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Numerical weather prediction (NWP) provides the future state of the

atmosphere and is a major tool for weather forecasting. However, NWP has

inevitable errors and requires bias correction to obtainmore accurate forecasts.

NWP is based on discrete numerical calculations, which inevitably result in a loss

in resolution, and downscaling provides important support for obtaining

detailed weather forecasts. In this paper, based on the spatio-temporal

modeling approach, the Spatio-Temporal Transformer U-Net (ST-UNet) is

constructed based on the U-net framework using the swin transformer and

convolution to perform bias correction and temporal downscaling. The

encoder part extracts features from the multi-time forecasts, and the

decoder part uses the features from the encoder part and the constructed

query vector for feature reconstruction. Besides, the query builder block

generates different query vectors to accomplish different tasks. Multi-time

bias correction was conducted for the 2-m temperature and the 10-m wind

component. The results showed that the deep learning model significantly

outperformed the anomaly numerical correction with observations, and ST-

UNet also outperformed the U-Net model for single-time bias correction and

the 3-dimensional U-Net (3D-UNet) model for multi-time bias correction.

Forecasts from ST-UNet obtained the smallest root mean square error and

the largest accuracy and correlation coefficient on both the 2-m temperature

and 10-m wind component experiments. Meanwhile, temporal downscaling

was performed to obtain hourly forecasts based on ST-UNet, which increased

the temporal resolution and reduced the root mean square error by

0.78 compared to the original forecasts. Therefore, our proposed model can

be applied to both bias correction and temporal downscaling tasks and achieve

good accuracy.
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1 Introduction

Weather changes have a great impact on human life and

production, and accurately learning about the future state of the

weather is significant. Weather forecasting, as a method of

predicting the future state of the atmosphere, has always been

a fundamental issue and a research hotspot in the field of

atmospheric science (Bauer et al., 2015). Nowadays,

operational weather forecasting is based on NWP models,

which use powerful computers to perform numerical

calculations to solve the hydrodynamic and thermodynamic

equations describing the evolution of weather, thus predicting

the future state of atmospheric motion and weather phenomena

(Bauer et al., 2015; Krishnamupti and Bounoua, 2018).

Attributed to the development of computer technology

(Shuman, 1989; Lapillonne et al., 2016), model technology

(Kalnay et al., 1996) and observational tools (Schulze, 2007;

Leuenberger et al., 2020), NWP has made great progress in

the last few decades.

However, NWP still suffers from unavoidable errors and a

deficiency in model resolution. The NWP model cannot

accurately describe sub-grid processes, while the numerical

calculation process is approximated and the initial field is

inaccurate. As a result, there are errors in the NWP, which

are divided into initial field errors and model errors (Privé and

Errico, 2013). Data assimilation can be used to obtain a more

realistic state of the atmosphere by fusing satellite, radar, and

other observations, thus providing an accurate initial field (Ghil

and Malanotte-Rizzoli, 1991). Ensemble forecasts, which make

use of forecasts from different conditions to compensate for the

model’s lack of description of physical processes and the

uncertainty of other factors, have been used in practical

applications (Zhu, 2005; Qiao et al., 2020). However, many

industries such as agriculture and transportation require

accurate weather forecasts, so NWP forecasts need further

corrections. Meanwhile, due to the limitation of

computational and storage resources, NWP forecasts are

limited in spatial and temporal resolutions, which makes it

difficult to provide finer spatial and temporal forecast results.

To address this issue, downscaling methods have been developed.

For bias correction, many methods have been proposed,

including model output statistics (MOS) (Glahn and Lowry,

1972), anomaly numerical correction with Observations

(ANO) (Peng et al., 2013), Bayesian model averaging (BMA)

(Sloughter et al., 2010), the Kalman filter (Yang, 2019), and

model output machine learning (MOML) (Li et al., 2019). MOS

uses multivariate linear equations to establish the relationship

between observations and forecasts, which relies on a large

amount of data. Based on the theory that atmospheric states

can be divided into climate-averaged and perturbed states (Qian,

2012), ANO overlays the difference between the climate-

averaged state of the observations and the climate-averaged

state of the model to correct the model bias. However, during

sudden weather changes, ANO is difficult to revise model

outputs. BMA obtains the best forecasts by constructing

probability density functions (PDFs), so it is strongly

dependent on the accuracy of the PDFs. For MOML, a variety

of machine learning algorithms such as the support vector

machine and the random forest can be used to establish the

relationship between multiple forecast elements and correction

elements to realize bias correction (Cho et al., 2020), where the

choice of forecast elements is important for MOML. The deep

learning model can also be used for bias correction, which is

described in the next paragraph. For downscaling problems,

current research focuses on spatial downscaling,

i.e., converting large-scale low-resolution model outputs into

high-resolution data. Traditional downscaling methods include

statistical downscaling and dynamical downscaling, which use

statistical relationships and nested models, respectively.

However, temporal downscaling is also important. A

stochastic weather generator is applied to seasonal

precipitation and temperature forecasts, which extends

generalized linear modeling approach to stochastic weather

generator and introduces the aggregated climate statistics as

covariates (Kim et al., 2016). At present, less research studies

in this field have applied deep learning methods.

With the rise of deep learning techniques, they have been

widely used and have achieved great success in many fields,

including atmospheric science (Wang et al., 2021). Deep learning

has been applied to areas such as image classification and image

segmentation, where the data is generally gridded and spatial

feature extraction has greatly improved the capability of the

models. In contrast, methods such as MOS, BMA, and MOML

establish regression relationships for a single point, so deep

learning has an advantage in extracting spatial features from

forecast data. Meanwhile, deep learning models can be migrated

to a wide range of tasks, and their parameters can be adjusted

through training to achieve superior results. This also allows deep

learning to accomplish many tasks in the field of atmospheric

science, such as prediction, inversion, and bias correction.

However, deep learning frameworks lack interpretability and

are like black boxes. Therefore, constructing appropriate models

for different tasks and adding physical meaning to the models is

the direction of deep learning development. To realize

precipitation nowcasting, models derived from the encoder-

decoder framework are adopted to generate nowcasting by

fusing radar data and satellite data (Shi et al., 2017; Zhang

et al., 2021). To invert the meteorological elements such as

precipitation, Wu et al. (2020a); Xue et al. (2021) constructed

models based on the convolutional neural network (CNN) or

recurrent neural network to achieve precipitation estimation by

using satellite bright temperature data, topographic elevation

data, and meteorological station data. Combining the

discontinuity of precipitation and the ill-posed property of

downscaling, a novel deep learning model was constructed by

using the super-resolution reconstruction technique in deep
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learning to realize precipitation downscaling (Xiang et al., 2022).

For bias correction, the UNet was used to conduct bias correction

by combining multiple forecast elements of the model output

(Chen et al., 2020; Han et al., 2021), which indicates that deep

learning models can significantly reduce the error of the forecast

data. Therefore, for bias correction and temporal downscaling,

this paper attempts to propose a model based on deep learning

method to complete the above tasks, and achieves better results

than the previous methods.

In this study, the spatio-temporal transformer U-net (ST-UNet)

is proposed based on spatio-temporal modeling to perform bias

correction and temporal downscaling tasks. The shifted window

(swin) transformer is a hierarchical structure based on the

transformer, and it divides images into non-overlapping

windows and shifted windows. The self-attention mechanism is

applied to each of the non-overlapping windows and shifted

windows to obtain global features. The traditional U-net model

is also a hierarchical u-shaped structure based on CNN. This paper

replaces CNN with the swin transformer to facilitate the local

feature extraction of CNN. The bias correction and downscaling

tasks are transformed into the image translation problem in deep

learning, and the spatio-temporal information of forecasts is fully

exploited. For meteorological elements, the atmospheric state at a

given point and a given time is not only related to the surrounding

atmosphere but also the atmospheric state before and after. That is,

the atmosphere has a spatio-temporal evolution, so mining spatio-

temporal features is conducive to bias correction, which is also an

important basis for temporal downscaling. Based on spatio-

temporal modeling, this paper uses multi-time forecasts as input

while processing the spatio-temporal information. The encoder part

processes the input to obtain different levels of features. The query

builder block generates different query vectors for bias correction

and downscaling tasks. The decoder uses the query vector and the

features from the encoder to complete the feature reconstruction

and generate the multi-time output. Finally, the capability of our

proposed model for each of the two tasks was verified by bias

correction on 2-m temperature and 10-m u component of wind and

temporal downscaling on 2-m temperature.

2 Data description

In this study, bias correction and temporal downscaling are

applied to the forecast data to obtain more accurate and detailed

forecasts. The operational Global Forecast System forecast (GFS)

data provided by the National Centers for Environmental Prediction

is used in this study (National Centers for Environmental Prediction,

National Weather Service, NOAA, U.S. Department of Commerce,

2015). GFS is 0.25° × 0.25° gridded data that includes a wide range of

meteorological elements in the air and on the surface. The data has

forecast time steps at a 3-h interval from 0 to 240 h and a 12-h

interval from 240 to 384 h. The model forecast is performed at 00,

06, 12, and 18 UTC daily. As an alternative to ERA-Interim, ERA-5

is the fifth generation of the European Center for Medium-Range

Weather Forecasts Reanalysis (ERA), which provides hourly

estimates of atmospheric, terrestrial, and oceanic climate variables

(Hersbach, 2016). ERA-5 uses advanced modeling and data

assimilation systems to integrate historical observations and

satellite data into global estimates, which can provide a more

realistic state of the atmosphere (He et al., 2019; Hersbach et al.,

2020). Thus, ERA-5 is as used the true data in this study. The ERA-5

data has the same spatial resolution as the GFS forecasts, but its

temporal resolution is 1 h, so it provides a more detailed view of the

atmospheric state.

Our research areas are 105°–120°E and 20°–40°N, which cover

the central and eastern regions of China and have many different

geographic features and weather conditions. The specific domain

and geographic features are illustrated in Figure 1. For bias

correction and temporal downscaling tasks, the multi-time data

of GFS forecast is taken as input, and the ERA-5 data at the same

moment provides the true atmospheric state as the output target.

The GFS forecast data for the period from 15 January 2015 to

30 September 2020 is used in this study. For each forecast sample,

the dataset is constructed by using the ERA-5 data corresponding

to the forecast time as the true value. Meanwhile, to maintain the

stability of the training process and to speed up the convergence,

the raw data is normalized by using zero-mean normalization.

The data from 15 January 2015 to 28 February 2019 is used as the

training set, the data from 1 March 2019 to 31 August 2019 is

used as the validation set, and the data from 1 September 2019 to

30 September 2020 is used as the test set. There are more than

8,000 samples in total. The ratio of training, validation, and test

set is approximately 7:1:2.

3 Methods

Traditional bias correction methods make individual

corrections to the forecast data at a given time. They cannot

take full advantage of the temporal correlation of the forecast

data and cost a lot of resources for repeated modeling (Han et al.,

2021). Also, the elements of the atmosphere (e.g., temperature,

humidity, wind field, etc.) are correlated in time. Therefore, it is

more effective to perform bias correction on adjacent multi-time

forecasts at a particular moment in time. Meanwhile, a multi-

time bias correction model can be constructed, which uses multi-

time forecasts as input to complete the bias correction of multi-

time forecasts. Specifically, given the forecast result P at the issue

time t0 from the GFS, 3 days of forecasts are selected at an interval

of 6 h, which is denoted as P′:

P′ � Pt
n,w×h{ }t�t0+1,t0+2,...,t0+T

n�1,2,...,N w�1,2,...,W h�1,2,...,H (1)

where T denotes the length of the forecast time series, N denotes

the number of meteorological elements, and W × H denotes the

grid size of the forecast.
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The ERA-5 data at the time corresponding to forecast data P′
is selected as the true value and denoted as G. For the bias

correction or temporal downscaling task, the mapping

relationship F between P′ and G need to be determined.

Considering that the true state Gt0 at the issue time t0 is

related to the forecast data P, it is also used as the input.

Thus, for the bias correction task, we have the following equation:

Ppre � F P′, Gt( ) (2)

where F denotes the mapping relationship for bias correction,

and Ppre denotes the corrected forecast data.

The elements of the atmosphere are closely related and they

evolve simultaneously in space and time. Also, temperature,

relative humidity, and wind speed are closely related to each

other (including the temporal and spatial distribution and error

characteristics) in terms of the equation constraints of the NWP

model and the dynamic, thermal, and micro-physical

characteristics of the atmosphere. Therefore, other

meteorological elements are introduced into the input. In this

paper, 2-m temperature, 2-m relative humidity, and 10-m wind

are used as inputs. Therefore, we have the following equation:

Ppre � F Pn′, Gt( ) (3)

where Pn′ represents the forecast data of n meteorological

elements, including 2-m temperature, 2-m relative humidity,

and 10-m wind.

In addition to the bias correction task, temporal downscaling

is also performed, i.e., low-resolution forecast data are used in the

time dimension to obtain high-resolution forecasts. Meanwhile,

the same inputs are used, but forecasts are selected for 1 day at an

interval of 3 h. Besides, hourly ERA-5 data in the same time range

are used as true values. Then, by adapting the bias correction

model, temporal downscaling results can be obtained. The whole

process is described as follows:

Ppre′ � F′ Pn′, Gt( ) (4)

where F′ represents the mapping relationship for temporal

downscaling, and Ppre′ denotes the forecast data after temporal

downscaling.

In the following, the swin transformer and the specific

framework of our proposed model will be introduced. Our

model consists of three parts: the encoder, the decoder, and

the query builder. The encoder uses the swin transformer for

feature extraction and convolution for downsampling, and the

above process is implemented in multiple layers. The query

builder uses the features of the last layer in the encoder to

generate the query vector. At different layers, the decoder

combines the encoder’s feature processed by 3D convolution

and the query vector to realize upsampling, and the final output is

generated from the reconstructed features. By modifying the

query builder, error correction and temporal downscaling can be

accomplished. It is worth noting that different query vectors are

constructed for different tasks, and the overall framework is

shared.

3.1 Swin transformer

For gridded data such as images, CNN is applied for data

processing (Khan et al., 2018). Because of its local and

translation-invariant properties, the convolution operation is

used in extracting spatial features from gridded data, and

many network structures have been derived from CNN

(Simonyan and Zisserman, 2014; Ronneberger et al., 2015).

FIGURE 1
The study area. The colored bar represents the elevation of the terrain.
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However, the receptive field of spatial extraction of CNN is

limited. With the outstanding performance of the transformer in

natural language processing, the transformer is gradually applied

to computer vision for processing image data (Han et al., 2022).

The core operation of the transformer is scaled dot-product

attention (Vaswani et al., 2017). Given a query Q ∈ Rn×dq and a

set of key-value pairs K ∈ Rn×dq , V ∈ Rn×dv , scaled dot-product

attention calculates the attention score as:

Attention Q,K,V( ) � softmax
QKT��
dk

√ V( ) (5)

where softmax is the softmax function, and 1��
dk

√ is the scaling

factor.

To address the high computational consumption of the

attention mechanism, many new versions have been proposed,

such as informer, lite transformer, swin transformer (Wu et al.,

2020b; Zhou et al., 2021a; Liu et al., 2021). The swin transformer

uses a hierarchical structure and applies an attention mechanism

to non-overlapping windows and shifted windows (Liu et al.,

2021). It is an excellent transformer designed for computer vision

applications and is used in our model to process spatio-temporal

information from gridded forecasts.

3.2 Model

Based on the swin transformer and convolution, a spatio-

temporal model is constructed in this study to perform the bias

correction task and the temporal downscaling task, as shown in

Figure 2. The spatio-temporal model based on the swin

transformer has been designed and applied to video super-

resolution tasks and action recognition tasks (Geng et al.,

2022; Liu et al., 2022). The entire framework consists of an

encoder, a decoder, and a query builder. The encoder extracts

feature from the input, while the decoder used reconstructed

features to generate the output. For the encoder and decoder, a

series of swin transformers and convolution layers (including

convolution and deconvolution) are used respectively. The swin

transformer is used for feature extraction and reconstruction,

while convolution and deconvolution are used for upsampling

FIGURE 2
The overall structure of our proposes model.
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and downsampling, respectively. Features from different layers of

the encoder are processed with 3-dimensional convolution and

then used in the decoder. The query builder generates different

initial queries and applies them to the decoder.

3.2.1 Encoder
Firstly, the feature extraction block performs feature

extraction on the input. The block consists of two-

dimensional convolutions and normalization layers that map

the input into higher dimensions. Then, the high-dimensional

features are processed by a series of swin transformer encoder

blocks, while each swin transformer encoder block is connected

to a downsampling block consisting of a convolution (except

for the last swin transformer). The downsampling block

decreases the size of features by a factor of two, so different

layers acquire information at different scales. The above is

expressed as follows:

Xk � Tswin Ek−1( ), k � 1, 2, 3, 4
Ek � Cdown Xk( ), k � 1, 2, 3
Ek � Xk, k � 4

⎧⎪⎨⎪⎩ (6)

where Tswin denotes the swin transformer encoder block, Cdown

denotes the downsampling block, Xk denotes the output of the

swin transformer encoder block, and Ek denotes the output of

each layer in the encoder.

As shown in Figure 3, the swin transformer encoder block

consists of window-based multi-layer self-attention (W-MSA)

and shifted window-based multi-layer self-attention (SW-

MSA). The inputs are passed through a LayerNorm (LN)

layer, the W-MSA, the LN, and a multi-layer perception

(MLP) layer. The W-MSA lacks connections across

windows, which limits its modeling power. Then, a shifted

window partitioning approach called SW-MSA is proposed to

introduce cross-window connections. The subsequent

operations are consistent except for the change in the self-

attention block.

3.2.2 Query builder block
The output feature of each swin transformer encoder block

has time steps of the same length, which is the same as the input.

Only the size of the features is gradually reduced. The feature of

the last block En is formulated as follows:

En � En,3, En,6, En,9, . . . , En,3*T( ) (7)

where T represents the total length of the time steps of En, which

remains the same as that of the input’s forecast time series.

To make the model suitable for different tasks, a query

builder block is constructed. For the bias correction task, En is

directly used as the initial query vector; for the time downscaling

task, En is used to generate an initial query vector with a time

series length consistent with the downscaling target. Thus, the

following equation can be derived:

Q �

En,t t � 3k

2
3
En,t + 1

3
En,t+3 t � 3k + 1

1
3
En,t + 2

3
En,t+3 t � 3k + 2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (8)

where Q is the initial query vector. The above formula represents

the initial query vector for temporal downscaling.

3.2.3 Decoder
In the decoder, multiple swin transformer decoder blocks

and upsampling blocks are used. In each layer of the decoder, the

swin transformer decoder block generates output features by the

query vector acting on a dictionary of key-value pairs. Each swin

transformer decoder block has two inputs: a feature from the

encoder at the same layer, and a query vector. For the encoder’s

features, 3-dimensional convolution is used to exploit the local

FIGURE 3
The structure of the swin transformer encoder block.

FIGURE 4
The structure of the swin transformer decoder block.
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feature extraction capability of convolution (Kopuklu et al.,

2019). Unlike the 2-dimensional convolution, the 3-

dimensional convolution can act on multiple dimensions in

time and space to generate key-value pairs. The query vector

is generated by the query builder block in the first layer and the

output of the previous layer. Subsequently, the output of the swin

transformer decoder block is upsampled by an upsampling block

consisting of deconvolution. The whole process is shown below:

Dk � Cup Tswin C3d Xk( ), Q( )( ), k � 4
Dk � Cup Tswin C3d Xk( ), Dk+1( )( ), k � 2, 3
Dk � Tswin C3d Xk( ), Dk+1( ), k � 1

⎧⎪⎨⎪⎩ (9)

where Tswin denotes the swin transformer decoder block, Cup

denotes the upsampling block, C3d denotes the 3D convolution,

and Xk denotes the output of the swin transformer encoder block.

The structure of the swin transformer decoder block is shown

in Figure 4. The query vector is first passed through W-MSA.

Then, the output feature from the encoder is used as a dictionary

of key-value pairs, which passes through the window-based

multi-layer cross-attention (W-MCA) with the query vector.

The query vector acts on the dictionary of key-value pairs

from the encoder to generate the features for the target task

in W-MCA. The same operation is performed by SW-MSA and

shifted window-based multi-layer cross-attention (SW-MCA).

Finally, the feature from the final layer of the swin transformer

decoder block is passed through the reconstruction block to

generate the output. The reconstruction block consists of a series

of residual blocks.

4 Experiment

4.1 Train details

The Adam optimizer with β1 = 0.9 and β2 = 0.999 is

employed for training. The initial learning rate is set to 1 ×

e−4. Also, the learning rate exponential decay scheme is adopted

to improve the stability of the training process, with the decay

exponent parameter set to 0.98. The batch size is set to 8, and the

loss function is set to the MSE loss function. Each model is

trained for about 50 epochs. All models are implemented with

PyTorch.

4.2 Baseline methods

Anomaly numerical correction with observations (ANO) is a

traditional bias correction model that decomposes observations

and model forecasts into climate mean state and disturbance

state. The specific correction process of ANO is described as

follows. The coordinate of a grid point is denoted as (i, j), and the

climate mean state of forecasts pi,j and the climate mean state of

observations yi,j are represented as:

pi,j � 1
N

∑N
k�1

pi,j (10)

yi,j � 1
N

∑N
k�1

yi,j (11)

Therefore, the corrected result is

pi,j′ � pi,j − pi,j − yi,j( ) (12)

where pi,j′ is the corrected result, pi,j represents the forecast result

for grid point (i, j), yi,j represents the observation data for grid

point (i, j), and N represents the total number of samples. The

forecasts are corrected for each forecast time separately. For more

details of ANO, refer to (Peng et al., 2013).

The single-time correction model U-Net and the multi-time

correction model 3D-UNet are taken for comparison to

investigate the effectiveness of our proposed model against the

classical deep learning-based bias correction model. The U-Net

model is developed based on the encoder-decoder framework

with two-dimensional convolution as the basic operation. It is

commonly used in a variety of applications, such as image

TABLE 1 The parameters and training time of different models in bias correction and temporal downscaling tasks.

Task Model Parameters (millions) Training time (hours)

Bias correction U-Net 8.03 0.8

3D-UNet 9.19 2

ST-UNet 2.14 6.3

Temporal downscaling 3D-UNet 9.17 1.7

ST-UNet 1.21 8.5

TABLE 2 The overall performance ofmulti-time bias correction for the
2-m temperature on the test set.

Model MAE RMSE CC Acc (%) DISO

GFS 2.1063 2.7255 0.8972 0.5676 1.4824

ANO 2.0151 2.6028 0.9155 0.5845 1.4167

3D-UNet 1.1129 1.4775 0.9573 0.8422 0.7744

ST-UNet 1.0065 1.3361 0.9649 0.8757 0.6967
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segmentation and image recognition (Ronneberger et al., 2015).

Also, it has been used in bias correction, but only for single-time

error revisions (Han et al., 2021). The 3D-UNet model replaces

two-dimensional convolution with three-dimensional

convolution, and it is also developed based on the encoder-

decoder framework. It can handle temporal information, so it can

be applied to multi-time bias correction (Chen et al., 2020). In the

experiment, a version of 3D-UNet with an attention module is

used as a baseline method (Oktay et al., 2018). For temporal

downscaling, a video super-resolution model using 3-

dimensional convolution and U-Net architecture is used as a

baseline method (Kalluri et al., 2020), which models the temporal

dynamics between the input frames to complete video frame

interpolation. It can be used in temporal downscaling and we still

name it as 3D-UNet. The parameters and training time of

different models in detail is showed in Table 1.

4.3 Evaluation indicators

To evaluate the effectiveness of different methods for bias

correction and temporal downscaling, mean absolute error

(MAE), root mean square error (RMSE), correlation

coefficient (CC), and accuracy (Acc) are employed as

evaluation indicators. RMSE is a general metric for evaluating

regression problems, and MAE can also be used to evaluate the

error between the corrected and true values. CC characterizes the

correlation degree between the corrected and true values, and

Acc represents the accuracy of the corrected results. For the

corrected or downscaled result Ppre, the corresponding true value

is denoted as Ptrue. MAE and RMSE are calculated as:

RMSE �

������������������
1
N

∑N
1

1
T

Pn
pre − Pn

true( )2√√
(13)

MAE � 1
N

∑N
1

1
T
|Pn

pre − Pn
true| (14)

CC � Cov Ppre,Ptrue( )�����������������
Var Ppre( )Var Ptrue( )

√ (15)

where Ppre represents the forecast result vector, Ptrue represents

the true value vector, N represents the total number of samples,

and T represents the total length of forecast time.

Accuracy is a metric that is often used for classification tasks.

For regression tasks, the evaluation can be transformed into a

binary classification problem by setting a threshold. If the

threshold is set to σ, positive samples |Ppre − Ptrue| < σ are

denoted as NP, and negative samples |Ppre − Ptrue|≥ σ are denoted

as NG. Then the accuracy is expressed as:

Acc � NP

NG +NP
× 100% (16)

For various meteorological elements, the threshold σ has

different values. According to (Chen et al., 2020), σ is set to 2°C to

TABLE 3 The performance of bias correction for 2-m temperature of
24 h forecast on the test set.

Model MAE RMSE CC Acc (%) DISO

GFS 2.0603 2.6625 0.9048 0.5757 1.4796

ANO 1.9678 2.5383 0.922 0.5937 1.4115

UNet 1.4022 1.9529 0.9509 0.7672 1.0285

3D-UNet 1.0306 1.3664 0.9631 0.8673 0.7297

ST-UNet 0.9219 1.2178 0.9706 0.9020 0.6480

FIGURE 5
The RMSE of bias correction on the 2-m temperature for different forecast times on the test set.

Frontiers in Environmental Science frontiersin.org08

Xiang et al. 10.3389/fenvs.2022.1039764

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1039764


evaluate the post-processing methods of temperature forecasting.

Accordingly, σ is set to 2 in our experiments of 2-m temperature.

And σ is set to 1.5 in experiments for 10-m u component of wind.

It often happens that MAE, RMSE, CC, and Acc exhibit

inconsistency in the experiments. For example, the value of

RMSE decreases a lot, but the increase in Acc is not very

significant. Here, a comprehensive statistic metric, DISO (the

distance between indices of simulation and observation) is

extended to evaluate the overall performance of different

methods. If the statistical metrics for n chosen are (s1, s2, . . .,

sn) and the corresponding metrics between the truth data and

itself are (s10, s20, . . . , sn0), then DISO is calculated as (Hu et al.,

2019; Zhou et al., 2021b):

DISOi �
�������������������������������
s1i − s10( )2 + s2i − s20( )2 +/ + sni − sn0( )2√

(17)
In this study, DISO, which is composed of four widely used

statistical metrics:MAE, RMSE, CC, and Acc. In order to eliminate

the influence of dimension, MAE and RMSE are normalized as

Normalized MAE (NMAE) and Normalized RMSE (NRMSE) by

dividing the maximum of MAE and RMSE respectively:

DISOi �
����������������������������������������
NMAEi −NMAE0( )2 + NRMSEi −NRMSE0( )2

+ CCi − CC0( )2 + Acci − Acc0( )2
√

(18)
If the result perfectly performs the best, the best statistical metrics are:

NMAE= 0,NRMSE=0,CC= 1,Acc=1, thenDISO can be expressed:

DISOi �
�������������������������������������������
NMAEi( )2 + NRMSEi( )2 + CCi − 1( )2 + Acci − 1( )2

√
(19)

Now, the value of DISO expressed by the statistical metrics

between the forecast and the truth are used to evaluate the

performance of different methods. A larger value of DISO

indicates that the method has a poorer performance.

5 Result

Our proposed model can perform both bias correction and

temporal downscaling tasks, so it is evaluated in terms of the two

tasks mentioned above on test set.

FIGURE 6
The RMSE spatial distributions of bias correction for 2-m temperature on the test set over study area.
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5.1 Bias correction

5.1.1 2-m temperature
Table 2 presents the overall effectiveness of different methods

for the multi-time bias correction on 2 m temperature, while

Table 3 presents the effectiveness of the bias correction on the 2-

m temperature at the forecast time of 24 h. For the multi-time

bias correction task, all methods show some improvement on the

original GFS forecast data. Among them, the bias correction

methods based on deep learning perform better than ANO.

Compared with the 3D-UNet model based on convolution,

our proposed model is based on the swin transformer. By

utilizing the long-range information capture capability of the

transformer structure, our proposed model achieves the best

results. Meanwhile, the traditional U-Net model (Han et al.,

2021) is taken to perform the bias correction of 24 h forecast to

explore the effectiveness of the multi-time spatio-temporal

correction method. It can be seen that the results based on

spatio-temporal correction are significantly better than those

of single-time correction, that is, 3D-UNet and ST-UNet are

better than UNet. ST-UNet and 3D-UNet utilize not only the

spatial distribution of the forecast data but also the temporal

correlation of the forecast data, so they achieve better results,

indicating that the spatio-temporal modeling approach has a

FIGURE 7
The distributions of 2-m temperature on the forecast time of 24, 48, and 72 h, including GFS, ERA-5, and corrected results from ANO, 3D-UNet,
and ST-UNet.

TABLE 4 The overall performance ofmulti-time bias correction for the
10-m u component of wind on the test set.

Model MAE RMSE CC Acc (%) DISO

GFS 1.0176 1.4244 0.7819 0.7805 1.4477

ANO 0.9893 1.3936 0.7820 0.7915 1.4118

3D-UNet 0.6651 0.9353 0.8548 0.9073 0.9424

ST-UNet 0.6300 0.8763 0.8744 0.9225 0.8852

TABLE 5 The performance of bias correction for the 10-m u
component of wind at the forecast time of 24 h on the test set.

Model MAE RMSE CC Acc (%) DISO

GFS 0.9805 1.3662 0.8011 0.7926 1.4431

ANO 0.9542 1.3374 0.8012 0.8030 1.4084

UNet 0.6302 0.8760 0.8776 0.9218 0.9194

3D-UNet 0.6186 0.8628 0.8776 0.9238 0.9042

ST-UNet 0.5825 0.8025 0.8954 0.9388 0.8442
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FIGURE 8
The RMSE of bias correction on the 10-m u component of wind for different forecast times on the test set.

FIGURE 9
The RMSE spatial distribution of bias correction for the 10-m u component of wind on the test set over the study area.
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better effect on bias correction. Besides, the ST-UNet based on

the swin transformer obtains the best results for bias correction.

To further demonstrate the multi-time bias correction of

different methods, Figure 5 presents the RMSE of the corrected

results for different forecast times. It can be seen that the RMSE

of the forecasts increases with the forecast time, and the RMSE of

GFS forecasts is always the highest. The ANO method provides

some bias correction to the forecasts, but the results are still not

satisfactory. Deep learning-based methods obtain good results.

For our proposed ST-UNet, the RMSE is always the lowest, but

the increase in RMSE with forecast time is also minimal,

indicating that our model outperforms the CNN-based 3D-

UNet model.

To further investigate the effectiveness of different models,

the RMSE spatial distribution of the bias correction results is

plotted. Figure 6 shows the spatial distribution of RMSE for

different methods, where (a), (b), (c), and (d) show the RMSE

distributions in the same color range for different methods, and

(e) and (f) show the RMSE distributions in the reduced color

range for (c) and (d). From (a), (b), (c), and (d), it can be seen that

the RMSE of ANO is reduced compared to that of the original

GFS data, and the RMSE of the deep learning-based bias

correction method is significantly reduced. This indicates the

effectiveness of our spatio-temporal and multiple data fusion

method and the obvious advantage of the deep learning model

for bias correction. From (e) and (f), it can be observed that our

proposed ST-UNet model outperforms the 3D-UNet model, as

shown by the significant reduction of RMSE in the large value

regions, especially in the central and northern parts of the

study area.

An example of bias correction is presented in Figure 7. Here,

the results for the three forecast times of 24, 48, and 72 h are

considered. It can be seen from the results that the ANO method

only makes a simple correction to the original GFS, and the result

is still quite different from the ERA-5 data. The 3D-UNet model

and the ST-UNet model greatly improve the GFS data, and the

results have similarities to the ERA-5 data in terms of spatial

distribution. The ST-UNet model can obtain better results at the

extremes and mutations than 3D-UNet, that is, and the spatial

distribution of the data is more consistent with that of the ERA-

5 data.

5.1.2 10-m U component of wind
Experiments are also conducted on the 10-m u component of

wind. Table 4 presents the overall effect of different methods on

multi-time bias correction on the 10-m u component of wind.

The results are similar to that of the 2-m temperature bias

correction. Specifically, ANO has some improvements for GFS

forecast data, and the method based on deep learning can greatly

improve the GFS forecast data. Our proposed STUNet model

performs the best with the smallest RMSE, MAE, and largest CC

and Acc. Table 5 shows the effect of bias correction at the forecast

time of 24 h. The methods based on spatio-temporal modeling

still achieve better correction results than ANO. Meanwhile,

Figure 8 shows the RMSE of the corrected results for different

forecast times. Similar to the 2-m temperature bias correction,

TABLE 6 The performance of temporal downscaling for 2-m
temperature on the test set.

Model MAE RMSE CC Acc (%) DISO

GFS 1.4482 1.8910 0.9313 0.7355 1.4403

3D-UNet 0.9362 1.244 0.9726 0.8994 0.9282

ST-UNet 0.8422 1.1126 0.9744 0.9235 0.8312

FIGURE 10
The RMSE of temporal downscaling on 2-m temperature for differents forecast times on the test set.
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our proposed ST-UNet model always achieves the smallest RMSE

as the forecast time increases.

Figure 9 presents the RMSE spatial distribution of bias

correction, where (a), (b), (c), and (d) show the RMSE

distributions in the same color range for different methods,

and (e) and (f) show the RMSE distributions in the reduced

color range for (c) and (d). 3D-UNet and ST-UNet largely reduce

the RMSE across the study area, and the value of RMSE is much

smaller than that of ANO. It can be seen from (e) and (f) that ST-

UNet further reduces the RMSE in the region of extreme values,

especially in the north of the study area.

5.2 Temporal downscaling

Due to the discretization of numerical calculations, forecast

data products have resolution limitations. The temporal

resolution of GFS forecast data is 3 h, and the GFS forecast

data is downscaled. Using the ST-UNet model, the temporal

resolution of the GFS forecast data is increased to 1 h. The whole

temporal downscaling process improves the temporal resolution

of forecast data. Meanwhile, since the same ground truth and

model framework are used for bias correction, the whole

downscaling process is accompanied by bias correction, so

more accurate forecast data are also obtained. Therefore, the

temporal downscaling process helps to obtain more detailed and

precise forecast data.

A temporal downscaling experiment is conducted by using

forecasts with a forecast time of 3 h–24 h at an interval of 3 h as

input and the 2-m temperature of ERA-5 at an interval of 1 h as

the true value. Similar to the bias correction, 2-m temperature, 2-

m relative humidity, and 10-m wind are used as multi-element

inputs, and the forecasts at an interval of 3 h would yield 2-m

temperature results at an interval of 1 h. Table 6 presents the 2-m

temperature temporal downscaling results. The RMSE of the GFS

data is large, the RMSE of the downscaling results is significantly

reduced, and the CC and Acc of the downscaling results are

significantly increased. Figure 10 shows the RMSE of GFS and

downscaling results over forecast time. It can be seen that our

model still obtains a small RMSE for the downscaling results as

the forecast time increases. Most importantly, for the missing

forecast time, the RMSE of the downscaling results obtained by

the ST-UNet model is still small and does not show abrupt

increases, indicating that the proposed model is stable.

Figure 11 presents the results of a temporal downscaling

example. The row “GFS” shows the forecast data of 18 h, 21 h, and

24 h; the rows of “ST-UNet” and “ERA-5” show the downscaling

results and reanalysis data of 18–24 h, respectively. For the three

forecast times of 18, 21, and 24 h, ST-UNet has a certain bias

correction effect on the original GFS data; especially in the south of

the study area, where the correction effect is obvious, and the area

with large values is corrected. For other temporal downscaling

results obtained by ST-UNet, they are consistent with the

ERA5 data in the overall spatial distribution.

FIGURE 11
The distributions of 2-m temperature on the forecast time of 15–24 h, including GFS, ERA-5, and downscaling results obtained by ST-UNet.
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6 Conclusion

In this paper, a deep learning model called ST-UNet is proposed

based on spatio-temporal modeling to accomplish both bias

correction and temporal downscaling. With the swin transformer

as themainmodule and CNN as a supplement (Kopuklu et al., 2019;

Liu et al., 2021), the ST-UNet model is constructed based on the

framework of U-net. The encoder performs feature extraction and

downsampling on the input, and the decoder applies the query vector

to the features of the decoder to generate the output. To accomplish

both the bias correction and downscaling tasks, a query builder block

is proposed to generate the initial query vector. The main highlights

of our work are as follows. Firstly, a spatio-temporal modeling

approach that exploits both the spatial distribution and temporal

correlation of forecast data is used, which performs better than

single-time bias correction for the bias correction task; secondly,

while previous work used CNNs for meteorological grid data, this

paper uses the swin transformer, which exploits a self-attention

mechanism to extract global features, thus achieving better results

than 3D-UNet; thirdly, both the bias correction and temporal

downscaling tasks are performed based on the ST-UNet model.

To verify the bias correction capability of our proposed

model, multi-time bias correction of the 2-m temperature and

the 10-m u component of wind is performed, and multiple types

of multi-time forecasts are used as input. In the experiments, the

deep learning model performs significantly better than ANO in

bias correction, with a significant reduction in RMSE and a

significant increase in CC and Acc. By analyzing the spatial

distribution of RMSE, the deep learning approach can reduce

RMSE significantly over the study range, while our proposed

model obtains the smallest RMSE, especially in the regions with

extreme values. To validate the temporal downscaling effect of

our proposed model, temporal downscaling of 3-h forecasts is

performed to obtain 1-h forecasts. In the 2-m temperature

experiment, forecasts with errors much smaller than the

original GFS are obtained, which indicates that the temporal

downscaling process helps to obtain more detailed forecasts and

correct the forecasts to obtain more accurate results.

In summary, our proposed model can perform both bias

correction and spatial downscaling tasks to obtain more accurate

and detailed forecast data. This process is based on spatio-

temporal modeling and combines both the swin transformer

module and the U-Net framework. Our proposed model can be

applied to a wide range of model outputs and this will be the

focus of our future research.
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