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The invasion of Spartina alterniflora (S. alterniflora) has resulted in significant

losses in the diversity of coastal ecosystems. However, the impact of seasonal

changes on the accurate identification of S. alterniflora remains to be explored,

which is of great significance due to its early monitoring and warning. In this

study, S. alterniflora in Beihai, Guangxi, was selected as the research object.

Unmanned aerial vehicles (UAVs) and deep convolutional neural networks

(CNNs) were used to explore the identification of S. alterniflora in different

seasons. Through comparative analysis, the ResNet50 model performed well in

identifying S. alterniflora, with an F1-score of 96.40%. The phenological

characteristics of S. alterniflora differ in different seasons. It is difficult to

accurately monitor the annual S. alterniflora using only single-season data.

For the monitoring of S. alterniflora throughout the year, the autumn-winter

two-season model was selected from the perspective of time cost, the four-

seasonmodel was selected from the perspective of identification performance,

and the three-season model of summer, autumn and winter was selected from

the perspective of time cost and identification performance. In addition, a

method was developed to predict and evaluate the diffusion trend of S.

alterniflora based on time series UAV images. Using the spring data to

predict the diffusion trend of S. alterniflora in summer and autumn, the

results showed that the highest recall reached 84.28%, the F1-score was

higher than 70%, and most of the diffusion of S. alterniflora was correctly

predicted. This study demonstrates the feasibility of distinguishing S. alterniflora

from native plants in different seasons based on UAV and CNN recognition

algorithms. The proposed diffusion early warning method reflects the actual

diffusion of S. alterniflora to a certain extent, which is of great significance for

the early management of invasive plants in coastal wetlands.
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Introduction

As an important type of biological invasion, plant invasions

have become a significant ecological problem, threatening native

species and affecting the structure and function of ecosystems

(Liu et al., 2018). Spartina alterniflora (S. alterniflora) is a

perennial herb native to the Atlantic coast of North America.

It has strong adaptability and tolerance to the climate and

environment and is generally considered to be beneficial to

ecological restoration (Li et al., 2020; Zhang et al., 2020; Zhu

et al., 2022). To protect the beach environment, China

introduced S. alterniflora from the United States in December

1979 and achieved certain economic benefits during the early

stage (Cui et al., 2011; Tian et al., 2020; Yang, 2020). However,

once S. alterniflora invades an ecosystem, it quickly becomes a

local dominant species, leading to a decrease in biodiversity (Li

et al., 2009; Wang et al., 2015; Wang et al., 2021) and a negative

impact on the local coastal ecological environment and economic

development (An et al., 2007; Ren et al., 2019; Wu et al., 2020; Xu

et al., 2021). In 2003, S. alterniflora was categorized as one of the

most serious invasive plants by the State Environmental

Protection Administration of China (Chung, 2006). In the

past, managers have tried to eradicate and contain their

effects in the invasion process, but these management

measures have been difficult and expensive (Vaz et al., 2018).

Recently, early monitoring and warning have been recognized as

some of the most cost-effective means of responding to biological

invasions (Grosse-Stoltenberg et al., 2018; Martin et al., 2018).

Over the years, scholars have carried out much research on

monitoring the invasion of S. alterniflora in coastal areas of

China. However, most studies have focused on the monitoring of

S. alterniflora in specific seasons, and detailed analysis of its

invasion from the perspective of different seasons is rare. (Li

et al., 2020). When different researchers use or interpret images

from different seasons, the results are often highly uncertain

(Zhang et al., 2020). To facilitate the management and control of

this invasive plant, an efficient and accurate method for

monitoring S. alterniflora in different seasons is needed. Most

of the classification methods used to date are traditional machine

learning algorithms, such as maximum likelihood, support vector

machine, and random forest (Ren et al., 2014; Wang et al., 2015).

These methods have a low degree of automation and limited

processing capabilities for complex functions, making it difficult

to improve the classification accuracy of S. alterniflora in

complex backgrounds in the wild. Deep learning is a new field

in machine learning that realizes the powerful ability to learn the

basic features of data from samples by learning a multilayer

nonlinear network structure and transforming the basic

properties of the original data into more robust abstract

features (Zhu et al., 2022). Hang et al. (2019) used a deep

learning method to identify and classify plant leaf diseases

and achieved an accuracy of 91.7% on a test dataset, which

greatly improved the efficiency and accuracy of identification.

Chen et al. (2020) used the SRCNN and FSRCNN tomonitor and

analyse S. alterniflora at the patch scale, and the results showed

that the FSRCNN could more accurately identify S. alterniflora in

small patches. A deep convolutional neural network (CNN) can

automatically extract features from image data, which greatly

improves the classification accuracy in complex environments.

However, the current research using CNNs to identify S.

alterniflora is limited to a specific season, and whether CNNs

can reliably distinguish S. alterniflora and native plants in

different seasons remains to be further explored.

S. alterniflora appeared in different states and scales during

the invasion process, such as small discrete patches at the early

stage of invasion; connected strips, broken patches and mixed

patches at the middle stage of invasion; and large single-

population patches at the end of invasion. These different

states exist simultaneously in any intrusion zone (Zhu et al.,

2022). Remote sensing has been shown to be a viable tool for

monitoring the dynamics of invasive plants (Lawrence et al.,

2006; Bradley, 2014). In the past 10 years, medium-resolution

satellites have been widely used in the monitoring of S.

alterniflora, which can effectively monitor S. alterniflora in

the middle and late stages of invasion (Zuo et al., 2012;

O’Donnell and Schalles, 2016). However, even with

submeter-level high-resolution satellites, it is difficult to

effectively identify the early invasion of S. alterniflora,

which is not conducive to early monitoring and warning (Ai

et al., 2017; Liu et al., 2017; Zhu et al., 2019). In recent years,

UAVs, as a new type of remote sensing platform, have provided

unparalleled spatial and temporal resolution at reasonable cost,

which provides a new way to accurately monitor S. alterniflora

in the early stage of invasion (Martin et al., 2018). S.

alterniflora is in the early stage of invasion, and its invasion

has not been fully established, which is the best period for its

control. UAVs can detect and provide a more detailed

distribution map of S. alterniflora over time. The analysis of

time-series UAV image data will help us to further understand

the diffusion mechanism of S. alterniflora, making it possible

to predict the diffusion of S. alterniflora. However, relevant

studies on the diffusion prediction of S. alterniflora have not

been reported. Achieving accurate identification of S.

alterniflora and prediction of its spreading trend will help

managers formulate more effective management and

containment measures.

In this study, the following questions were discussed: 1) Can a

time-series UAV image recognition algorithm based on CNN

reliably distinguish S. alterniflora from native plants? 2) Can

time-series UAV images based on phenology predict the

diffusion of S. alterniflora? As a pilot and methodological

study, Beihai, China was selected as the case study area, where

S. alterniflora has been expanding and migrating significantly.

The specific objectives of this study are 1) to develop and evaluate

CNN-based recognition algorithms to effectively distinguish S.

alterniflora from native plants using time-series UAV images. 2)
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Develop amethod to predict and evaluate the diffusion trend of S.

alterniflora based on time-series UAV images.

Materials and methods

Study area

The study area was located in Zhulin Village, Yinhai District,

Beihai City, Guangxi Zhuang Autonomous Region, China

(21°27′43.58″N, 109°18′54.02″E), as shown in Figure 1A. It

has a typical subtropical monsoon climate with an annual

mean temperature of approximately 23.3°C and annual mean

precipitation of approximately 1800 mm. The most common

native plants in the study area are mangroves, which play an

important role in maintaining the ecological balance of coastal

areas, preventing wind damage, and protecting the environment

(He et al., 2019). However, S. alterniflora invasion is evident here,

and it is squeezing the mangrove habitats.

Materials

Data acquisition
Experimental image data were collected in December

2020 March 2021, June 2021, and September 2021. They are

denoted as winter, spring, summer and autumn data. The UAV

platform is a DJI Royal MAVIC MINI UAV. The specific

parameters are shown in Table 1, and the acquisition

equipment and field work scenarios are shown in Figures

1B,C. In the research area, the UAV is 10 m above the

ground, the average flight speed is 4.0 m/s, and the pitch

angle of the gimbal is -90°. Take equally spaced photos and

ensure an image overlap of 60% in both the forward and sideward

directions. In each season, 1,200 original images were collected

with a spatial resolution of 4,000 × 2,250.

Data preprocessing
Orthophoto

After acquiring the original images of the UAV, Agisoft

PhotoScan (The Agisoft Inc., Russia) was used to create

orthophotos based on the UAV position and direction

parameters provided by the UAV inertial system. The

orthophotos were cropped to remove parts irrelevant to the

experiment, resulting in four seasons of orthophotos with a

pixel size of 9,408 × 18,928 (Figures 2A–D).

FIGURE 1
Location of the study area and field work scenarios. Among them, (A) shows the study area located in Beihai, Guangxi, China; (B,C) shows the
working scene of UAV in the field.

TABLE 1 The major parameters of MAVIC MINI.

Name Technical parameters

Maximum flight time 30 min (constant speed
14 km/h in windless
environment)

Maximum horizontal flight speed 13 m/s (sports gear)

Maximum wind resistance rating 8 m/s (Level 4 wind)

Maximum photo size 4,000 × 2,250 pixels

Effective pixels 12 megapixels
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Dataset

MATLAB 2018 (The Math Works Inc., United States) was

used to segment the orthophoto images, and 14,196 blocks with

112 × 112 pixels were obtained in each season. Then,

14,196 blocks were divided into four categories, including S.

alterniflora, mangroves, tidal flats and seawalls (Figures 2E–H).

In each season, 4,500 samples were randomly selected from S.

alterniflora and mangroves, and 1,500 samples were randomly

selected from tidal flats and seawalls to obtain four single-season

datasets (AD1-AD4). Two-season (BD1-BD4), three-season

(CD1-CD4) and four-season (DD) datasets were obtained

through the equal proportion combination of each single-

season dataset, and the number of samples of each category in

all datasets was consistent (Figure 3). Finally, according to the

ratio of 6:2:2, each dataset is divided into a training set, validation

set and test set.

Methods

Research technical route
We use the spring dataset to select one of five deep learning

models and train it on all the datasets. The model with the best

classification performance for S. alterniflora throughout the year

and spring was selected. Then generate an early warning heat

FIGURE 2
Orthophotos and dataset categories. Where (A–D) are orthophotos in winter, spring, summer, and autumn (2020/12, 2021/03, 2021/06, 2021/
09); (E–H) are schematic diagrams of S. alterniflora, mangroves, tidal flats, and seawalls.

FIGURE 3
The composition of different datasets, in which AD1-AD4
represents winter, spring, summer and autumn datasets, BD1-BD4
represents winter/spring, spring/summer, summer/autumn and
autumn/winter combined datasets, CD1-CD4 represents
winter/spring/summer, spring/summer/autumn, summer/
autumn/winter and autumn/winter/spring combined datasets, and
DD represents all season combined dataset.
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map according to the spring classification map of S. alterniflora

and the diffusion distance. The specific technical process of this

study is shown in Figure 4.

Deep learning model
There are many CNN models used for classification tasks

in the early stage, such as LeNet, AlexNet, VGG, GoogleNet,

ResNet, and DenseNet. Newly released algorithm models in

recent years, such as MobileNet, ShuffleNet, EfficientNet, etc.

The model is becoming increasingly sophisticated, and the

recognition speed and recognition accuracy of the model are

increasing. Abade A et al. compiled statistics on 121 papers

selected in the past 10 years on the identification of plant pests

and diseases, and the results showed that AlexNet, VGG,

ResNet, LeNet, Inception V3, and GoogleNet were more

commonly used in previous studies (Abade et al., 2021).

Therefore, this paper preliminarily selects AlexNet

(Krizhevsky et al., 2012), VGG16 (Simonyan and

Zisserman, 2014), GoogleNet (Szegedy et al., 2014),

ResNet50 (He et al., 2016) and EfficientNetB0 (Tan and Le,

2019), which are frequently used in previous studies and

recently published, as the CNN model for identifying S.

alterniflora. The parameters of the CNN model used in this

paper are based on the parameters of the original paper.

According to the classification task, the last part of the

network is modified to make the model meet the

classification requirements.

In the CNNmodel, in addition to the structure of the model

itself, the learning rate, training epochs, and training batch size

will also affect the convergence speed and generalization ability

of the model. When the learning rate is too large, the model will

easily fall into the local minimum, while when the learning rate

is too small, the model will slow down the convergence speed. If

the training epochs are set too large, the model training will be

slow, and if the training epochs are too small, the model will

stop training before convergence, and the optimal result will not

be obtained. Within a certain range, the larger the set of train

batch sizes, the higher the resource utilization rate of the

computer, and the faster the model training speed will be. In

this paper, all models are trained with consistent

hyperparameter settings. The initial learning rate is 0.01, the

learning decay rate is 0.85, the training epochs are 500, and the

sample batch size is 128.

AlexNet

The AlexNet (Krizhevsky et al., 2012) network consists of five

convolutional layers, three pooling layers, and three fully

connected layers. The convolutional layer and the pooling

layer are mainly used to extract image feature information,

the fully connected layer converts the feature map into a

feature vector, and the last fully connected layer submits the

output to the Softmax layer. And AlexNet proposed new

technologies such as LRN (Local Response Normalization),

ReLU activation function, Dropout, and GPU acceleration in

model training, which successfully promoted the development of

neural networks.

VGG16

VGGNet (Simonyan and Zisserman, 2014) explores the

relationship between the depth of convolutional neural

FIGURE 4
Research technical route.
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networks and their performance, building deep convolutional

neural networks by repeatedly stacking 3 × 3 convolution kernels

and 2 × 2 max-pooling layers. VGG16 has 13 convolutional

layers and three fully connected layers. The 13 convolutional

layers are divided by the Max-pooling layer at the second, fourth,

seventh, 10th and 13th layers respectively, which can reduce the

length and width of the feature map by 1/2.

GoogleNet

GoogleNet (Szegedy et al., 2014) first reduces the number of

channels and aggregates information through 1 ×

1 convolution, and then performs the calculation, which

effectively utilizes the computing power. The fusion of

different scales of convolution and pooling operations, as

well as the fusion of multi-dimensional features, makes the

recognition and classification performance better. Widening

the network model structure also avoids the problem of training

gradient dispersion caused by the network being too deep. The

GoogleNet network adopts global mean pooling, which solves

the characteristics of the traditional CNN network that the

parameters of the last fully connected layer are too complex and

the generalization ability is poor.

ResNet50

ResNet (He et al., 2016) adds a residual unit to the network

structure. The residual unit establishes a direct shortcut channel

between input and output, implementing an identity mapping

layer with the same output as the input. In this way, ResNet solves

the problems of gradient dispersion and accuracy degradation in

deep networks, which not only ensures the training accuracy, but

also controls the training speed.

EfficientNetB0

EfficientNet (Tan and Le, 2019) uses network search

techniques to search the network’s input image resolution,

depth and width parameters to obtain the most balanced

match. Such an efficient network not only has less parameters,

but also can learn the deep semantic information of images well,

and is more robust for classification tasks.

Early warning of S. alterniflora
Diffusion distance

An important indicator of the diffusion prediction of S.

alterniflora is the diffusion distance in a certain period. A part

of the distribution map of S. alterniflora in spring was randomly

selected and divided into three equal parts. Using manual

annotation, the distribution contours of S. alterniflora in

spring, summer and autumn were marked (Figure 5).

Then, set the borderline width to one pixel and count the

spring-summer and spring-autumn borderline pixels and the

spring-summer and spring-autumn diffusion area pixels. The

diffusion distance H is calculated according to Formula 1, where

L1 is the diffusion boundary of S. alterniflora in the initial period,

L2 is the diffusion boundary of S. alterniflora in the current

period, S is the area of S. alterniflora spread in the two periods,

and d is the image pixel resolution, d = 0.004348 m.

H � 2S

(L1 + L2) × d (1)

S. alterniflora diffusion prediction

For the prediction point O, the probability βO of the

occurrence of S. alterniflora is determined by the

FIGURE 5
The actual distribution profile of S. alterniflora.
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surrounding S. alterniflora (the maximum value of β does not

exceed 1), as shown in Figure 6. The calculation formula of the

probability value βO of S. alterniflora spreading to point O is as

Formula 2, in which the value of βSi is 1, H is the diffusion

distance, and n is the number of S. alterniflora within

radius H.

βO � ∑n
i�1
βSi ×

��������������������
(xSi − xO)2 + (ySi − yO)2

√
H

(2)

Evaluating indicator
In this paper, the recognition effect of the network model and

early warning of S. alterniflora diffusion need to be quantitatively

evaluated. Accuracy, precision, recall, F1-score, efficiency and K

were used as evaluation indicators. The calculation formula of

each indicator is as follows:

A � TP + TN
TP + TN + FP + FN

(3)

P � TP
TP + FP

(4)

R � TP
TP + FN

(5)

F � 2 × P × R
P + R

(6)

E � ∑N
i�1
ti (7)

K � EWDA
ADA

(8)

where A is the accuracy, P is the precision, R is the recall, F is the

F1-score, TP is the true positive sample, TN is the true negative

sample, FP is the false-positive sample, FN is the false negative

sample, E is the efficiency, N is the number of samples in the test

set, and ti is the time required by the model to identify the ith

sample in unit (s). K is the ratio of the predicted diffusion area of

S. alterniflora to the actual diffusion area in the two periods,

EWDA is the predicted diffusion area of S. alterniflora, and ADA

is the actual diffusion area of S. alterniflora.

Results and discussion

Deep CNN model selection

Deep CNN training
To select the CNN model suitable for S. alterniflora.

Recognition, the spring dataset (AD2) was used as the basic

dataset for training and testing each model. The training results

of the model are obtained, as shown in Figure 7. After 500 epochs

of training, the loss tends flatten, and the accuracy of the training

set does not rise any more, indicating that all models have

reached the convergence state. The highest accuracies of the

AlexNet, VGG16, GoogleNet, EfficientNetB0 and

ResNet50 models are 84.23%, 93.03%, 96.32%, 94.77% and

98.03%, respectively. Among them, ResNet50 has the highest

accuracy and good recognition ability on the training set, while

AlexNet has the lowest accuracy.

Deep CNN testing
After all models converge in training, an optimal model will

be saved. The test set of the AD2 dataset is fed into each saved

model. The accuracy, precision, recall, F1-score and efficiency of

each model are calculated, and the results are shown in Table 2.

In Table 2, the bold fonts represent the optimal recognition

results of the five models on the test set. The total accuracy of

ResNet50 was 96.96%, which is much greater than that of the

other models. The total accuracy of AlexNet is the lowest,

reaching only 83.75%. In the identification of S. alterniflora,

ResNet50 achieved a precision of 97.61%, a recall of 95.22%, and

an F1-score of 96.40%. Compared with the other four models,

ResNet50 had the best classification performance. In the

identification of mangroves, EfficientNetB0 has the highest

precision of 99.66%. ResNet50 has the best recall (99.22%)

and F1-score (99.11%). In addition, in the recognition of tidal

flats and seawalls, ResNet50 has the best classification

performance among the five models. In terms of efficiency,

AlexNet takes the least time, while EfficientNetB0 takes the

FIGURE 6
Predictionmethod of S. alterniflora diffusion, in which the red
dots indicate the existing distribution of S. alterniflora, O indicates
the point to be predicted, H indicates the diffusion distance, and
the red dots marked with S indicate the S. alterniflora within
the radius H.
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FIGURE 7
The training results of the spring network model, where (A) is the accuracy of the training process and (B) is the loss of the training process.

TABLE 2 Test results of five CNN models.

Model Indicator S. alterniflora (%) Mangroves (%) Tidal flats (%) Seawalls (%) A (%) E (s)

AlexNet P 90.99 99.44 57.00 47.55 83.75 2.67

R 86.44 98.00 74.67 42.00

F 88.66 98.71 64.65 44.60

VGG16 P 95.89 99.11 75.95 81.61 92.63 4.41

R 93.22 99.00 80.00 84.33

F 94.54 99.05 77.92 82.95

GoogleNet P 92.60 99.20 74.80 97.90 93.21 4.62

R 91.60 98.40 83.00 92.70

F 92.10 98.80 78.70 95.20

ResNet50 P 97.61 99.00 88.47 97.99 96.96 5.47

R 95.22 99.22 94.67 97.67

F 96.40 99.11 91.47 97.83

EfficientNetB0 P 92.61 99.66 81.85 90.35 93.50 5.59

R 91.89 97.67 85.67 93.67

F 92.25 98.65 83.72 91.98

Note: Bold words represent the best results of the five models on the test set.
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most time. Considering the total accuracy and efficiency,

ResNet50 has a good recognition result for S. alterniflora, so

ResNet50 was selected as the recognition model.

Identifying in different datasets

First, the training sets of the AD1-DD dataset were fed into

ResNet50, and all the trained ResNet50 structures and training

hyperparameters were consistent. The trained models were

obtained and denoted as A1-D models. Second, the test sets

of AD1-AD4 were fed into each trained model to generate a

confusion matrix. Then, the accuracy, precision, recall and F1-

score of each model for the AD1-AD4 test set were calculated.

Finally, the F1-score of S. alterniflora, mangroves, tidal flats and

seawalls identified by each model in the four seasons was drawn

into a bar chart, and its average value was calculated, as shown in

Figure 8.

Identification of S. alterniflora
The single-season model (A1-A4) was good at identifying S.

alterniflora in their respective seasons but poor at identifying S.

alterniflora in the other three seasons, indicating that there were

differences in the characteristics of S. alterniflora in different

seasons (Figure 8A). In the A2, A3 and A4 models, the F1-score

of S. alterniflora in winter was lower than 70%, among which the

F1-score of the A3 model was only 43.90%, indicating that S.

alterniflora in winter was not easy to identify. The mean F1-score

of the A1 model was the highest at 89%, and that of the A3 model

was the lowest at 72.84%. In different seasons, the characteristics

of S. alterniflora that can be learned by CNN are significantly

different, so it is difficult to accurately monitor S. alterniflora

using only single-season data. The recognition ability of the

single-season model for the four seasons of S. alterniflora was

A1>A2>A4>A3.
In the two-season model (B1-B4), B2 and B3 recognized S.

alterniflora poorly in winter, with F1-scores of 73.48% and

64.39%, respectively. Neither model was trained on winter

data, suggesting that winter data play a key role in monitoring

S. alterniflora throughout the year. The mean F1-score of the

B4model was the highest at 91.37%, and that of the B3model was

the lowest at 85.57%. The recognition ability of the two-season

model for the four seasons of S. alterniflora was B4>B1>B2>B3.
In the three-season models (C1-C4), the C2 model had the

best recognition of S. alterniflora in spring, with an F1-score of

95.84%, and the worst recognition of S. alterniflora in winter,

with an F1-score of only 82.43%. The F1-score of the C3 model

for S. alterniflora identification in the four seasons was above

90.00%, and the mean F1-score was 93.31%. The recognition

ability of the three-season model for the four seasons of S.

alterniflora was C3>C1>C4>C2. The F1-scores of the four-

season D model for S. alterniflora identification in the four

FIGURE 8
(A–D), respectively show the F1-score of each model of S. alterniflora, mangroves, tidal flats and seawalls, where A1-A4 represents the single-
season model of winter, spring, summer and autumn, B1-B4 represents the two-season model of winter/spring, spring/summer, summer/autumn
and autumn/winter, C1-C4 represents the three-season model of winter/spring/summer, spring/summer/autumn, summer/autumn/winter and
autumn/winter/spring, and D represents the four-season model.
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seasons were 93.95%, 93.03%, 92.97% and 94.65%, respectively,

and the mean F1-score was the highest among all the models,

which was 93.65%.

Overall, the ability of different combination models to

recognize S. alterniflora throughout the year was D >
C3>B4>A1. From the perspective of time cost, the B4 model

can be selected as the model to identify S. alterniflora throughout

the year. Although the B4 model has a slightly lower recognition

accuracy for S. alterniflora in summer, it only uses the data of two

seasons, which can save a lot of time. From the perspective of

recognition accuracy, the D model can be selected, which has the

highest accuracy among all models. From the perspective of time

cost and recognition accuracy, the C3 model can be selected as

the model to identify S. alterniflora throughout the year.

Identification of other categories
For the identification of mangroves, the average F1-Score of

the C3 three-season model was the largest at 97.83%, while the

average F1-Score of the three single-season models of A1-A3

were all above 90%. Overall, nomatter whichmodel is used, it can

better identify mangroves throughout the year. The

characteristics of mangroves in different seasons are similar,

and the CNN can use the data from a certain season to

accurately identify mangroves throughout the year

(Figure 8B). For tidal flat identification, regardless of the

model used, as long as the dataset used for training does not

contain a dataset of a certain season, the model will not perform

well in tidal flat identification in that season. Even if the D model

includes data from the four seasons, its average F1-score is still

lower than 90%, which may be because in different seasons, the

characteristics of tidal flats change greatly under the interference

of environmental factors such as sunlight and tides. This will

cause great interference in the accurate identification of tidal flats

(Figure 8C). For the identification of seawalls, in the single-

seasonmodel (A1-A4) and the two-seasonmodel (B1-B4), except

for the A3 model, the average F1-score was 68.26%, and the rest

were all higher than 80%. The average F1-score was above 90% in

both the C1-C4 and D models, with the D model being the

highest at 96.85%. The identification of seawalls was greatly

improved by combining multiseason data (Figure 8D).

FIGURE 9
(A–D) shows the identification distribution of S. alterniflora in different seasons, and (E) shows the coverage of S. alterniflora in each season.
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Result demonstrability
The F1-score of the D model is the highest, so the D model is

selected as the network model for the monitoring of S.

alterniflora throughout the year. The colour of the identified

S. alterniflora was marked in red to obtain the distribution map

of S. alterniflora in different seasons. Intuitively, the general

distribution of S. alterniflora in the four seasons is basically

consistent with the actual distribution of S. alterniflora (Figures

9A–D). The coverage rate of S. alterniflora in each season was

calculated, and it can be seen that the coverage rate of S.

alterniflora increased gradually from winter to spring and

then to summer, while the coverage rate of S. alterniflora

decreased from summer to autumn (Figure 9E).

Early warning of S. alterniflora

S. alterniflora mainly diffuses through rhizomes and seeds,

and through rhizome diffusion, it expands more stably based on

the original distribution, while it is more difficult to accurately

capture through seed diffusion. From spring to autumn, S.

alterniflora diffusion mainly through rhizomes, and its seeds

were immature, which provided the possibility to accurately

predict the diffusion of S. alterniflora. In addition, since S.

alterniflora is easier to identify in spring, its diffusion from

spring to summer and spring to autumn was predicted based

on spring S. alterniflora.

Diffusion distance
Table 3 shows that from summer to autumn, at the boundary

of the S. alterniflora distribution, the diffusion area of S.

alterniflora in plots I and III further increased, while that in

plot II decreased slightly. This result is inconsistent with the

decreasing trend of the overall coverage of S. alterniflora. During

this period, part of S. alterniflora withered gradually, resulting in

a decrease in the overall coverage of S. alterniflora. However, S.

alterniflora would continue to diffuse outward, so the diffusion

area at the boundary of S. alterniflora would further increase.

Early warning visualization of S. alterniflora
The A2 model had the highest recognition accuracy for S.

alterniflora in spring, and the early warning process was based on

the distribution map of S. alterniflora in spring. To minimize the

impact of misidentification, the A2 model was used to obtain the

distribution map of S. alterniflora in spring as the base image.

Ideally, S. alterniflora’s ability to diffuse is the same in all

directions and gradually diminishes from the inside out. Take S.

alterniflora as the centre point and take the radius H to create a

buffer area, where H is the diffusion distance of S. alterniflora

calculated above, and gradually fill grey from the centre (the grey

value of the centre point) to the boundary (zero). For areas with

buffer crossings, greyscale values can be superimposed to

generate an early warning heatmap (Figure 10). The blue

border represents the border of the early warning result, and

TABLE 3 Statistical value of S. alterniflora diffusion index.

Number Ⅰ Ⅱ Ⅲ

Spring boundary length (pix) 9,246 9,258 21,275

Summer boundary length (pix) 8,460 4,835 14,415

Autumn boundary length (pix) 6,621 4,340 13,689

Diffusion area from spring to summer (pix) 1,182,360 933,356 2,026,505

Diffusion area from spring to autumn (pix) 1,281,291 916,050 2,225,767

H1 (m) 0.5807 0.5759 0.4938

H2 (m) 0.7022 0.5858 0.5536

Note: H1 is the diffusion distance from spring to summer; H2 is the diffusion distance

from spring to autumn.

FIGURE 10
Early warning heatmap.
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the darker the red colour of the area is, the denser S. alterniflora is

here. It can be seen intuitively that most of the early warning

areas of S. alterniflora are consistent with the actual distribution

of S. alterniflora, but there are large deviations in some places.

Early warning evaluation
In the early warning map, check the original spring map

where there is a large deviation (Figure 11). During the

identification of S. alterniflora, the model identified hay as

normal S. alterniflora. The hay will not spread further and

will be transported to other places with the seawater, thus

affecting the early warning of the spread of S. alterniflora. To

accurately assess the spread of S. alterniflora early warning, the

impact of these hay needs to be removed.

From Table 4, it can be seen that before removing the

influence of hay, the K of the three plots was much larger

than 1, and the maximum was 1.5242. Their precisions are all

lower than 65%, indicating that the area of the diffusion warning

is too large. The minimum recall is 74.40%, and the maximum is

84.28%, indicating that the diffusion warning area contains most

of the actual diffusion area. After removing the influence of hay,

K was closer to 1, and its maximum value was only 1.1787,

FIGURE 11
The A2 model misidentifies hay as S. alterniflora in spring.

TABLE 4 Early warning assessment of S. alterniflora diffusion.

Plots K Precision (%) Recall (%) F1-score (%)

Before correction Spring to summer Ⅰ 1.4333 60.20 75.02 66.80

Ⅱ 1.4451 63.48 79.50 70.59

Ⅲ 1.5242 62.36 84.28 71.69

Spring to autumn Ⅰ 1.1604 64.12 74.40 68.88

Ⅱ 1.2780 61.39 78.45 68.88

Ⅲ 1.2638 64.04 80.93 71.50

After correction Spring to summer Ⅰ 1.0589 70.85 75.02 72.87

Ⅱ 1.0595 75.03 79.50 77.20

Ⅲ 1.1787 71.51 84.28 77.37

Spring to autumn Ⅰ 0.9961 74.64 74.40 74.55

Ⅱ 1.0910 71.91 78.45 75.04

Ⅲ 1.1373 71.16 80.93 75.73
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indicating that the predicted diffusion area of S. alterniflora was

closer to the actual diffusion area. The precisions are all greater

than 70%, and the maximum value reaches 75.03%. This shows

that after removing the influence of hay, the precision has been

improved, which is closer to the actual precision of the diffusion

warning. The minimum F1-score was 72.87%, and the maximum

was 77.37%, indicating that the predicted diffusion area of S.

alterniflora reflected the actual spread of S. alterniflora to a

certain extent.

In addition to the influence of factors such as hay, there are

also the following reasons, which will affect the spread prediction

of S. alterniflora. Due to the subjective influence of people, there

will be errors when drawing the contour boundary of S.

alterniflora, resulting in errors when calculating the diffusion

distance. Moreover, the spread of S. alterniflora is also affected by

the surrounding environment. The speed of S. alterniflora

spreading to tidal flats and mangroves is different. It is

relatively easy to spread to tidal flats but relatively difficult to

spread to mangroves. Therefore, there are limitations to diffusion

prediction based on the average diffusion distance.

4 Conclusion

In this study, time-series UAV images were used to achieve

accurate identification of S. alterniflora based on a CNN model,

and a feasible method for early warning of S. alterniflora spread

was proposed. To investigate the impact of different CNN models

on S. alterniflora recognition, the spring dataset was used for

training and evaluation. Through comparative analysis,

ResNet50 is more suitable for the recognition of S. alterniflora;

its precision on the test set is 97.61%, the recall is 95.22%, and the

F1-score is 96.40%. To study the effect of different seasons on the

accurate identification of S. alterniflora, ResNet50 was trained and

evaluated using a combination of datasets in different seasons. The

results show that the single-season model can better identify S.

alterniflora in its own season, but it is difficult to accurately identify

S. alterniflora in the whole year using only single-season data. The

characteristics of S. alterniflora in winter are significantly different

from those in other seasons, and it is difficult to accurately identify

S. alterniflora in winter through datasets from other seasons. For

the monitoring of S. alterniflora throughout the year, the autumn-

winter two-season model was selected from the perspective of time

cost, the four-season model was selected from the perspective of

identification performance, and the three-season model of

summer, autumn and winter was selected from the perspective

of time cost and identification performance. In addition, the

diffusion of S. alterniflora from spring to summer and spring to

autumn was predicted. By comparing the actual and predicted

distributions of S. alterniflora, its predictive performance was

evaluated, and possible causes of errors were analysed. The

results showed that the early warning of S. alterniflora reflected

the actual spreading trend of S. alterniflora to a certain extent.

Using this method to predict the future spread of S. alterniflora has

certain feasibility.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: The author

uploaded all relevant codes and datasets to figshare (https://

doi.org/10.6084/m9.figshare.20654589).

Author contributions

XQ and YL: methodology, software, validation, writing. FQ:

methodology, software, investigation, validation, writing-original

draft, writing-review. YH: software, data curation, investigation.

BL and CL: project administration. XP and FW: project

administration. WQ: project administration, writing-original

draft, writing-review and editing. All authors contributed to

the article and approved the submitted version.

Funding

The work in this paper was supported by the National

Natural Science Foundation of China (32272633), the

National Key Research and Development Program of China

(2021YFD1400100, 2021YFD1400101), and the Guangxi

Ba-Gui Scholars Program of China (2019A33).

Acknowledgments

The authors thank the native English-speaking experts from the

editing team of American Journal Experts for polishing our paper.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Environmental Science frontiersin.org13

Li et al. 10.3389/fenvs.2022.1044839

https://doi.org/10.6084/m9.fshare.20654589
https://doi.org/10.6084/m9.fshare.20654589
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1044839


References

Abade, A., Ferreira, P. A., and de Barros Vidal, F. (2021). Plant diseases
recognition on images using convolutional neural networks: A systematic
review. Comput. Electron. Agric. 185, 106125. doi:10.1016/j.compag.2021.106125

Ai, J. Q., Gao, W., Gao, Z. Q., Shi, R. H., and Zhang, C. (2017). Phenology-based
Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time
series of Gaofen satellite no. 1 wide field of view imagery. J. Appl. Remote Sens. 11,
026020. doi:10.1117/1.Jrs.11.026020

An, S. Q., Gu, B. H., Zhou, C. F., Wang, Z. S., Deng, Z. F., Zhi, Y. B., et al. (2007).
Spartina invasion in China: Implications for invasive species management and
future research. Weed Res. 47 (3), 183–191. doi:10.1111/j.1365-3180.2007.00559.x

Bradley, B. A. (2014). Remote detection of invasive plants: A review of spectral,
textural and phenological approaches. Biol. Invasions 16 (7), 1411–1425. doi:10.
1007/s10530-013-0578-9

Chen, M., Ke, Y., Bai, J., Li, P., Lyu, M., Gong, Z., et al. (2020). Monitoring early
stage invasion of exotic Spartina alterniflora using deep-learning super-resolution
techniques based on multisource high-resolution satellite imagery: A case study in
the yellow river delta, China. Int. J. Appl. Earth Observation Geoinformation 92,
102180. doi:10.1016/j.jag.2020.102180

Chung, C.-H. (2006). Forty years of ecological engineering with Spartina
plantations in China. Ecol. Eng. 27 (1), 49–57. doi:10.1016/j.ecoleng.2005.09.012

Cui, B. S., He, Q., and An, Y. (2011). Spartina alterniflora invasions and effects on
crab communities in a Western Pacific estuary. Ecol. Eng. 37 (11), 1920–1924.
doi:10.1016/j.ecoleng.2011.06.021

Grosse-Stoltenberg, A., Hellmann, C., Thiele, J., Werner, C., and Oldeland, J.
(2018). Early detection of GPP-related regime shifts after plant invasion by
integrating imaging spectroscopy with airborne LiDAR. Remote Sens. Environ.
209, 780–792. doi:10.1016/j.rse.2018.02.038

Hang, J., Zhang, D., Chen, P., Zhang, J., and Wang, B. (2019). Classification of
plant leaf diseases based on improved convolutional neural network. Sensors 19
(19), 4161. doi:10.3390/s19194161

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. IEEE.

He, Y. X., Guan, W., Xue, D., Liu, L. F., Peng, C. H., Liao, B. W., et al. (2019).
Comparison of methane emissions among invasive and native mangrove species in
Dongzhaigang, Hainan Island. Sci. Total Environ. 697, 133945. doi:10.1016/j.
scitotenv.2019.133945

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012)“ImageNet classification with
deep convolutional neural networks,” in NIPS).

Lawrence, R. L., Wood, S. D., and Sheley, R. L. (2006). Mapping invasive plants
using hyperspectral imagery and Breiman Cutler classifications (RandomForest).
Remote Sens. Environ. 100 (3), 356–362. doi:10.1016/j.rse.2005.10.014

Li, B., Liao, C. H., Zhang, X. D., Chen, H. L., Wang, Q., Chen, Z. Y., et al. (2009).
Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of
current status and ecosystem effects. Ecol. Eng. 35 (4), 511–520. doi:10.1016/j.
ecoleng.2008.05.013

Li, N., Li, L. W., Zhang, Y. L., and Wu, M. (2020). Monitoring of the invasion of
Spartina alterniflora from 1985 to 2015 in zhejiang province, China. BMC Ecol. 20
(1), 7. doi:10.1186/s12898-020-00277-8

Liu, M. Y., Li, H. Y., Li, L., Man, W. D., Jia, M. M., Wang, Z. M., et al. (2017).
Monitoring the invasion of Spartina alterniflora using multi-source high-resolution
imagery in the zhangjiang estuary, China. Remote Sens. 9 (6), 539. doi:10.3390/
rs9060539

Liu, M. Y., Mao, D. H., Wang, Z. M., Li, L., Man, W. D., Jia, M. M., et al. (2018).
Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: New
observations from landsat OLI images. Remote Sens. 10 (12), 1933. doi:10.3390/
rs10121933

Martin, F.-M., Mullerova, J., Borgniet, L., Dommanget, F., Breton, V., and Evette,
A. (2018). Using single- and multi-date UAV and satellite imagery to accurately
monitor invasive knotweed species. Remote Sens. 10 (10), 1662. doi:10.3390/
rs10101662

O’Donnell, J. P. R., and Schalles, J. F. (2016). Examination of abiotic drivers and
their influence on Spartina alterniflora biomass over a twenty-eight year period
using landsat 5 TM satellite imagery of the Central Georgia coast. Remote Sens. 8
(6), 477. doi:10.3390/rs8060477

Ren, G. B.,Wang, J. J., Wang, A. D., Wang, J. B., Zhu, Y. L., Wu, P. Q., et al. (2019).
Monitoring the invasion of smooth cordgrass Spartina alterniflora within the
modern yellow river delta using remote sensing. J. Coast. Res. 90, 135–145.
doi:10.2112/si90-017.1

Ren, G., Liu, Y., Ma, Y., and Zhang, J. (2014). Spartina alternifloramonitoring and
change analysis in yellow river delta by remote sensing technology. Acta Laser Biol.
Sin. 23 (6), 596–603.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. Comput. Sci.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., et al. (2014).
Going deeper with convolutions, 4842. CoRR abs/1409.

Tan, M. X., and Le, Q. V. (2019).“EfficientNet: Rethinking model scaling for
convolutional neural networks,” in 36th International Conference on Machine
Learning ICML (SAN DIEGO: Jmlr-Journal Machine Learning Research).

Tian, Y. L., Jia, M. M., Wang, Z. M., Mao, D. H., Du, B. J., and Wang, C. (2020).
Monitoring invasion process of Spartina alterniflora by seasonal sentinel-2 imagery
and an object-based random forest classification. Remote Sens. 12 (9), 1383. doi:10.
3390/rs12091383

Vaz, A. S., Alcaraz-Segura, D., Campos, J. C., Vicente, J. R., and Honrado, J. P.
(2018). Managing plant invasions through the lens of remote sensing: A review of
progress and the way forward. Sci. Total Environ. 642, 1328–1339. doi:10.1016/j.
scitotenv.2018.06.134

Wang, A., Chen, J., Jing, C., Ye, G., Wu, J., Huang, Z., et al. (2015). Monitoring the
invasion of Spartina alterniflora from 1993 to 2014 with landsat TM and SPOT
6 satellite data in yueqing bay, China. Plos One 10 (8), e0135538. doi:10.1371/
journal.pone.0135538

Wang, J. B., Lin, Z. Y., Ma, Y. Q., Ren, G. B., Xu, Z. J., Song, X. K., et al. (2021).
Distribution and invasion of Spartina alterniflora within the Jiaozhou Bay
monitored by remote sensing image. Acta Oceanol. Sin. 41, 31–40. doi:10.1007/
s13131-021-1907-y

Wu, Y. Q., Xiao, X.M., Chen, R. Q., Ma, J., Wang, X. X., Zhang, Y. N., et al. (2020).
Tracking the phenology and expansion of Spartina alterniflora coastal wetland by
time series MODIS and Landsat images.Multimed. Tools Appl. 79 (7-8), 5175–5195.
doi:10.1007/s11042-018-6314-9

Xu, R. L., Zhao, S. Q., and Ke, Y. H. (2021). A simple phenology-based vegetation
index for mapping invasive Spartina alterniflora using google earth engine. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 190–201. doi:10.1109/jstars.2020.
3038648

Yang, R. M. (2020). Characterization of the salt marsh soils and visible-near-
infrared spectroscopy along a chronosequence of Spartina alterniflora invasion in a
coastal wetland of eastern China. Geoderma 362, 114138. doi:10.1016/j.geoderma.
2019.114138

Zhang, X., Xiao, X. M., Wang, X. X., Xu, X., Chen, B. Q., Wang, J., et al. (2020).
Quantifying expansion and removal of Spartina alterniflora on Chongming island,
China, using time series Landsat images during 1995-2018. Remote Sens. Environ.
247, 111916. doi:10.1016/j.rse.2020.111916

Zhu, W. Q., Ren, G. B., Wang, J. P., Wang, J. B., Hu, Y. B., Lin, Z. Y., et al. (2022).
Monitoring the invasive plant Spartina alterniflora in jiangsu coastal wetland using
MRCNN and long-time series landsat data. Remote Sens. 14 (11), 2630. doi:10.3390/
rs14112630

Zhu, X. D., Meng, L. X., Zhang, Y. H., Weng, Q. H., and Morris, J. (2019). Tidal
and meteorological influences on the growth of invasive Spartina alterniflora:
Evidence from UAV remote sensing. Remote Sens. 11 (10), 1208. doi:10.3390/
rs11101208

Zuo, P., Zhao, S. H., Liu, C. A., Wang, C. H., and Liang, Y. B. (2012). Distribution
of Spartina spp. along China’s coast. Ecol. Eng. 40, 160–166. doi:10.1016/j.ecoleng.
2011.12.014

Frontiers in Environmental Science frontiersin.org14

Li et al. 10.3389/fenvs.2022.1044839

https://doi.org/10.1016/j.compag.2021.106125
https://doi.org/10.1117/1.Jrs.11.026020
https://doi.org/10.1111/j.1365-3180.2007.00559.x
https://doi.org/10.1007/s10530-013-0578-9
https://doi.org/10.1007/s10530-013-0578-9
https://doi.org/10.1016/j.jag.2020.102180
https://doi.org/10.1016/j.ecoleng.2005.09.012
https://doi.org/10.1016/j.ecoleng.2011.06.021
https://doi.org/10.1016/j.rse.2018.02.038
https://doi.org/10.3390/s19194161
https://doi.org/10.1016/j.scitotenv.2019.133945
https://doi.org/10.1016/j.scitotenv.2019.133945
https://doi.org/10.1016/j.rse.2005.10.014
https://doi.org/10.1016/j.ecoleng.2008.05.013
https://doi.org/10.1016/j.ecoleng.2008.05.013
https://doi.org/10.1186/s12898-020-00277-8
https://doi.org/10.3390/rs9060539
https://doi.org/10.3390/rs9060539
https://doi.org/10.3390/rs10121933
https://doi.org/10.3390/rs10121933
https://doi.org/10.3390/rs10101662
https://doi.org/10.3390/rs10101662
https://doi.org/10.3390/rs8060477
https://doi.org/10.2112/si90-017.1
https://doi.org/10.3390/rs12091383
https://doi.org/10.3390/rs12091383
https://doi.org/10.1016/j.scitotenv.2018.06.134
https://doi.org/10.1016/j.scitotenv.2018.06.134
https://doi.org/10.1371/journal.pone.0135538
https://doi.org/10.1371/journal.pone.0135538
https://doi.org/10.1007/s13131-021-1907-y
https://doi.org/10.1007/s13131-021-1907-y
https://doi.org/10.1007/s11042-018-6314-9
https://doi.org/10.1109/jstars.2020.3038648
https://doi.org/10.1109/jstars.2020.3038648
https://doi.org/10.1016/j.geoderma.2019.114138
https://doi.org/10.1016/j.geoderma.2019.114138
https://doi.org/10.1016/j.rse.2020.111916
https://doi.org/10.3390/rs14112630
https://doi.org/10.3390/rs14112630
https://doi.org/10.3390/rs11101208
https://doi.org/10.3390/rs11101208
https://doi.org/10.1016/j.ecoleng.2011.12.014
https://doi.org/10.1016/j.ecoleng.2011.12.014
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1044839

	The effect of season on Spartina alterniflora identification and monitoring
	Introduction
	Materials and methods
	Study area
	Materials
	Data preprocessing
	Orthophoto
	Dataset

	Methods
	Research technical route
	AlexNet
	VGG16
	ResNet50
	EfficientNetB0
	Early warning of S. alterniflora
	Diffusion distance
	S. alterniflora diffusion prediction
	Evaluating indicator


	Results and discussion
	Deep CNN model selection
	Deep CNN training
	Deep CNN testing

	Identifying in different datasets
	Identification of S. alterniflora
	Identification of other categories
	Result demonstrability

	Early warning of S. alterniflora
	Diffusion distance
	Early warning visualization of S. alterniflora
	Early warning evaluation


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


