervals, which

represent eight common directions, namely north

(0–22.5°,337.5–360°), northeast (22.5–67.5°), east

(67.5–112.5°), southeast (112.5–157.5°), south (157.5–202.5°),

southwest (202.5–247.5°), west (247.5–292.5°), northwest

(292.5–337.5°). We found that most PGDSs distribute in the

west direction (accounting for 25.55% of the total) (Figure 8C).

TABLE 1 Explanatory variables in the study.

Description Explanatory
variables

Sources

Terrain Elevation Wang et al. (2022), Oliveira et al. (2014), Qi et al. (2010), Lv et al. (2022), Xi et al. (2021), Zhao Z. et al., 2021, Lin J et al.,
2021, Wang et al. (2020)Slope

Aspect

Human activities Population density Oliveira et al. (2014), Zhao Z. et al., (2021)

GDP

Climate Rainfall Oliveira et al. (2014), Wang et al. (2022), Zhao Z. et al., 2021, Lin J et al., 2021, Wang et al. (2020)

Temperature

Ecology NDVI Wang et al. (2022), Lv et al. (2022), Xi et al. (2021), Lin J et al., 2021
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(4) The population density was divided into five grades at

500 pcs/km2 intervals. Most PGDSs distribute in the

500–1,000 pcs/km2; the ratio is 29.20% (Figure 8D).

(5) The GDP was also divided into five grades at 20 thousand

CNY/1 km2 intervals. Most PGDSs distribute in the

1.20–1.40 million CNY/km2; the ratio is 27.74% (Figure 8E).

(6) The NDVI was also divided into five grades at 0.2 intervals.

Most PGDSs distribute in the range of 0.6–0.8; the ratio is

60.85% (Figure 8F).

(7) The rainfall was divided into five grades at 20 mm intervals.

Most PGDSs distribute in the range of over 240 mm; the

ratio is 41.61% (Figure 8G).

FIGURE 4
Spatial distribution of explanatory variables.
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(8) The temperature was divided into five grades at 2°C. We

found most PGDSs distribute in the range of 19–21°C; the

ratio is 40.88% (Figure 8H).

4.3 Correlation coefficient and the
impacts of determinants

Table 4 shows the results of the OLS model. The VIF of the

explanatory variables are all lower than the threshold of 10 except

for temperature (the variable will be removed in the OLS model),

indicating no obvious collinearity. It can be seen in Table 4 that the

PGDSs are significantly correlated with slope, aspect, population

density, and rainfall. The coefficient values are 1.398, 0.137, 0.010,

and 1.979, respectively (p < 0.05). The adjusted R-squared is

0.5493, which means the model has a good explanatory. The

model could be shown as follows: YPGDSs = −439.318 + 1.398 X1 +

0.1367 X2 + 0.010 X3 + 1.979 X4, where YPGDSs was the density of

PGDSs in each unit, X1 is slope, X2 is aspect, X3 is population

density, and X4 is rainfall.

TABLE 2 Descriptive statistics of explanatory variables.

Explanatory variables (units) Min Mean Max St.D

Elevation (m) 650.00 2,544.95 4,011.00 513.98

Slope (°) 0.00 17.21 69.00 8.44

Aspect −1.00 189.61 360.00 103.32

GDP (104 CNY/1 km2) 116.00 145.02 329.00 23.25

Population density (pcs/104m2) 0.00 621.80 28,710.00 900.90

Rainfall (mm) 216.00 233.34 261.00 6.05

Temperature (°C) 11.00 16.70 25.00 2.59

NDVI 0.00 0.59 1.00 0.20

FIGURE 5
Location of PGDSs.

FIGURE 6
SDE distribution of PGDSs.
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5 Discussion

This study attempts to identify the PGDSs spatial

distribution characteristics and its influencing factors in the

geological disaster-prone mountainous rural areas, the results

reveal that rainfall and slope are the main contributing factors to

PGDSs occurrence.

5.1 Spatial distribution of potential
geological disasters spots in mountainous
rural areas

Due to their remote location and sparse population,

mountainous rural areas have received little scholarly attention

(Klein et al., 2003; Chen et al., 2008). We emphasize the

importance of conducting research on mountainous rural areas

for two reasons: First, most mountainous rural areas are always

geologically disaster-prone in China, thus hindering its development

(Xu et al., 2017), where Geological Disaster Induced Poverty (GDIP;

yin zai zhi pin) is a frequent problem (Xu et al., 2020). Second, there

is an essential need to investigate the spatial distribution and

influencing factors of PGDSs on a fine scale (Wang et al., 2020).

We found that PGDSs are distributed westwardly (247.5–292.5°) in

an elevation range of 1,500–2000 m, the surface slope of 10–20°, high

vegetation cover of 0.6 < NDVI <0.8, and high average monthly

rainfall of >240 mm which is approximately in agreement with the

findings of Lin J et al., 2021 who showed that PGDSs are distributed

in areas with low elevation (200–400 m), gentle slopes (5–15°), and

high rainfall (annual average 1500–1600 mm). The results, however,

contradict those of previous studies (Chiessi et al., 2010; Li et al.,

2013; Lin J et al., 2021), probably due to differences in topographical

attributes and highlight the importance of geographical differences

when analyzing the PGDSs spatial distribution and its influencing

factors.

Some unexpected findings are obtained. First, the density of

PGDSs is a surrogate for its susceptibility in mountainous areas,

consistent with the findings of Jiang et al. (2016). More clearly,

the spatial distribution of PGDSs is a simpler and more efficient

path to identifying PGDSs susceptibility than constructing a

causal relationship with topographical and climatic

explanatory variables. Second, in this research, we found that

the spatial distribution of landslide and debris flow seems to have

possible correlations that merit further investigation.

5.2 Geographical differentiation of
influencing factors

In comparison with previous studies, we found that

rainfall and slope are the main factors affecting PGDSs

incidence (Table 4), which differs from those of Wang

et al. (2021). Furthermore, another study suggested that

human activities and rainfall are the most prominent

factors in similar mountainous areas (Wang et al., 2020).

Aiming to characterize the magnitude effect of these factors,

we found that rainfall and slope have a stronger correlation

with PGDS occurrence than other factors. Consistent with

these findings, Smyth & Royle (2000) confirmed that heavy

rainfall and natural environment features are the primary

triggers of PGDS incidence. Consistent with the findings,

natural factors had a more profound impact on PGDSs in

mountainous areas than human activities, possibly because of

the low population density and their insignificant effects in

mountainous rural areas. Overall, it can be concluded that

there exist similarities in the forming mechanism of micro-

scale PGDSs in mountainous rural areas. We also found a

non-strong correlation between NDVI and PGDS; however,

PGDSs are mainly distributed in high vegetation areas,

primarily in steep slope regions.

5.3 Recommendation for potential
geological disasters spots avoidance

Arguably, based on most previous studies, human engineering

activities are always the main but unavoidable influencing factors

increasing the susceptibility of PGDSs in mountainous rural areas

(Tselios and Tompkins, 2020; Tan et al., 2021; Khan et al., 2022).

These factors are a consequence of rural development and can

potentially be used for PGDS prevention. Additionally, although

settlement relocation policies have proven to be an effective

strategy for PGDSs prevention in disaster-proven areas (Xu

et al., 2020), these strategies have limited practical effectiveness

TABLE 3 Spatial characteristics of PGDSs distribution using the ANN.

Category Observed mean
Distance(m)

Expected mean
Distance(m)

Ratio Z-score p-value Distributed pattern

Landslide 769.33 1996.19 0.39 −16.96 0 Clustered

Desire flows 1,618.0538 3,154.21 0.51 −7.57 0 Clustered

Collapse 10,951.56 6,849.25 1.60 2.81 0.0050 Dispersed

All spots 506.40 1758.42 0.29 −22.79 0 Clustered
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in mountainous rural areas which suffer from widespread low

development suitability (Liu et al., 2022). Under these conditions, a

good understanding of the PGDSs spatial distribution and

influencing factors is essential in PGDS preparedness.

As concluding recommendations, a careful suitability

analysis and planning considering topographical and climatic

features are needed to identify low PGDSs affected areas for

settlement relocation and future developments. Second, a

meteorological risk warning system can be established for the

region’s rural communities against ubiquitous and recurrent

PGDSs, such as continuous heavy rainfalls, which is a critical

factor that induces PGDS in mountainous areas. Finally, a

combination of prevention and preparedness strategies and

practical planning measures, such as the engineering of

unfavorable terrains or relocation, should be constructed to

avoid high-risk PGDSs (Li H. et al., 2021).

FIGURE 7
Maps of Kernel density of PGDSs.
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FIGURE 8
Statistics analysis of PGDS.
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5.4 Research limitations

In this research, we analyzed the PGDSs spatial pattern

and influencing factors to reflect on the PGDSs distribution

characteristics and possible planning recommendations.

However, due to limited data accuracy, this study neglected

to include the PGDSs extent (e.g., large, medium, small) and

level (e.g., minor, moderate, severe). Furthermore, this

study only explored the PGDSs potentialities in the region

and suggested holistic susceptibility and vulnerability

assessments and the construction of evaluation

indicator systems to gain practical insights. Moreover, the

study area is a mountainous rural area, while the soil

geological map is two-dimensional that does not truly

reflect the current situation. Therefore, we did not consider

the influence of soil properties on PGDSs. In the future,

we will combine field surveys to obtain more fine-

grained data.

6 Conclusion

TakingMeigu County as the study case, the paper analyzed

the spatial distribution characteristics, patterns, and

influencing factors of PGDS using GIS technology.

Compared with the previous studies, we focused on

mountainous rural areas to perform a fine-scale multi-type

PGDS analysis using multiple analysis methods (e.g., ANN,

KDE, SDE, etc.). We found PGDSs are distributed in an

elevation range of 1,500–2000 m which receives a

mean monthly rainfall of more than 240 mm and in

highly foliated (0.6 < NDVI <0.8) west-facing slopes. We

also found that PGDSs significantly correlate with slope,

aspect, population density, and rainfall. The results

can provide important implications for land use

planning of resource allocation for disaster prediction and

prevention.
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TABLE 4 Summary of OLS results and diagnostics.

Variable Coefficient Stderr t-Statistic Probability VIF

Intercept −439.318 156.952 2.799 −0.009* –

Elevation 0.083 0.061 1.354 0.186 3.246

Slope 1.398 0.406 3.446 0.001* 1.341

Aspect 0.137 0.052 2.613 0.014* 1.833

Population density 0.010 0.002 4.581 0.000* 1.617

Rainfall 1.979 0.625 3.166 0.003* 2.675

NDVI −0.120 0.380 −0.316 0.754 2.323

Performance statistics

Joint F-Statistic 7.095 Akaike’s Information Criterion (AICc) 255.160

Multiple R-Squared 0.639 Adjusted R-Squared 0.549

Number of observations 36

Note: * significant at 0.05 level.
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