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The ecological stability of a region and the promotion of its coordinated

environmental and economic development depend on habitat quality, which

is a key indicator of the territory’s biodiversity capacity. A case study is done in

Suzhou City, Jiangsu Province, to determine how land use changes affect

habitat quality. The types of land use in 2030 are simulated based on 2000,

2010, and 2020. The InVEST and CA-Markov models analyze and predict how

land use will change in Suzhou. Spatial analysis methods, such as the standard

deviation ellipse, the center of gravity analysis, spatial autocorrelation, and

random forest models, were used to reveal the spatial and temporal

variation characteristics of habitat quality and to analyze its influencing

factors. The bare land, building lands, and non-construction lands

significantly increased in Suzhou city’s land use types between 2000 and

2030 due to land use changes, while the water bodies and forests gradually

decreased. Most of the high-quality habitats in this region are found in thewater

bodies and the mountains. In contrast, the poor habitat quality in this area is

mainly concentrated in urban construction lands. The habitat quality gradually

declined over time, and its center of gravity followed the migration path from

northeast to southwest. The temporal and spatial distribution of habitat

degradation in Suzhou reveals a trend of habitat degradation from

downtown to suburban areas. This degradation is most common in

mountainous and forest areas where the landscape is highly fragmented.

Habitat quality in Suzhou city has changed over time and space due to

spatial patterns, socioeconomic factors, land use, and the natural

environment, with land use having the most significant impact.
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1 Introduction

Habitat quality can be defined as the adaptation of an

ecosystem for the sustainable survival and development of its

individuals and populations, which reflects the regional

biodiversity to some extent. It is crucial in maintaining

regional ecosystems’ stability, the viability of urban

development, and human well-being (Hillard et al., 2017). The

expansion of construction land and land use changes caused by

rapid urbanization reduce urban land use efficiency and then

affect the circulation of material flow and energy flow between

regional habitat patches, resulting in fragmentation of regional

habitat patches, reduction of biodiversity, and ultimately

affecting habitat quality (Zheng and Li, 2022). Therefore,

evaluating and predicting the quality of urban human

settlements is very important.

Early assessments of habitat quality are mainly based on

static analysis, focusing on the impact of habitat conditions on

species in the specific regional environment. The primary data

was obtained through field investigation, which was then

summarized into an empirical model, and used to construct

an evaluation index system centered on the research species

and land use types, such as the riparian vegetation index,

riparian quality index (Munné et al., 2003), and river habitat

index (Lee et al., 2018; Yang et al., 2018). This method

produces accurate results at a high cost, on a limited scale,

and with a long turnaround time. With the advancement of

information technology, several computerized information

models now provide a variety of methods for evaluating

habitat quality. Habitat quality research has gradually

become more visual, formal, and dynamic and is suitable

for multiscale and long-term series (Boumans et al., 2015).

Examples include the SOLVES, HSI, and InVEST models

(Kubatova and Krocil, 2020; Zhang Y. et al., 2020). The

InVEST model is the most comprehensive ecosystem

assessment model currently in use.

The original intention of the investment model is to make

reasonable decisions in natural resource management. It can

quantify ecosystem service functions and show them graphically

to determine where investments may improve the welfare of

human beings and the environment. The assessment results assist

in the management of rational development and utilization of

land and other resources. Maintaining a balance between human

and natural interests requires the preservation of biodiversity,

coordinating environmental protection with economic

development, and maintenance. The theory behind the model

aims to provide a scientific way for decision-makers to measure

the advantages and disadvantages of human activities by

simulating changes in the quantity and value of ecosystem

services under different land cover scenarios (Nematollahi

et al., 2020).

The rapid development of urbanization leads to a rapid

increase of bare urban lands and construction land, resulting

in an imbalance in land use and a decline in regional habitat

quality (Carlson et al., 2019). To understand the distribution

patterns of habitat quality, it is necessary to simulate and predict

land use change accurately. The automated cellular model, land

use change and effects model (Mamanis et al., 2021), system

dynamics model (Shen et al., 2012), and Markov model can be

used to anticipate and analyze the current land use change (Jon

et al., 2021). To optimize land use patterns and regional habitat

quality, combining the InVEST and CA-Markov models to

simulate the impact of land use change on habitat quality is

essential.

Spatial autocorrelation refers to the potential

interdependence between various variables affecting the

research object within the research area. It is a statistical

technique used in geographical research. It is used to check

the relationship between geographical variables and the spatial

relationship of geographical locations (Diniz-Filho et al., 2009).

Moran’s I. (Jackson et al., 2010), Geary’s C (Yamada, 2021), and

Getis are examples of frequent spatial autocorrelations (Pino-

Caceres et al., 2022). These methods have both advantages and

disadvantages due to their limited applicability. In these methods,

the functional space can be roughly divided between global

spatial autocorrelation and local spatial autocorrelation.

Generally, global spatial autocorrelation is used to describe the

global distribution of this phenomenon. The local spatial

autocorrelation can be used to identify the range of spatial hot

spots and whether or not there is a clear correlation between

spatial autocorrelation and special hot spots. If the significance is

high, the regional space shows clustering characteristics

(Henebry, 1995). Spatial autocorrelation analysis has a long

history of research and has been applied in many disciplines,

including the natural and social sciences.

As an important city in the Yangtze River Delta urban

agglomeration, the ecological restoration of Suzhou is very

important for maintaining the stability of the regional

ecological pattern. In recent years, Suzhou’s economy has

been developing rapidly. Rapid urbanization leads to the rapid

expansion of urban construction land. Large-scale encroachment

into forests and water areas seriously endangers the ecological

environment. It is important to understand the advantages and

disadvantages of human settlement quality and how it affects

high-quality urban development and the regional ecological

environment (Zhao et al., 2019; Li L. et al., 2022). However,

in the existing literature, limited digital habitat quality research,

simulations, and analyses of the spatial and temporal evolution
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characteristics of habitat quality based on land use change’s

physical and spatial evolution are available. There are few in-

depth analyses of the influencing factors of habitat quality from a

macro-pattern perspective. This study combines land use

simulation with a spatial analysis of habitat quality to observe

how it changes over time and which factors will affect it. This

approach is very important for the analysis of regional ecosystem

services.

2 Material and methods

Suzhou is situated in the southeastern Jiangsu Province of

China (Figure 1). It is an important city in the Yangtze River

Delta. The area of Suzhou city is 8,488.42 square kilometers

(Km). The city is low and flat, with plains accounting for 54.8% of

the total area with an average elevation of 4 m. The hilly area

accounts for 2.7% of the total land area. The total economic value

of Suzhou reached a new height of $ 2 trillion in 2020. Currently,

Suzhou is divided into six municipal districts (Gusu District,

Industrial Park, Wuzhong District, Wujiang District, High-tech

Zone, and Xiangcheng District) and four county-level cities

(Taicang, Zhangjiagang, Changshu city, and Kunshan city).

2.1 Research design

Based on the land use data of Suzhou in 2000, 2010, and 2020,

the characteristics of urban land use change from 2000 to

2020 were explained by the land use transfer matrix, and the

CA-Markov model predicts the land use change in 2000 and

2010. The land use in 2030 was simulated using the 3 years of

land use history. The habitat quality module of the InVEST

model was used to look at how Suzhou’s habitat quality has

changed and predict how it will change in the future

(Supplementary Figure S1).

2.2 Research data sources

The research data was derived from a raster data set from

2000, 2010, and 2020 with a resolution of 30 m provided by the

Resource and Environmental Science Center of China Academy

of Sciences (Zhang X. et al., 2022). According to the land use

planning of Suzhou, the area is divided into six types: cultivated

lands, forests, grasslands, water bodies, construction lands, and

bare lands (Figure 2).

2.3 Research methods

2.3.1 InVEST model
When the spatial characteristics of Suzhou City were taken

into account, forests, grasslands, water bodies, and other

naturally occurring ecological ecosystems were classified as

habitats when combined. Whereas the area used for

construction was classified as a non-habitat. The precise

calculating formula is as follows:

FIGURE 1
Overview of the research area.
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Qxj � Hj
⎛⎝1 − Dz

xj

Dz
xj + kz

⎞⎠
where Qxj represents the habitat quality of grid x in plot j, Hj

represents habitat suitability in plot j, Dxj represents habitat

degradation degree of x in plot j, K represents half saturation

coefficient Dxj, and Z represents normalized constant.

Dxj � ∑R

r�1∑Yr

y�1
Wr∑R
r�1Wr

ryirxyβxSjr

where: R and Wr are the numbers of threat sources and the

weight of threat source r, Yr is the grid number of threats, ry is the

stress level of grid X by the stress value of grid Y, and irxy is the

stress effect of stress factor R in Y on habitat grid unit X (Zhao L.

et al., 2022).

Generally, executing a habitat quality model requires the

influence of distance and weights of stress factors and the

compatibility and sensitivity of habitat components to each

risk factor. Among these standards, the hazard installation

must thoroughly check the impact of land use on regional

habitat units. A thorough literature review showed that

common hazard sources include cultivated land, urban

construction land, unused land, railways, and highways (Li

et al., 2022a; Zhang H. et al., 2022; Zheng et al., 2022). It

assigns the appropriateness and sensitivity of threat factors

according to relevant research. The habitat quality index

ranges from 0 to 1, with one indicating medium-to-high

habitat quality. The quality of the environment was graded as

follows: low (grade 1), medium-low (grade 2), intermediate

(grade 3), medium-high (grade 4), and high (grade 5).

2.3.2 CA-Markov model
CA-Markov models are based on soil and land use change

resulting from the interaction of several land use types within a

region. The land use types represented by the core cell were

modified by the land use types represented by the domain cell.

The Markov chain controls the time passing through the land-

use transformation matrix. Cell automation comprises three

parts (Sang et al., 2011; Zhou et al., 2020). 1) Cells: Each cell

FIGURE 2
Land use types according to the planning strategy of Suzhou (A) 2000, (B) 2010, (C) 2020 and (D) spatial distribution simulation of land use type
in 2030.
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is a unit containing information about its current state. 2) A

lattice forms the cellular space: It is a collection of cells, a

generalized two-dimensional cellular automaton permutation.

It is triangular, quadrilateral, or hexagonal. 3) Rules: refers to a

model of state transition determined by rules, which can be based

on the current total of the cells. The state of its domain predicts

the subsequent state of the cell. The formula for the expression is

as follows:

S(t + 1) � f[S(t),N]
where S represents the discrete set state of cells, t and

t+1 represent distinct times, f represents the fixed conversion

rules between cells, and N represents the cell’s neighborhood.

In the accuracy test, data from 2000 was used as the baseline,

and the above method replicated the land use scenario in 2010.

On this basis, the Kappa cross coefficient between the simulated

map of 2010 and the actual land use in 2010 was tested using the

following contents:

Kappa � (Po − Pc)/(Pp − Pc)
where Po is the proportion of correct simulations, Pc is the

proportion of accurate predictions in a random model case, and

Pp is the proportion of correct predictions in the ideal case.

2.3.3 Spatial autocorrelation analysis
Spatial autocorrelation describes the important relationship

between the attribute value of a specific element in space and its

neighboring features, subdivided into global and local

autocorrelation. The current research analyzed global auto-

correlation. Moran’s I was used to determine the spatial

quality accumulation, while the LISA index was utilized to

determine the spatial agglomeration distribution type of

habitat quality. The Get’s-Order* was utilized to determine

the spatial emphasis pattern of the agglomeration types

(Legendre, 1993; Smouse and Peakall, 1999).

2.3.4 Standard deviation ellipse and centerfold
shift

A standard deviation is an important tool for studying the

characteristics of time and geographical differences. It reflects the

degree of spatial and temporal differentiation and spatial

agglomeration (Zhang Y. et al., 2022; Zhao Y. et al., 2022).

Most of the time, researching the center of gravity is used to

figure out the direction and distance of Suzhou habitat quality in

the center of gravity’s distribution interval over different periods.

The equation is:

X � ∑n
i�1 MiXi∑n
i�1 Mi

; Y � ∑n
i�1 MiYi∑n
i�1 Mi

Where X and Y represent the longitude and latitude values of the

distribution center of Suzhou habitat quality in a particular time

interval, Xi and Yi represent the longitude and latitude values of

the distribution of Suzhou habitat quality in a particular time

interval, Q represents the habitat quality quantity in a particular

time interval, and i represents a particular time interval.

2.3.5 Random forest model
A random forest is an approach for machine learning that

uses many trees to train and predict sample data. It builds many

models by merging several weak classifiers, assesses the

contribution of each variable under various models, and

determines the relevance ranking of variables (Xue and Yan,

2022).

2.3.6 Selection of influencing factors
We selected the relevant influencing factors (social economy,

land use, and natural environment) from the four landscape

patterns (Qi and Wu, 2005; Weber et al., 2018; Clairmont et al.,

2021; Zhang X. et al., 2022). As a characteristic of the landscape’s

spatial structure, landscape patterns represent spatial

heterogeneity. The selection of indicators consists of

Shannon’s diversity index (SHDI), contagion index

(CONTACT), aggregation index (AI), and patch density (FD);

social and economic activities are significant indicators for

measuring the intensity of regional construction and have a

significant impact on the regional ecosystem. The selection of

indicators comprises population density (PD), per capita GDP,

night scene lighting data, and the comprehensive land use index

(L); land cover indicators comprise the normalized difference

vegetation index (NDVI) and the normalized difference water

index (NDWI), and natural environment indicators comprise

elevation (EV) and slope (SP) (Supplementary Figure S2).

3 Results

3.1 Land use change

The types of land use in Suzhou are agricultural land, water

area, and construction land. Agricultural land accounts for 50.6%

of the total area, and water area accounts for 34.9% (Figure 3A).

From 2000 to 2010, the land use type with the greatest change was

cultivated lands, with a net transfer of 4,357.05 km2, mainly in

water area (274.641 Km2) and construction lands

(1,161.627 Km2). Secondly, construction land and water area,

with 36.708 Km2 of construction land converted into cultivated

land and 70.238 km2 of water area converted into construction

land (Figure 3B). Although the urbanization process is

accelerating, the phenomenon of blind reclamation and

expansion of cultivated lands and development in Suzhou still

exists.

Moreover, the substantial increases in water and construction

land areas resulted in a net increase of 274,641 km2. From 2000 to

2010, Suzhou made great efforts to restore farmland around the

lake, and the most obvious achievement was the increase in the
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water areas caused by farmland. The net increase in construction

land is 1,151.627 km2, most of which comes from agricultural

land, indicating that the increase in urban construction land

depends greatly on the continuous invasion of agricultural areas.

On the whole, there is little difference between grassland and

non-construction area (Figure 3C).

From 2010 to 2020, the biggest change in land use type

occurred in water bodies, with a net transfer of 3,263.262 km2,

mainly agricultural land (286,377 km2) and construction land

(90,908 km2). Rapid urban expansion has increased the demand

for agricultural land and urban construction land, eroding urban

water systems and lakes. A portion of the second-largest transferred

area comprises cultivated and construction land. There has been a

net transfer of 2,984.648 Km2 of cultivated land, mainly

485.485 Km2 into construction land and 279.632 Km2 into the

water. The net transfer of construction land was 2,197 km2,

mainly including 2 km2 of cultivated land and 86.196 Km2 of

water transfer (Figure 3D). The forecast of land use types in

2030 based on the CA-Markov model showed that the evolution

of main land use types in Suzhou would follow the evolution tracks

from 2000 to 2020. By 2030, the areas of unused land, grassland,

and water will continue to shrink, while the areas of forests and

building lands will expand. The area of forests and grassland

increased significantly between 2010 and 2020, while the rate of

change of cultivated land and construction lands gradually

decreased. Additionally, there was significant pressure on the

occupation and compensation of cultivated land. Construction

land and gardens experienced the greatest shift among all land uses.

3.2 Habitat quality

3.2.1 Habitat quality in Suzhou from 2000 to
2020

The habitat quality index is related to the ability of the

environment to provide suitable habitats for species and

FIGURE 3
(A) Land use type change, (B) land use change rate (%), (C) 2010–2020 land use transfer, (D) 2000–2010 land use transfer, (E) habitat quality
class, (F) Habitat quality grade in Suzhou.

Frontiers in Environmental Science frontiersin.org06

Li et al. 10.3389/fenvs.2022.1041573

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1041573


maintain population changes. In 2000, 2010, and 2020, the

average habitat quality in Suzhou was 0.4656, 0.4168, and

0.4182, respectively; this area showed a general reduction in

habitat quality. In 2000, 2010, and 2020, the standard coefficients

for the variations in habitat quality were 0.2337, 0.2843, and

0.2867, respectively. The standard deviation coefficient showed

an upward trend, indicating the variation of regional habitat

quality increased steadily.

Low habitat quality has increased from 2000 to 2010, with an

overall increase of 13.44%, to compare the variations in the

regional habitat (Figure 3E). Habitats of intermediate and high

quality underwent a little change and were relatively stable.

Overall, there was a downward trend of high-quality habitat,

but the decline was insignificant, accounting for a small

proportion. For a long time, inferior and low-quality habitats

were the norm, with a low overall balance of high-quality

habitats. This indicates that the habitat quality in Suzhou has

been very poor for a long time and is continuously declining.

From 2000 to 2020, the overall living quality of Suzhou had an

irregular spatial distribution, with a low-quality core surrounded

by high-quality peripheries. Most high-quality ecosystems were

in the lakes and mountains in the south, central, and north of

China, including Taihu Lake in the south. There is a lot of forest

cover in this area, and the landscape is broken. Therefore, the

quality of the habitat has been greatly protected. It is widely

distributed, mainly concentrated in big city centers and traffic

corridors in different areas, and agricultural land is its

predominant land type. Gusu district, industrial parks, and

county-level cities in Suzhou have the largest construction

areas and the lowest living quality.

3.2.2 Prediction of habitat quality in Suzhou in
2030

The fraction of different habitat quality levels in Suzhou in

2030 was determined using CA-Markov and InVEST models

(Figure 4). The changing trend of Suzhou’s habitat quality from

2020 to 2030 was consistent from 2010 to 2020, showing an

overall downward trend (Table 1). The quality of medium-high-

quality ecosystems will be declined by 96.97% between 2020 and

2030. The proportion of high-quality habitats will be increased by

FIGURE 4
Habitat quality and its spatial distribution in Suzhou in different periods (A) 2000, (B) 2010, (C) 2020 and (D) spatial distribution simulation of
habitat quality in 2030.
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0.73%, while the quality of most habitats will be turned to

medium and low quality. By 2030, the medium-level habitat

area will be increased from 0.251 km2 in 2020 to 3,497.675 km2,

and this rapid change will be overall.

By 2030, the low-level residential quality in Suzhou will be

concentrated in the construction land area, namely Gusu

District, Industrial Park, Wuzhong District, Xiangcheng

District and High-tech Zone in the central city, Kunshan in

the east, Zhangjiagang and Changshu in the north. According

to this pattern, the overall living quality of Suzhou will

continue to decline through the year 2030. The main

reason is that there will be a steady increase in land

development between 2020 and 2030, while habitat-friendly

land types, such as grasslands and water areas, will gradually

decline (Figure 3F).

3.3 Spatial aggregation of habitat quality

The global Moran value and sI values of Suzhou habitat

quality from 2000 to 2030 were 0.495, 0.573, 0.5855, and

0.5826 at a confidence level of <0.01, which indicated that

Suzhou habitat quality had spatial aggregation. The spatial

agglomeration distribution of habitat quality in Suzhou

between 2000 and 2030 exhibited the following

characteristics: 1) most high-value and high-value

agglomeration (HH) regions will be located around Taihu

Lake, the northern Yangtze River Basin, and Yangcheng Lake.

They are also the main water bodies and lakes concentrated

areas in Suzhou. 2) From 2000 to 2030, low-value and low-

value agglomeration (LL) regions are primarily distributed in

Suzhou’s urban core and several county-level cities’ urban

cores. 3) The LL and HH components have an irregular

distribution, and their total proportion is minor. Both

high- and low-value agglomeration areas exhibited an

upward tendency. However, the total growth rate of the

low-value agglomeration area will be slightly higher than

that of the high-value agglomeration area, which indicates

that the living quality of Suzhou might deteriorate (Figure 5).

3.4 Characteristics of the temporal
evolution of habitat quality

In 2000, 2010, and 2020, the center of gravity of the standard

deviation ellipse was located in Gusu District, Suzhou. In the past

30 years, the longitude of the center of gravity of Suzhou’s habitat

quality moved between 120° 58′ 21″ E and 120° 57′ 03.03″ E, while
the latitude moved between 30° 41′ 18″ N and 30° 40′ 36″ N

(Table 2). The geographical angle of habitat quality increased from

31 00′ 27″ in 2000 to 31 31′ 39″ in 2030. Between 2010 and 2030, the
center of gravity of the annual standard deviation ellipse moved

1.992 km to the southwest, 0.035 km to the west, and 0.54 km to the

northwest. The migration trajectory of the center of gravity changes

into a “C” shape, indicating Suzhou’s high habitat quality (Table 3).

The population fluctuation features are notable in terms of

spatial distribution, and the entire population is gradually relocating

to the Taihu Lake Basin and Lingyan Mountain Area in the

southwest. The long axis in each ellipse period is larger than its

short axis based on the space length of the standard deviation ellipse,

indicating that the direction is quite clear and pointing to the

northeast and southwest. Based on the area of the ellipse with

three standard deviations, the general trend is “first rising and then

falling,” indicating that over time, there is an imbalance among the

residential quality districts in Suzhou, and the regional spatial

agglomeration characteristics are gradually strengthened (Figure 6).

This range represents the degree of habitat degradation caused

by existing land-use types. Suzhou’s average habitat degradation

index from 2000 to 2030 is 0.0259, 0.0424, 0.0382, and 0.0384. The

overall habitat quality of Suzhou has deteriorated obviously, and

the degradation in a wide range from the periphery to the center is

becoming increasingly obvious. The most obvious habitat

deterioration occurred in Kunshan, Changshu, and Suzhou

industrial park. The city’s rapid growth occupies natural places

such as forests and wetlands, threatens the urban ecosystem,

destroys the landscape, and greatly reduces the habitat quality.

Overall, the degree of habitat deterioration in low-level areas is

more obvious. Due to the scattered distribution of paddy fields and

lakes in the Suzhou area, the habitat environment is more

complicated, which leads to the scattered distribution trend of

TABLE 1 Change in area and percentage of different habitat qualities in Suzhou from 2020 to 2030.

Habitat quality
class

2020 2030 2020–2030

Area/km2 Proportion (%) Area/km2 Proportion (%) Area/km2 Rate of
change/%

Low 2535.65 26.35 2639.65 27.45 103.99 4.1

Medium-low 3195.10 33.20 3175.19 33.02 −19.90 −0.62

Middle 0.251 0.002 3497.92 36.38 3497.67 139.34

Medium-high 3703.56 38.49 112.14 1.16 −3591.42 −96.97

High 187.16 1.94 188.53 1.96 1.367 0.73

Frontiers in Environmental Science frontiersin.org08

Li et al. 10.3389/fenvs.2022.1041573

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1041573


FIGURE 5
Spatial aggregation and distribution of habitat quality in Suzhou in different periods (A) 2000, (B) 2010, (C) 2020 and (D) spatial clustering and
distribution simulation of habitat quality in Suzhou in 2030.

TABLE 2 Characteristic value of the center of gravity of habitat quality.

Years Longitude (E) Latitude (N) Rotation angle Acreage Migration direction Migration distance

2000 120°58′21″ 30°41′18″ 31°00′27″ 5574.90 —

2010 120°57′25″ 30°40′36″ 31°33′06″ 5639.86 Southwest 1.992

2020 120°57′23″ 30°40′36″ 31°31′13″ 5602.78 West 0.035

2030 120°57′03″ 30°40′38″ 31°31′39″ 5522.45 Northwest 0.54

TABLE 3 The ellipse parameter values for the standard deviation of habitat quality.

Years Distance along the minor axis Distance along the long axis Short/long axis

2000 322.86 549.66 0.587

2010 322.06 557.45 0.578

2020 320.87 555.85 0.577

2030 315.41 557.35 0.566
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habitat quality and habitat degradation. The vulnerability of land

use categories, such as forests and water, to threats such as

construction and transportation land is mostly blamed for this

problem. Therefore, the growth of construction land in Suzhou has

led to the gradual deterioration of habitats in Kunshan City and

Zhangjiagang City, etc., Due to Suzhou’s requirement for

ecological preservation, the forests surrounding Taihu Lake and

Lingyan Mountain are protected, so habitat quality damage is

controlled. After utilizing the random forest model, it is found that

land use index > NDVI > population density > NDWI > night

scene light intensity > elevation > slope > GDP per capital > AI >
FD > SHDI >CONTAG are the most important factors for habitat

quality (Figure 7).

4 Discussion and conclusion

4.1 Causes of land use change

Land use change is greatly influenced by economic

development. Economic growth has accelerated the process of

urbanization, the industrial structure is close to balance, and the

demand for construction land has increased sharply, resulting in

a reduction of bare land area. The development of Suzhou’s

FIGURE 6
Distribution of habitat degradation degree in Suzhou in different periods (A) 2000, (B) 2010, (C) 2020 and (D) spatial distribution of habitat
quality degradation simulation in Suzhou in 2030.

FIGURE 7
Ranking of the importance of influencing factors.
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multi-lake fishery has led to an increase in the area of water

bodies and a reduction in the area of bare lands. Eventually, the

population increase drives urbanization. With the gradual

expansion of towns to the surrounding countryside, land use

will transform more and more agricultural land into non-

agricultural residential and construction land. The economy is

in a phase of high-quality development. Urbanization will

continue to cause changes, and the cultivated land area will

shrink, although the rate of land use change will be slow.

From 2000 to 2020, the spatial distribution of land use in

Suzhou showed that the water area and agricultural land were

concentrated, while the forest and development land was

scattered. Taihu Lake on the southwest, the Yangtze River

basin on the north, and several rivers and lakes in the region

are the main waters. Agricultural land use is the most common.

From 2000 to 2010, Suzhou’s construction land expanded rapidly

from the center to the periphery, and the water area gradually

increased. From 2010 to 2020, the expansion rate of construction

lands area gradually decreased, but the degree of patch

aggregation increased obviously. In Suzhou, the area of forest,

water, and grassland decreased significantly between 2000 and

2030, whereas the area of construction land significantly

increased (Lambin et al., 2001).

As an important source of habitat threat in this area, the

number of construction lands in Suzhou has increased

significantly, particularly in Gusu District, Suzhou

Industrial Park, Xiangcheng District, Wuzhong District,

and Huqiu District in the center of the city, Kunshan in

the east, Zhangjiagang in the north and Changshu in the

south. Economic development has an important impact on

the change in land use. Economic development has

accelerated the process of urbanization, making the

industrial structure more balanced, resulting in a

substantial increase in the demands for construction lands

and a decrease in the bare land area. In addition, fisheries

development has led to an increase in water bodies area and a

decrease in bare land area. Population growth has led to bare

lands turning into other land use types. Numerous

socioeconomic and other factors need to be considered to

understand what triggers changes in land use (Li et al.,

2022b).

4.2 Temporal and spatial variation of
habitat quality

From 2000 to 2030, the high HH concentration area was the

hottest, mainly concentrated in Suzhou’s waters, lakes, and

mountain forests. It became increasingly prominent in the

center of the Yangcheng Lake area. Suzhou’s urban

construction land contains most of the coldest places in the

city and gradually spreads out from these places. The expansion

of cold areas in Suzhou is mainly due to urban construction land

expansion. The sharp increase in the distribution of hot spots is

partly due to Suzhou’s efforts to protect its mountains, forests,

and rivers. The main changes in cold and hot spots indicate that

the spatial aggregation of habitat quality in the Suzhou area has

changed. The areas of the most desirable and coldest places have

been significantly expanded, and the spatial collection has

improved.

The complete index of land use degrees is the first-factor

affecting habitat ranking. Most of Suzhou’s cities with high

land use intensity values were centered in the area with

construction land, whereas the lake and forest regions had

low values. The evolution of regional land use is also

accelerating along with the growth of urban development.

The grassland area has decreased sharply, and construction

land is a major threat in this area. This has led to a direct or

indirect decline in habitat quality. The surface area also

influences changes in habitat quality. In Suzhou, places

with a high vegetation coverage index are mainly

distributed in mountainous areas such as Lingyan

Mountain, Taihu Lake, and Yushan Mountain, and the

patches are unevenly distributed. Important wetland

regions in the areas with good ecological environment and

long-term environmental protection include Yangcheng Lake,

the Yangtze River valley on the north side, and many rivers in

Wujiang District.

This leads to a high-quality living environment that matches

the overall living environment of Suzhou city. The intensity of

social and economic activities will directly impact the regional

land use and spatial distribution of habitat quality. Low-

population-density regions in Suzhou are primarily

mountainous and lake areas, whereas construction has

minimal influence and low population density. In areas with

high light intensity and a vivid night scene, the light intensity in

the city’s core area is the most concentrated, which increases the

demand for development land and encroaches on biological land,

resulting in the decline of habitat quality. However, the spatial

distribution of Suzhou’s GDP per capita is more polarized, with

the central city and Kunshan city as the two centers showing a

trend toward popularization.

Therefore, it has little influence on regional habitat

quality. Altitude and slope are indicators of human

architectural tasks accessibility. The city is mainly plains.

The terrain is flat, so construction land development is less

challenging. Therefore, the habitat quality in mountain areas

with higher altitudes and slopes is better than in plain areas. In

addition, the landscape pattern index affects habitat quality.

Most high-value areas with aggregation, sub-dimensions,

diversity, and distribution exist in highly fragmented

environments, such as mountains, grasslands, and forests.

Low-value areas, such as water bodies, construction sites,

and agricultural land, are fairly stable (Martins et al., 2020;

Zhang T. et al., 2020; Yohannes et al., 2021). This is related to

the spatial distribution of Suzhou habitat degradation.
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4.3 Strategies for habitat conservation

For habitat protection and future development in Suzhou,

our study suggested establishing a comprehensive habitat quality

evaluation system to improve the efficiency of habitat quality

management. The ArcGIS Engine is a secondary development

platform that allows us to use GIS, RS, and GPS technologies to

build an ecological environment quality evaluation model of the

RSEI (remote sensing ecological index) model in the visual studio

development environment (Kumar et al., 2022). This makes the

evaluation work modular and improves overall evaluation. The

system can improve the accuracy and efficiency of the evaluation

and meet the public’s demand for comprehensive treatment and

operations of regional habitat quality protection evaluation. RSEI

model development, digital information management, and data

visualization are effectively integrated into the system, providing

technical support for the decision-making management

departments. Strictly control land use indicators and

accelerate the transformation and upgrading of the land use

structure (Xu et al., 2018). Suzhou’s land is primarily used for

construction and agriculture, but there are few grasslands and

woodlands. According to the characteristics of land use and the

ecological environment in Suzhou, coordinating land use

development and optimizing land use layout are the keys to

improving this area’s economic and ecological sustainability.

Forestry has provided ecological and economic benefits. The

artificially planted forest can bring income to Suzhou and

improve the natural environment. For the construction of

forest land, forest preservation, fire prevention, forest pest

management, tree planting, and raising people’s awareness of

prevention and control are necessary. For bare lands, crop yield is

a matter of survival, and higher soil fertility is preferable.

Nonetheless, bare lands are prone to human disturbance. It is

necessary to strengthen the protection of bare lands, restrict the

occupation of bare lands by construction, and improve the

quality of bare lands to increase their resilience against

natural disasters. Water may improve the ecological

environment and fulfil plant growth needs. Rich resources,

such as Suzhou’s river systems and reservoirs that can

regulate climate and resist drought, have remained virtually

unchanged during the research period. Urbanization is rising

due to the speed of economic development, which also improves

the quality of the ecological environment and sustainably

expands biological production. Restricting excessive

urbanization’s encroachment on forest and agricultural land,

enhancing environmental quality, and strictly controlling the

growth of building land; also create and expand environmental

protection areas (Wang et al., 2022).

The analysis of regional habitat quality showed that the

habitat quality in Taihu Lake Basin and the Lingyan

Mountain in Suzhou is high. This means that the

establishment and expansion of ecosystem protection areas

should be strengthened, and ecosystem protection areas

should be established in the region’s arable land and grassland

areas. The ecological core areas, noteworthy areas, environmental

protection cache areas, and ecological buffer zones are

designated. Taihu lake, Lingyan mountain and many rivers

and lakes in Suzhou dominate the core area of the ecological

red line and have the highest habitat quality rating. This category

should be subjected to the same space restrictions and

requirements as non-development areas. All urban

development and building activities that conflict with the

region’s current ecological functions should be forbidden

(Yang et al., 2022).

All living and productive activities that invade ecological

land must be properly supervised. In addition, it is necessary

to strictly manage the transformation of environmental space

into urban and agricultural space, infrastructure construction,

and the entry of various development projects. The conversion

of urban inspection and agricultural production space into

ecological space within this controlled region should be

promoted if it meets the following criteria. Agricultural

land that does not meet these standards should be

transformed into ecological agricultural land. Encourage

the transformation of ecological red-line regions and buffer

zones into core areas. The plan calls for this area’s cities,

villages, and industrial enterprises to be evacuated orderly.

The government should provide resettlement and

compensation while formulating strategies to gradually

moved the original residents into the controlled area.

Encourage people to give up land rights and interests that

hurt or destroy the surrounding ecosystem. People can work

to restore the ecosystem in places where damage has already

been done.

The ecological red line is an important area serves as a

buffer zone for various Suzhou parks, forest parks, and natural

reserves. Following the requirements of the ecological red line

core area, human activities that disrupt or interact with the

ecological environment must be tightly regulated. In addition

to the necessary protection facilities, all industrial and

construction activities that do not meet the main

environmental protection objectives in the area should be

restricted (Shi and Yu, 2014). Pollution-causing and

construction activities, such as releasing sewage, should be

strictly regulated. It should be forbidden to transform the

control area’s ecological space into agricultural production or

urban construction. Suppose it is necessary to change land use

due to the changes in regional development strategies and the

adjustments of higher-level planning; in that case, strict

demonstration and approval must be carried out according

to relevant procedures.

On the contrary, it should be allowed to transform the

controlled areas with a low ecological protection level into

coniferous forest areas. It should be strictly forbidden to

change the controlled area into an environmental

development area or an environmental protection buffer
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with a low level of protection. The ecological conservation

buffer zone should strictly control the scale and intensity of

development and construction projects in the area according

to the plan and prohibit development and construction

activities other than ecological restoration projects, major

livelihood projects, eco-tourism projects, and major

infrastructure projects. The existing planting industries in

the controlled area should be managed strictly with the

established laws and regulations. The scale and scope of

urban development land or village construction land within

the control area must be strictly observed. Any individual or

unit should be strictly prohibited from modifying or

expanding it without authorization. Meet the conditions of

the area to withdraw gradually. For legitimate industrial and

mining enterprises in the controlled area, the government

should clean up the mining industry according to the

requirements of nature reserves and relocate within a time

limit (Luo et al., 2021). The transformation from ecological

space into agricultural production and urban construction

space within the environmental buffer zone should be strictly

prohibited. Generally, it should be forbidden to turn

ecological conservation buffer zones into ecological

compound development zone. Agricultural and urban

spaces that meet the conversion conditions should be

converted into environmental space. Based on preserving

the functional integrity of the ecosystem, the optimization

and layout modification of urban and rural land use should be

permitted. Intensive and efficient development in the rural

industrial area should be encouraged. However, pesticides,

fertilizers, and other pollutants must be decreased, and

agricultural farming techniques must be encouraged.

4.4 Limitations and improvements

Changes caused by urbanization will continue to reduce bare

lands area. Exploring the influencing variables of land use change

requires a comprehensive investigation of the influence of

numerous socioeconomic and other factors. In our land use

change research, the CA-Markov model mimics land use.

Regarding the land use parameter setting for the current

study, we analyzed elevation, slope, annual precipitation,

average annual temperature, population density, and GDP

density. The natural environment and socioeconomic data

were evaluated for the research’s restricted setting but not

enough external policy issues.

Consequently, the scientific merit of our research may be

strengthened. Several factors affect land use change,

including distance and socioeconomic conditions. In

particular, land use change in the study area was affected

not only by natural processes but also by soils, geography, and

other factors, and to a large extent, by human activity, social

economy and important government decisions. Therefore,

simple meta-automation of linear regression calculation

cannot describe the inherent complexity of the interactions

of driving factors. The ability to communicate complex

nonlinear system relationships between different

techniques, such as artificial neural networks and genetic

algorithms, has made it possible to determine the relative

importance of different factors and create internal

transformation rules based on artificial intelligence. The

InVEST model was used to analyze the habitat quality of

Suzhou, which was characterized by a significant decline in

habitat quality, with only a small part of the region showing

outstanding habitat quality. However, the InVEST model’s

parameters were derived by evaluating only pertinent natural

and socioeconomic aspects, whereas external macroeconomic

policy factors were not sufficiently accounted for. These

results can be explained with remote sensing photos,

meteorological data, and vegetation information. This is

not only a limitation of the current study but also a

direction for future research on measuring habitat quality

to find out the relationship between evaluating habitat quality

based on remote sensing images and measuring habitat

quality in field experiments.
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