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This paper analyzes the daily data of China’s air quality index (AQI) from 2015 to

2020 using kriging, spatial autocorrelation, and gravity center method. The

results confirm that China’s air pollution is gradually controlled. From 2015 to

2020, the AQI, the proportion of air pollution days and the city air quality

exceedance rate decreased by about 29%, 44%, and 49% respectively. The

spatial distribution of air pollution changes with seasons. The heavily polluted

area (AQI > 200) is largest in spring, which accounts for 0.48% of the total area,

while the polluted area (AQI > 100) is largest in winter due to large area pollution

in the North China Plain. The air pollution has strong spatial autocorrelation with

a global Moran’s Index larger than 0.7. The Beijing-Tianjin-Hebei region and

southern Xinjiang are high-pollution clustering areas. The former is dominated

by PM2.5 pollution caused by anthropogenic activities, while the latter is

dominated by PM10 pollution from natural sources. Using gravity center

method, it works out the air pollution gravity center (APGC), economic

gravity center (EGC), the secondary industry gravity center (SIGC), the

tertiary industry gravity center (TIGC) and the population gravity center

(PGC) in the Beijing-Tianjin-Hebei region and its surrounding areas. Results

show that the spatial overlapping indicator of the APGC with the PGC is the

highest, and the APGC and the SIGC has the highest shifting consistency

indicator. When combining the two indicators, it is obtained that air

pollution has the highest degree of spatial coupling with the secondary

industry, but low coupling with economic volume. It is indicated that the

driving factors of air pollution is the secondary industry. Therefore, it is

suggested that the regulation of air pollution should start from optimizing

the industrial structure in China.
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1 Introduction

In recent years, with the increasing abundance of

observational data sources, experts and scholars have studied

the spatial distribution characteristics of air pollution from global

to national (Hao and Liu, 2016; Zhang and Pan, 2021), regions

and cities scale (Han et al., 2019a; Liu et al., 2021). These spatial

distribution characteristics provide data basis for studying their

driving factors.

In order to prevent and control air pollution effectively, it is

necessary to clarify the driving factors that affect air quality.

Experts and scholars have explored the factors affecting air

quality from aspects of energy efficiency (Tao et al., 2019),

urban industry (Pei et al., 2021), and climate impact (Liao

et al., 2021), etc. Among them, social economy is a very

important factor. Especially under the background of

industrialization and urbanization, great socioeconomic

changes have taken place in China (Liang et al., 2021).

Therefore, it is important to study the impact of social and

economic factors on air quality. The statistical analysis (Li et al.,

2012; Han et al., 2019b), numerical model and machine learning

model (Shen, 2021) have been used to analyze the relationship

between air pollution and socioeconomic factors. However, the

above studies demand large data volume and sample size. In this

case some important explanatory variables could not pass the

significance test and their influences on air pollution could not be

analyze, due to the limited availability of socioeconomic data in

some areas (Han et al., 2019). Therefore, it is necessary to find a

method that has lower data dependency.

As a spatial analysis method, the gravity center method is

such a method with lower data dependency. It is first used to

analyze spatial shifting of population and then as an effective

method to analyze the influences of socioeconomic factors on

target variables, such as industry (Fan, 1996), population (Lian,

2007), economy (Liang et al., 2021) and urbanization and

cultivated land expansion (Wang et al., 2022) and so on. Its

basic principle is that when a socioeconomic factor has more

influence on a target variable, the shifting trajectories of the

gravity centers of the target variable and the socioeconomic

factor will have higher degree of spatial coupling (Fan et al.,

2010).

In recent years, the gravity center method is also used to

analyze the relationship between water pollution and

socioeconomic factors such as industrial upgrading and

technological innovation, which reveals that the pollution

pattern has changed greatly under the influence of the

transfer of manufacturing industry (Zhao et al., 2020).

Though without any application in the field of air pollution,

the method is mature and effective in previous studies.

Hence, the objectives of the present study were to 1) analyze

the spatial patterns of air pollution in China from 2015 to

2020; 2) identify high-pollution clustering areas; and 3) use

the gravity center method to identify the major

socioeconomic factor influencing air pollution in the high-

pollution clustering areas.

2 Data sources and methodology

2.1 Ambient air quality data

The ambient air quality are monitored by the national

ambient air quality monitoring network, with a total of

2024 monitoring sites, which are distributed throughout the

country except for Taiwan Province (Figure 1). These sites are

unevenly distributed and concentrated in densely populated

areas (Figure 1), considering the economic development,

geographical and climatic differences between different regions

of China (Zang et al., 2015).

Monitoring data were obtained from the Ministry of Ecology

and Environment (https://www.mee.gov.cn/) for hourly data

from 1 January 2015, to 31 December 2020. Data include

AQI, SO2, NO2, O3, PM2.5, PM10, and CO concentrations at

each site. The AQI of a city was calculated from the average of all

sites in the city to evaluate its air quality. Unless otherwise

specified, the AQI and pollutant concentrations in a certain

area are the average values of all monitoring sites in that area.

2.2 Method for evaluating air quality

The AQI was selected as the main indicator to evaluate the air

pollution. The following four indicators were also calculated. Air

pollution days is the number of days with the AQI exceeding

100 in a year. Proportion of air pollution days is the percentage of

air pollution days to the total number of monitoring days in a

year. City air quality exceedance rate is the proportion of cities

FIGURE 1
Distribution of air pollution monitoring stations in China.
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where one or more pollutant exceeds the limit value to the total

number of cities monitored nationwide. Percent decrease of AQI

is the percent change in a year’s AQI value compared to the

previous year’s AQI value. The limit value of each pollutant is set

according to the Ambient Air Quality Standard in China

(GB3095-2012).

2.3 Spatial analysis

2.3.1 Spatial interpolation
The spatial interpolation of AQI is performed using ordinary

kriging, and the formula for ordinary kriging estimating (Li et al.,

2013) is as follows:

ẑ0 � ∑n

i�0λizi, (1)

where ẑ0 is the estimated value of the unknown point, zi and λi
are the observations and kriging weight coefficients for the ith

known point, respectively. The derivation of the kriging weight

coefficients requires the satisfaction of the optimal condition:

λi � minVar(ẑ0 − z0). (2)

Also satisfying the unbiased condition:

E(ẑ0 − z0) � 0. (3)

After data exploration, the exponential function with the best

fit was selected as the kernel function for variogram modeling.

The variogram models are evaluated by leave-one-out cross

validation (Webster and Oliver, 2007).

2.3.2 Spatial autocorrelation analysis
Spatial autocorrelation is the phenomenon that adjacent

observations have similar data values (positive spatial

autocorrelation), or the adjacent observations tend to have

very contrasting values (negative spatial autocorrelation)

(Wang et al., 2010). The analysis of spatial autocorrelation

helps to reveal the spatial characteristics of the presence or

absence of aggregation of air pollution. Spatial

autocorrelations of the AQI among the monitoring sites was

quantified using Moran’s index (I) (Zhang and Zhang, 2007):

I � n∑i ∑j wij

∑i ∑j wij(Yi − �Y)(Yj − �Y)
∑i (Yi − �Y)2 , (4)

where Wij are the spatial distance weighting coefficients in the

spatial distance weighting matrix, constructed by choosing the

Queen neighborhood method; Yi and Yj represents the AQI

values of point i and point j, respectively; �Y is the average of AQI

of all monitoring points; and n is the number of monitoring

points. A significant positive value for Moran’s I indicates that

the neighboring sites tend to have similar AQI values.

In addition, the local indicators of spatial association (LISA)

clustering map was used to show the local spatial patterns of the

AQI, as well as to show the clustering areas with significant

spatial autocorrelation (Bivand and Wong, 2018; Xuan, 2020).

Four kinds of local patterns (high-high, low-low, high-low and

low-high) are represented with different colors in the LISAmaps.

Positive spatial autocorrelation is when areas close to each other

have similar AQI values (high-high or low-low). On the other

hand, negative spatial autocorrelation indicates that

neighborhood areas are different (low AQI values next to high

values, and vice versa).

2.4 Gravity center method

2.4.1 Gravity center calculation
The main source of air pollutants is human activities, so

economic activities and population density can affect the spatial

distribution of air quality (Zhu and Yao, 2021). In this paper, we

analyze the spatial coupling of air pollution with economy and

population using the gravity center method. The gravity center of

a region is a point that exists in the regional space (Zhao et al.,

2020; Liang et al., 2021). The air pollution gravity centers

(APGCs) are the force points in which the influential factors

on air quality, can maintain balance in regional space. The APGC

in year t can be expressed as follows:

xt � ΣAQIki xi
ΣAQIki

.yt � ΣAQIki yi
ΣAQIki

, (5)

where (xt, yt)is the projected coordinates of the air pollution

gravity center in year t; (xi, yi) is the projected coordinates of the
capital of the ith city; AQIi is the average value of the AQI of the

city in year t. The APGCs from 2015 to 2020 were calculated for

each year to obtain its spatial shifting trajectory during this

period. In order to analyze the spatial coupling of air pollution

with socioeconomic factors, four socioeconomic gravity centers

are also calculated by similar method. That is, the economic

gravity center (EGC), the secondary industry gravity center

(SIGC), the tertiary industry gravity center (TIGC) and the

population gravity center (PGC). The secondary industry and

the tertiary industry described below all refer to its proportion in

GDP. The data for social and economic factors were obtained

from the National Bureau of Statistics (http://www.stats.gov.cn/

tjsj/ndsj/), statistical yearbooks and bulletins.

2.4.2 Spatial overlapping indicator
The spatial overlapping indicator (SOI) is used to investigate

the spatial coupling degree of APGC and other gravity center from a

static perspective. The SOI of two kinds of gravity centers is

expressed by the distance between them as follows (Fan et al., 2010):

SOI �
�������������������(xi − xj)2 + (yi − yj)2

√
, (6)

Where (xi, yi) and (xj, yj) are the projected coordinates of the

two kinds of gravity centers, respectively.
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2.4.3 Shifting consistency indicator
The shifting consistency indicator (SCI) is used to

investigate the spatial coupling degree of APGC and other

gravity center from a dynamic perspective. The SCI is

calculated as follows (Fan et al., 2010):

SCI � cos θ � (Δx1Δx2) + (Δy1Δy2)���������������������(Δx2
1 + Δy2

1)(Δx2
2 + Δy2

2)√ , (7)

where Δx and Δy are the changes of projected coordinates of

the gravity center from year k to k+1. The SCI is expressed by

the vector intersection angle θ in which the two centers of

gravity change relative to the previous time node. Because

the value of the intersection angle θ ranges from 0° to 180°,

for the sake of comparison, the cosine value is taken as the

index indicating the isotropy of the change. The larger the

SCI value is and the closer it is to 1 (that is, the smaller θ), the

more the shifting trends to be in the same direction, while the

SCI value of −1 indicates that the two shifting directions are

completely different.

3 Results and discussion

3.1 Changing of air quality from 2015 to
2020

According to Figure 2A, China’s air quality showed an overall

upward trend from 2015 to 2020, with average AQI decreasing

year by year. AQI has declined by 28.66% during this period, with

the largest decline in 2020, which decreased by 11.30% compared

with the previous year.

According to Figure 2B, O3 and NO2 showed an upward

trend from 2015 to 2017, while the other pollutants showed a

downward trend as the AQI. Among them, SO2 has the largest

decline, reaching 60%, while the concentration of O3 has risen by

about 3% in the past few years.

According to Table 1, the main pollutants affecting China’s

air quality are PM2.5, PM10 and O3, and proportion of air

pollution days and city air quality exceedance rate have

decreased by 44.21% and 48.85% from 2015 to 2020,

respectively. This is confirmed by the results in Figure 2.

3.2 Spatial patterns of air pollution in China

The maps of the AQI from 2015 to 2020 obtained using

ordinary kriging are showed in Figure 3A. The spatial

distribution of the AQI in China has a similar spatial trend in

different years. From west to east, the AQI shows a trend of

“high—low—high”; from north to south, it increases gradually,

and reaches the maximum value in Hebei Province, and then

gradually decreases to the south. Although the spatial trend of the

AQI is basically unchanged from 2015 to 2020, the areas of air

pollution (AQI > 100) is gradually decreasing. The areas with

excellent air quality (AQI < 50) have an increase of about 39% in

2020 compared to 2015.

The AQI has high value at two distinct areas. One is the

southwestern region of Xinjiang including the Aksu, Kashgar

and Hotan regions, where dust and sand are frequent, and

drought is scarce. The annual average value of AQI in this

region is around 200. Another is the Beijing-Tianjin-Hebei

(BTH) region and its surrounding areas. This area is densely

populated, economically developed and highly industrialized

area, and the annual average value of the AQI is about 112.

The primary pollutants in the two areas are different

(Table 1). The BTH region is dominated by PM2.5 and O3,

while the southwestern region of Xinjiang is dominated by

PM10 and PM2.5.

The areas with the lowest AQI values are mainly sparsely

populated plateau areas (such as the western Sichuan Plateau, the

FIGURE 2
Annual variation of (A) air quality index (AQI) and (B) the
concentrations of air pollutants.

Frontiers in Environmental Science frontiersin.org04

Yan et al. 10.3389/fenvs.2022.1040131

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1040131


Yunnan-Guizhou Plateau, the Qinghai-Tibet Plateau, etc.) and

the coastal areas with good atmospheric circulation and high

precipitation (Figure 3A).

The AQI in China has significant seasonal variation. The site

averaged AQI shows an approximate U-shaped trend from

spring to winter (Figure 4). In order to compare the spatial

TABLE 1 Overview of air pollution in China from 2015 to 2020.

Year Proportion of air
pollution days (%)

Primary pollutant City air quality
exceedance rate (%)

China Beijing-tianjin-hebei Xinjiang

2015 23.30 PM2.5, O3 PM2.5, O3 PM10, PM2.5 78.40

2016 21.20 PM2.5, PM10 PM2.5, O3 PM10, PM2.5 75.10

2017 22.00 PM2.5, PM10 PM2.5, O3 PM10, PM2.5 70.70

2018 20.70 PM2.5, PM10 PM2.5, O3 PM10, PM2.5 64.20

2019 18.00 PM2.5, O3 PM2.5, O3 PM10, PM2.5 53.40

2020 13.00 PM2.5, O3 PM2.5, O3 PM10, PM2.5 40.10

FIGURE 3
Spatial distribution of (A) annual air quality index from 2015 to 2020 and (B) seasonal air quality index in China.
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distribution characteristics of the AQI in different seasons,

ordinary kriging was performed for the AQI in four seasons

from 2015 to 2020, and the results are shown in Figure 3B.

The spatial distribution of the AQI varies with seasons. The

polluted area (AQI > 100) is largest in winter due to large area

pollution in the North China Plain (Figure 3B). The heavily

polluted area (AQI > 200) is largest in spring and accounted for

0.48% of the total area. The moderately polluted (150 < AQI <
200) areas in spring and winter accounted for 2.29% and 1.13% of

the total area, respectively. The site averaged value of AQI was

highest in winter (Figure 4). However, the maximum AQI at

spatial level was located in the southwestern part of Xinjiang

Province in spring (Figure 3B), and this is affected by desert dust

with PM10 as primary pollutant (explained in section 3.3). There

were no moderately and heavily polluted areas in summer and

autumn. The area with excellent air quality (AQI < 50) is the

largest in summer, and accounted for 76.67% of the total area.

Followed by autumn, it accounted for 62.85% of the total area.

3.3 Identification of the air pollution
clustering areas

The global Moran’s I can characterize the degree of spatial

autocorrelation of the AQI in general. The global Moran’s I

calculated using annual and seasonal AQI is listed in Table 2.

It can be seen that the annual Moran’s I take values above

0.70, and take values around 0.70 at the seasonal level, and

the p-values of significance tests are all less than 0.01. These

indicate that the spatial distribution of AQI in China show

positive spatial autocorrelation at 5% significance, i.e., a

significant aggregated distribution. The adjacent areas

have similar AQI values, which is areas with high level of

air quality surrounded by neighbors with high level of air

quality, and vice versa.

In order to identify the specific aggregated areas, the LISA

clustering map were drawn at the annual and seasonal levels

(Figure 5). At the annual level, Guangdong, Yunnan, Guizhou

and Sichuan Province, parts of Tibet, northeastern Inner

Mongolia and parts of Heilongjiang Province presented

agglomerations of low AQI values (light blue color in

Figure 5). The Beijing-Tianjin-Hebei (BTH) region as well as

the northern part of Xinjiang Province and the southwestern

region showed clusters of high air pollution (pink color in

Figure 5). Han et al. (2019) also found AQI had high-high

clustering in the BTH region. However, they did not find

high-high clustering in Xinjiang Province. The difference

mainly due to different data used. Our study used site-level

observation data for spatial analysis, and Han et al. (2019) used

city-level data. As Figure 1 shown, the observation sites are sparse

in Xinjiang province, and when the site-level data is averaged to

city level, the data will be too sparse to identify spatial clustering.

It is obvious that spatial crusting may not be identified when

spatial data is too sparse.

The agglomeration area changes with the seasons. The main

changing was show in the western part of Inner Mongolia where

high-high cluster was presented in spring and summer and no

significant cluster in autumn and winter. Part of Heilongjiang

province also showed significant seasonal change with high-high

cluster in spring and summer but low-low cluster in autumn and

winter.

The BTH region has a semi-closed topography formed by the

Taihang and Yanshan Mountains. This topography can

block and weaken the activity of air flow, which results in

accumulate of pollutants (Li et al., 2021). When the high

airflow crosses the two mountain ranges, it tends to sink in

this region. Its temperature increases during the sinking

FIGURE 4
Seasonal variations in site averaged air quality index in China.

TABLE 2 Global Moran’s I and its test metrics.

Time Global Moran’s I Z-value p-value

2015 0.76 22.09 0.00

2016 0.76 22.32 0.00

2017 0.74 21.79 0.00

2018 0.75 22.39 0.00

2019 0.74 21.37 0.00

2020 0.73 21.89 0.00

Spring 0.68 19.99 0.00

Summer 0.69 20.20 0.00

Autumn 0.69 19.71 0.00

Winter 0.67 19.19 0.00
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process, further promoting the formation of low-level

inversions. The atmosphere is stabilized with the

inversion layer, thus further reducing pollutants diffusion.

In terms of meteorological conditions, the unfavorable

factors in the BTH region mainly include the following: 1) In

recent years, the temperature distribution in the middle and

FIGURE 5
(A) Annual and, (B) seasonal LISA cluster maps.
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lower troposphere in winter has shown an obvious structure of

upper warm and lower cooling, and the global warming trend has

also increased the stability of the atmosphere. These make the

contaminants not easily diluted and dispersed (Zhang et al., 2019). 2)

When the southeasterly and southerly winds are strong at the lower

level, theywork together to transport the surrounding pollutants to the

Beijing-Tianjin-Hebei region, resulting in an explosive increase in the

accumulation of pollutants in the BTH region, thereby forming

accumulated pollution (Zhong et al., 2019). 3) The atmospheric

self-purification capacity gradually decreased from 1961 to

2017 and decreased rapidly at a rate of 0.039 tons/(d-km2) per

year after 2000. The regional area increased by 21.83% from

2015 to 2019, and the rough subsurface after urbanization reduced

the surface wind speed and weakened the atmospheric removal

capacity (Mei et al., 2019). In addition, people’s demand for

heating will increase the use of coal, and the concentration of

PM2.5 in the air seriously exceeds the standard in winter (Zhang,

2020).

FIGURE 6
(A) The shifting trajectory of the gravity centers in the BTH region and its surrounding areas and (B) its zoomed-in view.
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As to the Xinjiang region, its topographic structure can be

generally summarized as “three mountains sandwiched by two

basins”. This topographic structure makes the climate in the

north and south vary significantly (Xie et al., 2018). The southern

Xinjiang is affected by the water vapor barrier of the Tianshan

Mountains, which makes it drier than the northern region

(Zhang and Zhang, 2006). In addition, the Taklamakan Desert

located in the middle of southern Xinjiang is a major source of air

pollution (Zhu et al., 2018). Air pollution caused by sand and

dust storms is widespread and intense in this region (Jiang et al.,

2020), especially in spring (Mamatabdulla et al., 2021). This leads

to the highest AQI in the southern Xinjiang region in spring

(Figure 3B).

3.4.Spatial coupling of air pollution with
population and economy

3.4.1 Gravity centers in the air pollution
clustering area

The BTH region and its surrounding areas are one of the

areas with air pollution clustering, also have the highest

population density and economic activity in China. Therefore,

it is important to analyze influential factors on air quality in these

areas. In order to analyze the spatial coupling of air pollution

with population and economy in these areas, the gravity center of

air pollution and four socioeconomic factors from 2015 to

2020 were calculated, and their shifting trajectory are shown

in Figure 6. The APGC, PGC and SIGC are all located in

Cangzhou City, Hebei Province, but the EGC and TIGC are

further north and closer to the economic center, Beijing.

Based on the zoomed-in shifting trajectory of the APGCs

from 2015 to 2020 in Figure 6, the maximum shifting range of the

APGCs was only about 6 km, indicating that there is no large-

scale shifting of the APGCs. Similarly, Other gravity centers also

did not move widely. This suggests that the spatial shifting of the

gravity centers of both air pollution and its associated

socioeconomic factors is a long-term process. The shifting of

the APGCs on longer time scale remains to be further

investigated.

The SOI between the APGC and the other four gravity

centers is shown in Figure 7. The smaller the SOI, the shorter

the distance between the two kinds of gravity centers, and the

higher of their spatial overlapping is from a static perspective. It

can be seen that the SOI between the APGC and the PGC is less

than 15 km, and that between the APGC and the EGC is larger

FIGURE 7
Spatial overlapping and shifting consistency indicators in the BTH region and its surrounding areas.
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than 65 km. It indicated that the spatial overlapping of the APGC

with the PGC is the highest, followed by the SIGC, TIGC,

and EGC.

The value range of the SCI is from −1 to 1, and the closer it is

to 1 the more the shifting trends to be in the same direction, and

vise verse. According to Figure 7, the APGC and the SIGC has the

highest shifting consistency, since the values of their shifting

consistency indicator are larger than 0.3 in all years, and its

maximum value is close to 1. In contrast, the APGC and the TIGS

has the lowest shifting consistency with the SCI value smaller

than 0 in all years. The SCI of the APGC and the PGC has

values > 1 except in 2018. The shifting trends between the APGC

and the EGC is consistent in 2016, 2018 and 2020 and is opposite

in 2017 and 2019 (Figure 7).

3.4.2 Impact of socioeconomic factors on air
pollution of the pollution clustering area

The SOI and SCI is used to investigate the spatial coupling

degree of the APGC and other gravity centers from a static and

dynamic perspective, respectively. Combining the results of the

SOI and SCI, it is obtained that spatial coupling between air

pollution and the secondary industry is the highest, but the

spatial coupling between air pollution and the tertiary industry

(or the economic volume) is low. This indicates that in the BTH

region and its surrounding areas, the driving factors of air

pollution is dominated by industrial structure but not

economic volume (GDP). Other studies also found that

irrationality of industrial structure is the main causes of

serious air pollution in these areas (Li et al., 2021).

Therefore, seeking the technological upgrading and

industrial transformation of the secondary industry will

become important in the controlling of air pollution in these

areas. Industry contribution rates of the representative cities in

the BTH region and its surrounding areas from 2015 to 2020 are

shown in Table 3. Beijing, Tianjin, and Shijiazhuang have high

proportion of tertiary sector, and the proportion of tertiary

industry in Beijing reached 82.86%. All other cities are

dominated by the secondary industry which is characterized

with high energy consumption, non-clean energy as the main

driver and crude productionmethods. Beijing, as the city with the

largest population density and economic volume in BTH region,

it maintains the best air quality in BTH region, which is closely

related to the tertiary industry with low energy consumption and

high economic benefits (Table 3).

Policies also have played an important role in the decoupling

of air pollution and economic development (Li et al., 2021). With

stricter environmental protection policies and higher technical

requirements, there is more resistance for high-pollution

enterprises to stay in developed areas, and these enterprises

will be transferred to underdeveloped areas. This may be the

reason for the low level of spatial coupling between air pollution

and GDP in the BTH region and its surrounding areas.

4 Conclusion

China’s air pollution control has great achievements. From

2015 to 2020, the overall AQI value decreasing at a rate of about

27% yearly. The spatial distribution of the AQI in China showed

positive spatial autocorrelation at 5% significance. The BTH

region and the southern region of Xinjiang are air pollution

clustering areas. Both areas are influenced by topography and

meteorological conditions, which lead to accumulation of air

pollutants. However, the BTH region is influenced by human

factors with PM2.5 as the primary pollutant. While southern

Xinjiang is more affected by desert dust with PM10 as primary

pollutant.

The AQI varies with seasons. The most serious air pollution

with PM10 as primary pollutant occurs in spring in the southern

region of Xinjiang, and the greatest extent of air pollution with

PM2.5 as the primary pollutant occurs in winter affecting 12%

areas of the country.

Air pollution has the highest degree of spatial coupling with

the secondary industry, and low degree of coupling with the

TABLE 3 Industry contribution rate (%) of typical cities in the BTH and its surrounding areas.

City Industry contribution rate/% Energy consumption per
GDP [t/(104 RMB)]

Coal consumption (104 t)

First industry Secondary industry Tertiary industry

Beijing 0.41 16.73 82.86 0.25 516.21

Tianjin 1.40 36.92 61.68 0.46 3998.15

Shijiazhuang 8 26.85 65.15 0.73 3429.6

Tangshan 8.1 53.8 38.1 1.84 7934.87

Handan 10.70 46.16 43.14 1.18 4363.60

Changzhi 4.06 52.42 43.52 1.2 1541.2

Heze 10.25 48.25 41.50 0.79 1503.4

Zibo 3.49 51.61 44.9 0.7 2939
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tertiary industry and the economic volume in the BTH region

and its surrounding areas. This indicates that in these areas, the

driving factors of air pollution is secondary industry. Therefore,

seeking the technological upgrading and industrial

transformation of the secondary industry will be an important

factor to further improve air pollution in China.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: http://www.cnemc.cn/.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Conflict of interest

MZ was employed by Jiangsu Zhongwu Environmental

Protection Industry Development Co. LTD.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

References

Bivand, R. S., and Wong, D. W. S. (2018). Comparing implementations of global
and local indicators of spatial association. TEST 27, 716–748. doi:10.1007/s11749-
018-0599-x

Fan, J. (1996). An analysis of the economic features and regional difference of
Chian‘s rural industrialization. Acta Geogr. Sin. 1996. 398–407. doi:10.11821/
xb199605002

Fan, J., Tao, A., and Lv, C. (2010). The coupling mechanism of the centroids of
economic gravity and population gravity and its effect on the regional gap in China.
Prog. Geogr. 29, 87–95. doi:10.11820/dlkxjz.2010.01.012

Han, L., Zhou, W., Li, W., Qian, Y., and Wang, W. (2019a). Fine particulate (PM2.5)
dynamics before and after China’s “Reform and Opening up” policy in Shenzhen. Phys.
Chem. Earth, Parts A/B/C 111, 100–104. doi:10.1016/j.pce.2019.04.004

Han, X., Li, H., Liu, Q., Liu, F., and Arif, A. (2019b). Analysis of influential factors
on air quality from global and local perspectives in China. Environ. Pollut. 248,
965–979. doi:10.1016/j.envpol.2019.02.096

Hao, Y., and Liu, Y.-M. (2016). The influential factors of urban
PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod.
112, 1443–1453. doi:10.1016/j.jclepro.2015.05.005

Jiang, P., Pan, X., Peng, Y., and Xu, T. (2020). Analysis of spatio-temporal
distribution characteristics of air quality in Xinjiang region. GEOSPATIAL Inf. 18,
85–89+99+8. doi:10.3969/j.issn.1672-4623.2020.07.023

Li, H., Wang, S., Zhang, W., Wang, H., Wang, H., Wang, S., et al. (2021).
Characteristics and influencing factors of urban air quality in beijing-TianjinHebei
and its surrounding areas (‘2+26’Cities). Res. Environ. Sci. 34, 172–184. doi:10.
13198/j.issn.1001-6929.2020.12.26

Li, J., Li, C., and Yin, Z. (2013). ArcGIS based kriging interpolation method and its
application. Bull. Surv. Mapp. 87, 90–97. doi:10.1007/s12204-013-1367-4

Li, X., Zhang, M., Wang, S., Zhao, A., and Ma, Q. (2012). Variation characteristics
and influencing factors of air pollution index in China. Environ. Sci. 33, 1936–1943.
doi:10.13227/j.hjkx.2012.06.035

Lian, X. (2007). Analysis on the space evolvem ent track of population G ravity
center, employm ent G ravity center and econom ic G ravity center. Popul. J. 8,
23–28. doi:10.16405/j.cnki.1004-129x.2007.03.005

Liang, L., Chen, M., Luo, X., and Xian, Y. (2021). Changes pattern in the
population and economic gravity centers since the Reform and Opening up in
China: The widening gaps between the South and North. J. Clean. Prod. 310,
127379. doi:10.1016/j.jclepro.2021.127379

Liao, H., Gao, Y., Chen, D., Dai, H., Du, N., Fang, L., et al. (2021). Assessment of
air quality-climate interactions in IPCC A6. Trans. Atmos. Sci. 44, 658–666. doi:10.
13878/j.cnki.dqkxxb.20210823011

Liu, C., Jin, M., Zhu, X., and Peng, Z. (2021). Review of patterns of spatiotemporal
PM2.5, driving factors, methods evolvement and urban planning implications.
J. Hum. Settlements West China 36, 9–18. doi:10.13791/j.cnki.hsfwest.20210402

Mamatabdulla, E., Ayxamgul, M., Sayran, W., Chen, T., Bupatima, A., Ayxam,
M., et al. (2021). Temporal distribution and variation characteristics of sandstorms
in Hotan Prefecture. Arid Zone Res. 38, 1306–1317. doi:10.13866/j.azr.2021.05.12

Mei, M., Zhu, R., and Sun, C. (2019). Study on meteorological conditions for
heavy air pollution and its climatic characteristics in “2+26” cities around
BeijingTianjin-Hebei region in autumn and winter. Clim. Change Res. 15,
270–281. doi:10.12006/j.issn.1673-1719.2018.130

Pei, Y., Zhu, Y., and Wang, N. (2021). Air pollution, industrial efficiency and
industrial agglomeration. Ecol. Econ. 37, 176–184+222.

Shen, F. (2021). Study on the spatiotemporal changes of the concentration of air
pollutants and the air quality health index in China. Atmosphere. doi:10.27248/d.
cnki.gnjqc.2021.000050

Tao, Y., Shen, J., and Yang, W. (2019). On the spatial effects of China’s industrial
energy environment efficiency and their influencing factors : A perspective of air
pollution. J. Southwest Univ. Sci. Ed. 41, 107–117. doi:10.13718/j.cnki.xdzk.2019.
06.016

Wang, J., Liao, Y., and Liu, X. (2010). Spatial data analysis tutorial. Beijing:
Science Press.

Wang, L., Zhang, S., Liu, Y., and Liu, Y. (2022). Interaction between construction
land expansion and cropland expansion and its socioeconomic determinants:
Evidence from urban agglomeration in the middle reaches of the yangtze river,
China. Front. Environ. Sci. 10, 882582. doi:10.3389/fenvs.2022.882582

Webster, R., and Oliver, M. A. (2007). Geostatistics for environmental scientists.
Hoboken, New Jersey, U.S: Wiley. doi:10.1002/9780470517277

Xie, Z., Zhou, Y., and Yang, L. (2018). Review of study on precipitation in
Xinjiang. Torrential Rain Disasters, 37, 204–212. doi:10.3969/j.issn.1004-9045.2018.
03.002

Xuan, L. (2020). Study on the spatial-temporal P attern and influencing F actors
of carbon emission intensity. Therm. Power Ind. doi:10.27307/d.cnki.gsjtu.2020.
003279

Zang, X., Lu, Y., Yao, H., Li, F., and Zhang, S. (2015). The temporal and spatial
distribution characteristics of main air pollutants in China. Ecol. Environ. Sci. 24,
1322–1329. doi:10.16258/j.cnki.1674-5906.2015.08.010

Zhang, H. (2020). Spayial and temporal distribution characteristics of airquality
and prediction of PM2.5 concentration in Beijing-Tianjin-Hebei region. Front.
Environ. Sci. doi:10.27064/d.cnki.ghasu.2020.001273

Frontiers in Environmental Science frontiersin.org11

Yan et al. 10.3389/fenvs.2022.1040131

http://www.cnemc.cn/
https://doi.org/10.1007/s11749-018-0599-x
https://doi.org/10.1007/s11749-018-0599-x
https://doi.org/10.11821/xb199605002
https://doi.org/10.11821/xb199605002
https://doi.org/10.11820/dlkxjz.2010.01.012
https://doi.org/10.1016/j.pce.2019.04.004
https://doi.org/10.1016/j.envpol.2019.02.096
https://doi.org/10.1016/j.jclepro.2015.05.005
https://doi.org/10.3969/j.issn.1672-4623.2020.07.023
https://doi.org/10.13198/j.issn.1001-6929.2020.12.26
https://doi.org/10.13198/j.issn.1001-6929.2020.12.26
https://doi.org/10.1007/s12204-013-1367-4
https://doi.org/10.13227/j.hjkx.2012.06.035
https://doi.org/10.16405/j.cnki.1004-129x.2007.03.005
https://doi.org/10.1016/j.jclepro.2021.127379
https://doi.org/10.13878/j.cnki.dqkxxb.20210823011
https://doi.org/10.13878/j.cnki.dqkxxb.20210823011
https://doi.org/10.13791/j.cnki.hsfwest.20210402
https://doi.org/10.13866/j.azr.2021.05.12
https://doi.org/10.12006/j.issn.1673-1719.2018.130
https://doi.org/10.27248/d.cnki.gnjqc.2021.000050
https://doi.org/10.27248/d.cnki.gnjqc.2021.000050
https://doi.org/10.13718/j.cnki.xdzk.2019.06.016
https://doi.org/10.13718/j.cnki.xdzk.2019.06.016
https://doi.org/10.3389/fenvs.2022.882582
https://doi.org/10.1002/9780470517277
https://doi.org/10.3969/j.issn.1004-9045.2018.03.002
https://doi.org/10.3969/j.issn.1004-9045.2018.03.002
https://doi.org/10.27307/d.cnki.gsjtu.2020.003279
https://doi.org/10.27307/d.cnki.gsjtu.2020.003279
https://doi.org/10.16258/j.cnki.1674-5906.2015.08.010
https://doi.org/10.27064/d.cnki.ghasu.2020.001273
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1040131


Zhang, L., and Pan, J. (2021). Spatial-temporal pattern of population exposure
risk to PM2.5 in Global. China Environ. Sci. 41, 5391–5404. doi:10.19674/j.cnki.
issn1000-6923.20210706.008

Zhang, S., and Zhang, K. (2007). Comparison between general Moran′s Index and
Getis-Ord general g of spatial autocorrelation. Acta Sci. Nat. Univ. Sunyatseni 46,
93–97. doi:10.3321/j.issn:0529-6579.2007.04.021

Zhang, X., Xu, X., Ding, Y., Liu, Y., Zhang, H., Wang, Y., et al. (2019). The impact
of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key
regions in China. Sci. China Earth Sci. 62, 1885–1902. doi:10.1007/s11430-019-
9343-3

Zhang, X., and Zhang, J. (2006). Xinjiang meteorological manual. Beijing: China
Meteorological Press.

Zhao, H., Liu, Y., Lindley, S., Meng, F., and Niu, M. (2020). Change, mechanism,
and response of pollutant discharge pattern resulting from manufacturing
industrial transfer: A case study of the pan-yangtze river delta, China. J. Clean.
Prod. 244, 118587. doi:10.1016/j.jclepro.2019.118587

Zhong, J., Zhang, X., and Wang, Y. (2019). Relatively weak meteorological
feedback effect on PM2.5 mass change in Winter 2017/18 in the Beijing area:
Observational evidence and machine-learning estimations. Sci. Total Environ. 664,
140–147. doi:10.1016/j.scitotenv.2019.01.420

Zhu, J., and Yao, J. (2021). Socio - economic factors on air quality in 31 provincial capital
cities in China. Environ. Sci. Surv. 40, 20–27. doi:10.13623/j.cnki.hkdk.2021.06.004

Zhu, R., Zhang, C., and Mei, M. (2018). The climate characteristics of
atmospheric self-cleaning ability index and its application in China. China
Environ. Sci. 38, 3601–3610. doi:10.19674/j.cnki.issn1000-6923.2018.0389

Frontiers in Environmental Science frontiersin.org12

Yan et al. 10.3389/fenvs.2022.1040131

https://doi.org/10.19674/j.cnki.issn1000-6923.20210706.008
https://doi.org/10.19674/j.cnki.issn1000-6923.20210706.008
https://doi.org/10.3321/j.issn:0529-6579.2007.04.021
https://doi.org/10.1007/s11430-019-9343-3
https://doi.org/10.1007/s11430-019-9343-3
https://doi.org/10.1016/j.jclepro.2019.118587
https://doi.org/10.1016/j.scitotenv.2019.01.420
https://doi.org/10.13623/j.cnki.hkdk.2021.06.004
https://doi.org/10.19674/j.cnki.issn1000-6923.2018.0389
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1040131

	Air pollution in China: Spatial patterns and spatial coupling with population and economy
	1 Introduction
	2 Data sources and methodology
	2.1 Ambient air quality data
	2.2 Method for evaluating air quality
	2.3 Spatial analysis
	2.3.1 Spatial interpolation
	2.3.2 Spatial autocorrelation analysis

	2.4 Gravity center method
	2.4.1 Gravity center calculation
	2.4.2 Spatial overlapping indicator
	2.4.3 Shifting consistency indicator


	3 Results and discussion
	3.1 Changing of air quality from 2015 to 2020
	3.2 Spatial patterns of air pollution in China
	3.3 Identification of the air pollution clustering areas
	3.4.Spatial coupling of air pollution with population and economy
	3.4.1 Gravity centers in the air pollution clustering area
	3.4.2 Impact of socioeconomic factors on air pollution of the pollution clustering area


	4 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


